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Abstract: Quantitative Feedback Theory (QFT) is one of the most effective methods of 
robust controller design. In QFT design, we can consider the phase information of the 
perturbed plant so it is less conservative than H∞ and µ-synthesis methods. In this paper, 
we want to overcome the major drawback of QFT method, i.e., lack of an automated 
technique for loop-shaping. Clearly such an automatic process must involve some sort of 
optimization, and while recent results on convex optimization have found fruitful 
applications in other areas of control theory we have tried to use LMI theory for 
automating the loop-shaping step of QFT design. 
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1. INTRODUCTION 
 
Quantitative Feedback Theory (QFT) is one of the most 
effective methods of robust controller design. Particularly 
it allows us to obtain less conservative controllers than 
other robust controller design methods like H∞ and µ-
synthesis.  One feature that distinguishes QFT from other 
frequency-domain methods, such as H∞ and LQG/LTR, is 
its ability to deal directly with uncertainty models and 
robust performance criteria. This is achieved by translating 
robust performance specifications and uncertainty models 
into so-called QFT bounds. These bounds, typically 
displayed on a Nichols chart plot, serve as a guide for 
shaping the nominal loop transfer function which involves 
the manipulation of gain, poles and zeros. This design 
process is executed efficiently using computer aided design 
software and is effective for “simple” problems, but QFT 
designers can benefit from an algorithm that automatically 
provides a first-cut solution to the loop-shaping problem. 
In addition, an automatic loop-shaping facility would 
enhance the capabilities of the expert QFT designer. 
Automatic loop-shaping algorithms have been proposed 
over the past twenty years and this paper reports on a new 
version. 
In recent years, convex programming and LMI theory has 
been used widely in solving some important control 
problems, so we tried to use this method for solving QFT 
loop-shaping problem for the very first time.  
This paper is not based upon any previous work, although 
methods mentioned in (Gahinet, et al., 1994) and 
(Krishnan, et al., 1977) inspired us to find our method.  

2. THE QFT DESIGN TECHNIQUE 
 

The general QFT problem is how to design controller C(s) 
and pre-filter F(s) such that for a given set of uncertain 
plants { }PP∈  with perturbed parameters Ω∈α  the 
following specifications are satisfied: 
 
 (i) Robust Stability: 
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must be exponentially stable Ω∈∀α .  
 
(ii) Robust tracking performance: Two time functions a(t) 
and b(t), are given and a command input r(t) (for example a 
step function) that specify the output tolerance of y(t) in the 
form:  

)()()( tbtyta ≤≤      { }PP∈∀                                  (1) 
These tracking specifications in the time domain can be 
translated into the frequency domain upper and lower 
bounds for )( ωjTR , that satisfies: 

unitsdBinBjTA R )()()( ωωω ≤≤                (2) 
 
(iii) Output disturbance rejection specification: A function 
D(ω) is given that specifies the output disturbance rejection 
specifications in this form:  
 
       )()( ωω DjTd ≤        { }PP∈∀                         (3) 
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and d(s) is the output disturbance function. 
 
(iv) Input disturbance rejection specification:  A function 
D’(ω) is given that specifies the input disturbance rejection 
specification in this form: 
 

)(')(' ωω DjT d ≤       { }PP∈∀                          (4) 
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and d’(s) is the input disturbance function. 
 
In the classical QFT design, the above specifications will 
be transformed into a set of boundaries for some pre-
specified frequencies (called trial frequencies) in Nichols 
chart and we have to specify the gain, poles and zeros of 
controller C(s) such that the open-loop transfer function  

)().,()( 000 sCsPsL α=  lies above the boundaries in 

each trial frequency (note that ),( 00 sP α  is the nominal 
plant). In this paper, we will introduce a method for 
converting this problem to an LMI problem that will be 
discussed in section IV.  
 

3. LMI THEORY 
 

Consider the problem of minimizing a linear function of a 
variable nx ℜ∈  subject to a matrix inequality: 
 
 Minimize cTx 

Subject to 0)( ≥xF                                           (5) 
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The problem data are the vector nc ℜ∈  and m+1 

symmetric matrices F0  , …, Fm
nxnℜ∈   The inequality sign 

in 0)( ≥xF  means that F(x) is positive semi-definite, 

i.e., 0)( ≥zxFzT  for all nz ℜ∈ . We call the inequality 

0)( ≥xF  a linear matrix inequality and the above 
problem a semi-definite program or an LMI problem. It is 
also called a convex optimization problem since its 
objective and constraints are convex, i.e.: 
 If 0)( ≥xF  and 0)( ≥yF  then for all λ, 10 ≤≤ λ  
then F(λ x+(1- λ)y)= λ F(x) + (1- λ)F(y). 

 
For example, linear programming problem: 
 
Minimize cTx 
Subject to 0≥+ bAx  
 
is an LMI problem. 
The most attractive feature of LMI theory is that LMI 
problems just have global minimums and there are no local 
minimums. Another important feature is that we can 
convert various LMI problems into a single LMI problem. 
Suppose that we have k LMIs 0)( ≥xFi  (i=1,..,k). These 

k LMIs are equivalent to the LMI 0)( ≥xF  in which:.  
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In general, LMI problems do not have analytical solutions 
but there are some efficient numerical methods (like 
interior point method) for solving these problems, so all we 
have to do is to transform our optimization problem into 
one of standard LMI problems that has been mentioned in 
(Boyd, et al., 2002). 
 

4. AUTOMATIC LOOP-SHAPING 
 

In this section we will show how to convert the QFT loop-
shaping problem into an LMI problem. We first start with 
the robust tracking specification. As mentioned above, we 
want to find a controller C(s) such that: 
 
      0,)()()( ≥∀Ω∈∀≤≤ ttbtyta α           (6) 

 
or equivalently, so that: 
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An exact frequency-domain equivalent to the above time-
domain inequality is unknown. A slightly weaker condition 
to 
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It is noted that the integration operation in (8) converts the 
original L∞ (amplitude) into constraints to an L2 (energy) 
constraint. Therefore satisfaction of (8) does not 
necessarily imply satisfaction of (7). Here a(t) and b(t) are 
upper and lower step-response specifications respectively. 
Also y(t) is the closed-loop response output as a function 
of the plant parametric uncertainty vector Ω∈α . A 
rigorous frequency-domain translation of bounds such as in 
(8) can be made negligible (Krishnan, et al., 1977). It will 
be shown that the relaxed problem is roughly equivalent to 
the solution of a frequency-domain sensitivity reduction 
problem. Let: 
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The by Parseval’s theorem, a sufficient condition for 
satisfaction of (8) is: 
 

ωαωωω ∀Ω∈∀≤− ,)()()( 0 jvjyjy         (10) 

 
We assume that a(t),b(t) and hence y(t) are all Laplace 
transformable. For internal stability, every y(t) is required 
to have the same number Nz of  non-minimum-phase zeros. 
Bode’s sensitivity theorem (Bode, 1945), normalized with 
respect to y0 shows that (temporarily dropping the 
argument jω: 
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where: 

),()( sPsP α= is uncertain plant, 

),()( 00 sPsP α=  is nominal plant, 

)().,()( 00 sCsPsL α=  is nominal open-loop transfer function,  

)(.),()( sCsPsL α=  is open-loop transfer function, 
C(s) is the controller, and also: 
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Since the tracking specification imposes the 
constraint υ≤− 0yy , we have from (10) and (11) that: 
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is implied by: 
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Satisfaction of inequality (13) is a sufficient condition for 
the L2 tracking specification to be met. Note that we can 
use equation 13 independent of the method we used for 
deriving y0(jω) and υ(jω). In fact QFT designers has 
understood that finding the frequency domain equivalents 
of time domain specifications is not so difficult and for 
almost every practical time domain specifications we can 
find a 2nd order frequency domain equivalent. Therefore we 
can ignore equation (8) and obtain y0(jω) and υ(jω) using 
every method we prefer and then equation (13) can be 
used.  
Now the robust tracking specification can be stated as 
follows: 
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We also mentioned that robust output disturbance rejection 
specification is as follows: 
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And we also want to have robust stability. It means that: 
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must be exponentially stable Ω∈∀α . It means that the 
maximum gain of TR must be less than a priori defined 
value. The pre-filter F(s) is always a stable and is almost 
always a low pass filter, so its maximum gain is almost 
negligible and we can interpret this specification as finding 
controller C(s) such that the high frequency gain of T(s) 
will be less than a defined value. We can easily this 
specification into a limit over the maximum gain of 
sensitivity function S(s) Hence the robust stability 
specification can be stated as follows: 
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         ωαωω ∀Ω∈∀≤ ,)()( SMjS           (17) 

 
in which MS is specified by designer.  
Now we must find a controller C(s) such that equations 
(15),(16),(17) be satisfied simultaneously, so we define: 
 

{ } ∞∈≡ LMMMM STD )(),(),(min)( ωωωω     (18) 
 

Then the above constraints are simultaneously satisfied if: 
 

   ωαωω ∀Ω∈∀≤ ,)()( MjS      (19) 

 
Therefore, our aim is to find a controller C(s) such that 
inequality (19) will be satisfied. To do this, we define a 
real-rational function W(jω) as upper bound for 1/M(ω), so 
(19) converts to: 
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or equivalently: 
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Note that this is not an ordinary sensitivity reduction 
problem because here S(jω) is perturbed sensitivity 
function, not nominal sensitivity function. Using similar 
procedure, we can transform the input disturbance rejection 
specification into the below inequality: 
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∞

αωω 1)()( jWjT T     (21) 

 
in which T(jω) is perturbed complementary sensitivity 
function. Because both inequalities must be satisfied 
simultaneously, we must find a controller C(s) such that: 
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The above problem is equivalent to infinite nominal 
sensitivity reduction problem and instead of solving it, we 
consider just finite numbers of uncertain parameters and 
convert the problem to a finite number of sensitivity 
reduction problems. For example if parameter α1 varies   
between 1 and 2 we can consider just 1, 1.5, 2 (or more 

values depending on the problem). In (Gahinet, et al., 
1994) a method for converting the sensitivity reduction 
into LMI problem has been introduced. We can use this 
method and change all the finite sensitivity reduction 
problems into LMI form and as mentioned in section 3 all 
of the simultaneous LMI problems can be transformed into 
one LMI problem and can be solved by the available 
packages like MATLAB LMI toolbox. 
Note that using this method; the loop-shaping problem has 
been completely automated so there is no need for 
calculating and plotting the QFT boundaries in Nichols 
chart. 
 

5. RESULTS 
 

We show the effectiveness of this method using a 
benchmark problem of QFT theory. The problem is to 
design a controller for a DC motor whose uncertain 
transfer function is: 
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in which 150 ≤ K ≤ 300 and 0.012 ≤ τm ≤ 0.020 and τe 
= 0.001s. 
The closed-loop objectives are: 
 
- Robust stability specifications: 
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- Input disturbance rejection specifications: 
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- Output disturbance rejection specifications: 
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Design frequencies are chosen as [0.01, 0.05, 0.1, 0.2, 1.0, 
5.0, 10.0]. 

Using the MATLAB LMI toolbox, the controller was 
determined to be: 

 

In order to meet the closed-loop tracking requirement in 
the two degree of freedom structure, a suitable pre-filter 
must be obtained. This is designed according to the 
methodology described in (Houpis, et al., 1999). This pre-
filter is given as: 
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A collection of closed-loop Bode plots for the extreme 
plant parameter conditions are given in Figures 1 to 4 for 
expert’s design and in figures 5 to 8 for our proposed 
method. As it can be seen in figures 5 to 8, the stability, 
performance and disturbance rejection requirements are 
satisfied. 

 

It can also be seen that in comparison to the expert’s 
design, the high frequency gain of L0(s) has been reduced. 
Also, the sensitivity and input disturbance responses are 
reduced specially in lower frequencies.  
Although there is no direct implication for time domain 
performance, it can be seen that the corresponding time 
response is favorable, as shown in figure 6.  
 
 

6. CONCLUSIONS 
 

In this paper a method for automatic loop-shaping of QFT 
controllers has been introduced for the first time. The 
design process has been converted to an LMI problem 
which can be solved using efficient numerical methods. 
The results show the effectiveness of this new method. 
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