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Abstract

With an abstraction of serving rate-adaptive sources on a broadcast-type wire-
less channel as a utility maximization problem, it is shown how one can design many
intuitive online scheduling policies based upon the feedback that one obtains at the
scheduler. Using a stochastic approximation argument it is then shown that the
constructed algorithms converge to optimal solutions of the utility maximization
problem over different sets which critically depend on the quality of the feedback
information.

1 Introduction

The emergence of the third generation cellular technologies over the last decade has
generated a flurry of activity in wireless data. A principal component for enabling wireless
data is intelligent scheduling amongst different traffic streams. Exploiting the time-
varying nature of wireless channels to acheive system efficiency whilst still maintaining a
notion of fairness there have been many different proposals of opportunitistic schedulers [6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18] for the broadcast-type channel that exists on
the downlink direction of most cellular systems. A key element of every scheduler is
to transmit to an appropriate user at a time with a bias to users with good channel
conditions so as to not violate the fairness requirements. Similar schedulers can be
proposed in the uplink direction as well but since the channel is of a multiple-access
nature it is necessary to assume the existence of a centralised scheduler that gathers
queue-length information and sends out scheduling commands to the different nodes.

In [11] the proportionally fair algorithm scheduling algorithm was proposed using
a log(·) utility function for different streams. Using a bigger class of utility functions
[6, 7] showed how one can easily choose a scheduler with an efficiency-fairness tradeoff
in between the two extreme cases, namely, a channel-unaware scheduler and a scheduler
that always serves the best user at any given time. The authors of [8, 9] investigate
a scheduling algorithm that maximises the minimum weighted throughput of different
users and show that one can devise adaptive strategies that asymptotically converge to
the optimal solution in a stochastic setting. In [10] the authors consider different fairness
criteria and discuss optimal scheduling algorithms. They also discuss some properties of
the rate region achievable by a general class of opportunistic scheduling algorithms. In
[18] optimality properties of the proportionally-fair algorithm are discussed.

The main contributions of this paper are as follows. First, we generalize the scheduling
algorithms in the above references to general channels in order to accommodate cases
wherein it is better to transmit to multiple users at the same time as is the case with
multiple transmit antennae [17]. Next, using a stochastic approximation approach we
show that asymptotically it is possible to analyse the performance of the algorithm by



means of an ordinary differential equation. Using properties of the differential equation we
then show that the algorithms converge to the optimal solution of a related optimization
problem. Revisiting schemes that transmit only to user at a time in the above general
context we draw a few conclusions on multiuser diversity.

2 The Model

Consider a wireless communication system with d users. The channel conditions are
time varying and captured by a stochastic channel state ηk ∈ S at time k, where S is
the channel state space. We assume that S is a Polish space. Associated with each
state η ∈ S we have a rate-region R(η) ⊂ <d+. Thus when the channel is in the state η,
the users may transmit at any vector of rates v = (v1, . . . , vd) ∈ R(η). We will assume
throughout this paper that R(η) ⊂ K ⊂ <d+, ∀η ∈ S for some compact set K and
that the process {ηk} is ergodic with the stationary distribution γ. For simplicity we
shall assume that R(η) is convex, coordinate convex, and closed for every η. Then the
steady-state rate region is given by

R̄ :=

{
w ∈ <k+ : ∃v(η) ∈ R(η) ∀ η ∈ S such that w =

∫
S
v(η)γ(dη)

}
. (1)

It is easily verified that R̄ is convex, coordinate convex, and compact. Note that R̄ is
precisely the set of all achievable steady-state long-term empirical throughput vectors w.
See [13] for examples of some specific wireless communication systems including TDMA
and CDMA cellular systems and adhoc networks that fit the above mathematical model.

We assume that the d users are rate-adaptive and need to share the channel described
above, fairly and efficiently. The problem that we would like to solve can be translated
into the following utility maximization problem:

sup
w∈R̄

d∑
i=1

Ui (wi)
4
= U(w).

For each i we assume that Ui(·) is an increasing, strictly concave, and continuously
differentiable utility function on <+. From the above observations on R̄, it follows that
a maximizer exists and that it is unique.

3 A Gradient Based Scheduling Algorithm

Let Vk ∈ R(ηk) be the rate selected at time k. Define Wk to be the empirical throughput
as follows:

W0 = 0

Wk+1 = Wk + µk(Vk −Wk), k > 0. (2)

Broadly speaking we consider two case cases, viz., one, µk = 1/k, k > 0 for time-average
throughput, and µk = µ > 0,∀k > 0 for the constant step-size case. In the constant step
size we make the additional distinction that the step size µ be small. In all cases we are
interested in optimizing U(Wk) as k → +∞.

To do so, we consider a myopic view of the optimization problem; we optimize
U(Wk+1) by choosing Vk ∈ R(ηk) appropriately given that V0, . . . , Vk−1 have already



been chosen. Thus, we are interested in finding what the next best step is given what-
ever action was taken in the past. Note that,

U(Wk+1)− U(Wk) = U (Wk + µk(Vk −Wk))− U(Wk)

≈ µk∇U(Wk)
T (Vk −Wk),

where the last relation holds for µk � 1. Thus, for small enough µk the best choice given
the past decisions is to choose a point Vk in the capacity region that satisfies

Vk = arg max
v∈R(ηk)

∇U(Wk)
Tv. (3)

Remark We may easily make the following observations:

1. This leads to a gradient-based scheduling algorithm.

2. With the convex rate region assumption for each state this is an easy problem to
solve.

3. In the case that the region for every state is a simplex we obtain a TDM-type
algorithm where only one user is allowed to transmit at a time.

We will also consider a number of other scheduling algorithms for choosing the rate vector
Vk = F (Wk, ηk) ∈ R(ηk) at time k based on the current throughput Wk and possibly
knowledge of the current channel state ηk.

4 Analysis of the constant step-size case

We are interested in studying the behavior of this algorithm (2) for constant step-size
case, i.e., µk = µ,∀k > 0, with a number of different scheduling algorithms for choosing
the rate vector Vk = F (Wk, ηk) ∈ R(ηk) for small µ. For this pupose define the continuous
time process

Wµ(t) := W[t/µ], t ≥ 0, where [x] := sup{i ∈ Z : i ≤ x}.

Also, define the occupation measure

Γµ(C × [0, t]) := µ

[t/µ]∑
k=1

IC(ηk) for C ⊆ S, C Borel.

Under the ergodicity condition on the channel state process, this converges to the measure

Γ(dη × ds) = γ(dη)ds,

where γ is the stationary distribution of {ηk}. We may then express

Wµ(t) = Wµ(0) + µ

∫ µ[t/µ]

0

(F (Wµ(s), η[s/µ])−Wµ(s))ds

= Wµ(0) +

∫
S×[0,t]

(F (Wµ(s), η)−Wµ(s))Γµ(dη × ds) (4)

We shall assume that the initial rate vector Wµ(0)→ w0 in probability as µ→ 0. Due to
the common compact bound on the rate regions, it follows that the family of processes
{Wµ} (and consequently {Wµ,Γµ}) is relatively compact. We shall make the following
continuity assumpion on F .
A1. For each w ∈ <d+ and Cw := {η : F is continuous at (w, η)}, γ(Cw) = 1.

Then we have the following theorem based on Lemma 1 Part (c) of [2].



Theorem 4.1 Under assumption A1, it follows that any limit point (W,Γ) of {Wµ,Γµ}
satisfies

W (t) = w0 +

∫
S×[0,t]

(F (W (s), η)−W (s))γ(dη)ds (5)

= w0 +

∫ t

0

(F̄ (W (s))−W (s))ds. (6)

where

F̄ (w) :=

∫
S
F (w, η)γ(dη)

In case F̄ is continuous, W satisfies the ODE

Ẇ = F̄ (W )−W. (7)

Extensions: Assuming that F̄ (w) is continuously differentiable and mixing conditions
hold for the state process ηk, we can derive a central-limit theorem type convergence
result[19] for the error process

Ξµ(t) =
1
√
µ

(Wµ(t)−W (t)) (8)

based upon [2, Thm 2., p. 969]. Define

Lµ(t) =
√
µ

[t/µ]∑
k=1

(
F (W (kµ), ηk)− F̄ (W (kµ))

)
.

Assume C.1 that Lµ =⇒ L, where L is a zero-mean Brownian motion. Mixing con-
ditions on ηk will imply this. Additionally assuming C.2 that F (w, η) is continuously
differentiable in η with bounded derivative ∂wF (w, η). We then have

Theorem 4.2 Assume C.1-C.2 and that the solution to (7) exists for all t ≥ 0, and
that Ξµ(0)→ ξ0 in probability. Then Ξµ =⇒ Ξ satisfying

Ξ(t) = ξ0 + L(t) +

∫ t

0

∂F̄ (W (s))Ξ(s)ds. (9)

5 Some Gradient-type Scheduling Algorithms and
their F , F̄

We now consider some specific choices of scheduling algorithms Vk = F (Wk, ηk). All
cases are based on a gradient type algorithm. The first case we consider is where, the
scheduler knows the exact channel state ηk.

5.1 Complete knowledge of the current channel state

This is the ideal case of complete knowledge where we know the current state ηk and
optimize for the current rate Vk over the set R(η). Thus,

F (w, η) = arg maxu∈R(η)∇U(w)Tu

We define a compact and convex set Q ⊂ <d+ to be strictly-convex if for all a ≥
0,
∑d

i=1 ai = 1 there is a unique maximiser of aTu in Q.



Proposition 5.1 Under strict-convexity of R̄

F̄ (w) = arg maxu∈R̄∇U(w)Tu. (10)

The proposition follows from the lemma below.

Lemma 5.1 Under strict-covexity of R̄∫
S

arg maxu∈R(η)a
Tuγ(dη) = arg maxu∈R̄a

Tu

Proof: Let u∗(η) be a maximizer in the LHS. Let u∗ :=
∫
S u
∗(η)γ(dη). Clearly u∗ ∈ R̄ and

thus aTu∗ ≤ maxu∈R̄a
Tu. Now for any u =

∫
S u(η)γ(dη) ∈ R̄ with u(η) ∈ R(η), aTu∗ =∫

S a
Tu∗(η)γ(dη) ≥

∫
S a

Tu(η)γ(dη) = aTu. Thus, aTu∗ ≥ maxu∈R̄a
Tu. Consequently,

aTu∗ = maxu∈R̄a
Tu, and hence, u∗ = arg maxu∈R̄a

Tu, since there is a unique maximizer
of the RHS by the strict-convexity assumption.

5.2 No knowledge of the current channel state

In this section we devise a scheduling algorithm that is based just on knowledge of the
steady state rate region and not the current rate. Let R̄i denote the intercept of the rate
region R̄ along the i-th dimension. This is simply the throughput user i would get if it
was the only user scheduled for all times. At time k the scheduling policy picks the user
i∗k = i∗(Wk) for transmission based on only Wk as follows:

i∗k = i∗(Wk) := arg maxiU̇i(Wk,i)R̄i.

The resulting rate vector Uk = F (Wk, ηk) is given by

F (w, η) = Ri∗(w)(η)ei
∗(w)

where Ri(η) is the intercept along the i-th dimension of R(η) and ei is the unit vector in
the i-th direction. The following is easily verified.

Proposition 5.2

F̄ (w) =

∫
S
F (w, η)γ(dη) = R̄i∗(w)e

i∗(w) = arg maxu∈R̄S∇U(w)Tu. (11)

where R̄S is the largest simplex inscribed in R̄.

Note that F (w, η) defined here will not satisfy A1.

5.3 TDM type schedulers with knowledge of channel state

In this subsection we concentrate on time division multiplexing (TDM) type algorithms
that only serve one user at a time but still use the time-varying capacity for each user.
At time k the scheduling policy picks the user i∗k = i∗(Wk, ηk) for transmission based on
both Wk and ηk as follows:

i∗k = i∗(Wk, ηk) := arg maxiU̇i(Wk,i)Ri(ηk).

where Ri(η) is the intercept along the i-th dimension of R(η) as defined before. The
resulting rate vector Uk = F (Wk, ηk) is given by

F (w, η) = Ri∗(w)(η)ei
∗(w,η) = arg maxu∈RS(η)∇U(w)Tu. (12)



In other words, the capacity region for every channel state η ∈ S is restricted to the
largest simplex inscribed in R(η) which we refer to by R̄S(η). This limited view of the
rate region results if we place the restriction that the users send only the rates that they
can achieve as feedback. The average rate region which is defined in a manner similar
to that of R̄ in (1), is denoted by R̄S. Note that this is in general not equal to R̄S,
the largest simplex inscribed in R̄. In general, R̄S ⊃ R̄S. As in the case of complete
information, the proposition below follows from Lemma 5.1.

Proposition 5.3 Under assumption that the corresponding steady state capacity region
R̄S is strictly convex,

F̄ (w) = arg maxu∈R̄S∇U(w)Tu. (13)

5.4 TDM type schedulers with imperfect knowledge of channel
state

Note that schedulers considered in Sections 5.2, 5.3 were both TDM type. In this sub-
section we generalize these two cases to TDM type algorithms that only serve one user
at a time and which use (possibly) imperfect knowledge of the time-varying rate-region.
Let Ri(η) be the intercept along the i-th dimension of R(η) as defined before. This is the
maximum rate user i may transmit at when the channel is in state η. Let the (possibly)
imperfect knowledge of the maximum rate user i may be served at when the channel
state is η be denoted by R̂i(η). In the case of perfect knowledge of the maximum rates,

R̂i(η) = Ri(η) but, in general, R̂i(η) 6= Ri(η) At time k the scheduling policy picks the
user i∗k = i∗(Wk, ηk) for transmission based on both Wk and ηk as follows:

i∗k = i∗(Wk, ηk) := arg maxiU̇i(Wk,i)R̂i(ηk).

The resulting rate vector Uk = F (Wk, ηk) is given by

F (w, η) = Ri∗(w)(η)ei
∗(w,η) =

d∑
i=1

Ri(η)ei1{U̇i(wi)R̂i(η)>U̇i(wi)R̂i(η)∀j 6=i}. (14)

In case all of the above indicators are 0, i.e., there are multiple maximizers i∗(w, η), we
assume that one of the above indicators will be set to one and others to 0.

This model actually captures a number of interesting cases including the following:

1. Knowledge only of the steady state maximum rates, i.e. R̂i(η) = R̄i, as described
in the previous section 5.2.

2. Knowledge only of the steady state maximum rates with dithering. Since the model
with knowledge only of the steady state rates leads to a F that violates assumption
A1, dithering may be deliberately introduced to smooth it out. The channel state η
in this model may include some auxilliary random variable ε(η) = (ε1, . . . , εd) used

for dithering. In this case R̂i(η) = R̄i + ε(η). Assuming that under the stationary
distribution γ, ε(η) is uniform on [−δ, δ]d and independent of Ri(η), it may be
shown that F satisfies assumption A1 and that F̄ (w) is continuous in w. Moreover
as δ → 0, F and F̄ converge to the corresponding functions for the case without
dithering (at their points of continuity).

3. Predicted maximum rate vectors, i.e, R̂i(η) is a prediction of Ri(η). For instance,
we may not know Ri(ηk), but instead estimate it by using the IIR filter:

R̂k+1,i = αR̂k,i + (1− α)Ri(ηk)

We may “fold in” R̂k,i into the channel state process ηk.



4. TDM type scheduler with complete knowledge of the current channel state, i.e.
R̂i(η) = Ri(η), as described in the previous section 5.3

6 Solution of the ODE

Next we investigate the solution of the differential equation (7) reproduced below.

Ẇ = F̄ (W )−W. (15)

Note that for several of the algorithms presented in the previous section, F̄ takes the
form

F̄ (w) = arg maxu∈Q∇U(w)Tu,

for some convex, coordinate convex, and compact subset Q ⊂ R̄. Because of the strict
concavity of the utility function U and the above, it is easy to verify the following lemma
(see [3, Prop 2.1.1 p. 175, Prop. A8 p. 540]).

Lemma 6.1 x∗ = arg maxx∈QU(x) if and only if

∇U(x∗)T (x− x∗) ≤ 0 ∀x ∈ Q. (16)

Let w∗ := arg maxx∈QU(x) denote the optimal throughput.

Proposition 6.1 Under the assumption that Q ⊆ R̄ is strictly convex, it follows that w∗

is the unique equilibrium point of the differential equation (7) and W (t)→ w∗ as t→∞
starting with any initial state W (0) = w0 ∈ Q.

Proof: w′ is an equilibrium point of (7) if and only if w′ ∈ Q and

F̄ (w′) = w′ ⇔ arg maxw∈Q∇U(w′)Tw = w′

⇔ ∇U(w′)Tw ≤ ∇U(w′)Tw′, ∀x ∈ Q ⇔ ∇U(w′)T (w − w′) ≤ 0

⇔ w′ = w∗.

To show the convergence of the solution of the differential equation to this equilibrim
point, we use the utility function U as a natural choice for a Lyapunov function.

d

dt
U(W (t)) = ∇U(W (t))T Ẇ (t) = ∇U(W (t))T (F̄ (W (t))−W (t))

= ∇U(W (t))T (arg maxw∈Q∇U(W (t))Tw −W (t))

= maxw∈Q∇U(W (t))Tw −∇U(W (t))TW (t)) ≥ 0 for W (t) ∈ Q

with equality above iff W (t) = w∗. Thus U(W (t)) is strictly increasing with t unless
W (t) = w∗. The function U is thus a Lyapunov function for the differential equation (7)
and the proposition follows (see [5, Theorem 5.1(58)]).
Remark: Thus, the equilibrium point is now the unique sum utility maximiser restricted
to the subset Q ⊂ R̄. From this it is quite clear that knowledge of the current rates, and
even better, the current rate-region, leads to a better solution than what can be obtained
merely by knowing the average rates.



7 Analysis of the decreasing step size case

In this section we consider the decreasing step size (stochastic approximation) case of
(2), i.e.,

Wk+1 = Wk + µk(Vk −Wk) = Wk + µk(F (Wk, ηk)−Wk), (17)

with the usual assumptions on the sequence µk ≥ 0, i.e. that
∑∞

k=1 µk =∞,
∑∞

k=1 µ
2
k <

∞,
∑∞

k=1 |µk+1− µk| <∞. We can use Theorem 3.3 of [4] to obtain the following result.

Theorem 7.1 Under assumption A1, Wk converges to w∗ almost surely as k →∞.

Extensions: With an i.i.d. evolution for the state process ηk we [19] can relax assumption
A1 to cover cases where F̄ (·) is a member of a certain class of set-valued functions and
prove the result in Thm. 7.1.

8 Algorithm Simulations and comparison with Nu-
merical Analysis of the ODE

In this section using simulations and numerical analysis we provide evidence for the
results obtained in this paper. For simplicity we consider 2 user scenarios and simplex-
type rate-regions R(η) for each state η.

For the first scenario we assume that the state process takes values in [0, 1] with the
states chosen i.i.d. with uniform probability. Given that the state is η ∈ [0, 1] we assume
that the maximum rate that user 1 gets is given by R1(η) = 1−η and the maximum rate
that user 2 gets is given by R2(η) = η. Note that choice of the state distribution ensures
that we satisfy the continuity condition A1. The rest are easily verified for this simple
case. For this case it can be shown that the boundary of the steady-state capacity region
R̄ is given by {(Ra

1, R
a
2) = ( 1+2a

2(1+a)2 ,
a2+2a

2(1+a)2 ), a ∈ [0,+∞]} satisfying the strict convexity

assumption. Now assuming that the utility functions of the two users are the same it
is clear that the optimal operating point in the steady-state capacity region is given
by (0.375, 0.375) and the same in the inscribed simplex region is given by (0.25, 0.25).
In Figure 1(a) with a µ = 0.001 and a simulation of the algorithm for 20, 000 steps
we show that the stochastic process of the rates using the log(·) utility function is well
approximated by the ODE solution. In Figure 1(b) the (asymptotic) convergence for the
decreasing step-size case of the same utility function is demonstrated. Since it suffices
to consider the ODE to predict the behaviour of the algorithm we demonstrate how the
different algorithms converge to the different optimal points in Figure 3(a). Considering
the average rate based algorithm we can argue that the trajectories will approach a fixed
curve (straight-line from 0 if all the utility functions are the same) and then go along the
curve to the optimal solution.

For the second scenario we assume the same state process but assume that given
that the state is η ∈ [0, 1], the maximum rate that user 1 gets stays the same as before
but that for user 2 is now given by R2(η) = 0.5η. The boundary of the steady-state

capacity region is now given by {(Ra
1, R

a
2) = (2(1+a)

(2+a)2 ,
4a+a2

4(2+a)2 ), a ∈ [0,+∞]}. Assuming a√
· utility function we can show that the optimal point in the steady-state capacity region

is approximately given by (0.4053, 0.1703) and the optimal point in the inscribed simplex
region is given by (1/3, 1/12) ≈ (0.3333, 0.0833). In Figure 2 with a µ = 0.0001 and
a simulation of the algorithm for 100, 000 steps we show that the ODE very accurately
predicts the stochastic process. Once again in Figure 3(b) we show how the different
algorithms converge to the different optimal points.



(a) Comparison of the constant step-
size algorithm with ODE.

(b) Comparison of the decreasing step-
size algorithm with ODE.

Figure 1: Trajectories of the different algorithms and comparison with the respective
ODEs for the first scenario.

Figure 2: Trajectories of the different algorithms and comparison with the respective
ODEs for the second scenario.

9 Conclusions

Based upon a stochastic approximation approach we showed that a general class of
“gradient-like” opportunistic scheduling algorithms converge to the optimal solution of
a related optimization problem. Using this we showed that the gains of multiuser di-
versity critically depend upon shape of the steady-state region based upon the amount
of information that can be fed-back to the scheduler about the rate-regions in different
channel states. This knowledge is critical, for instance, in systems with multiple transmit
antennae where it is optimal to transmit to more than one user.
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