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1. Introduction

Dynamical systems leaving the non-negative orthant invariant are of great practical importance due to their applications
in Biology, Ecology, Economics, Communications and elsewhere. Systems of this type are known as positive systems and
have been studied extensively in the literature. In particular, the theory of linear time-invariant (LTI) positive systems is
now well developed and much recent work has been directed towards extending this theory to broader and more realistic
system classes. For instance, the authors of [1] have considered positive systems defined by integro-differential equations,
while the properties of switched positive systems have been studied in [2–4]. Asmany of the applications of positive systems
give rise to nonlinear systems, it is natural to look for extensions of the theory of positive LTI systems to classes of nonlinear
positive systems. In this paper, we consider a particular class of nonlinear positive systems, subhomogeneous cooperative
systems, and derive results on their stability that echo the properties of positive LTI systems.

We first consider an extension of the following property of positive LTI systems. If the positive LTI system ẋ = Ax is
globally asymptotically stable, then so is the system ẋ = DAx for any diagonal matrix D with positive diagonal entries. This
property is commonly referred to as D-stability. It was shown in [5,6] that a nonlinear analogue of D-stability property also
holds for a significant class of nonlinear positive systems; namely cooperative systems that are homogeneous [6]. We shall
show here that these results can be further extended to subhomogeneous cooperative systems (we define these formally
in the following two sections). It should be pointed out that the methods used in [5,6] relied heavily on an extension of the
Perron–Frobenius theorem given in [7]. In contrast, our approach heremakes use of the Knaster–Kuratowski–Mazurkiewicz
(KKM) theorem [8] and is inspired by recent applications of this result to small-gain conditions and input-to-state stability
in [9,10].
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While we formally define both homogeneous and subhomogeneous systems later, it is appropriate to point out some
reasons why the class of subhomogeneous systems is of interest. First of all, subhomogeneous systems can include terms
such as xτ

a+xτ for a > 0, τ > 0, which arise frequently in models of biochemical reaction networks [11]. From a more
theoretical point of view, the class of homogeneous systems is not closed under the addition of positive constants. More
formally, if f : Rn

→ Rn is homogeneous, then it is not true that x → f (x) + b is homogeneous for positive vectors
b. However, if f (.) is subhomogeneous, then so is f (.) + b for any positive b. This property is of relevance to the second
question we consider.

In [12] the stability properties of the homogeneous cooperative system ẋ = f (x) were related to the existence and
stability of positive equilibria for the associated system ẋ = f (x) + bwhere b is a positive vector. Specifically, it was shown
that if f is an irreducible vector field (defined in Section 2) and ẋ = f (x)has a globally asymptotically stable (GAS) equilibrium
at the origin (defined in Section 2), then for every positive vector b there exists a globally asymptotically stable equilibrium
x̄ of ẋ = f (x)+b. We show that this same result extends naturally to subhomogeneous systems. Again our analysis does not
rely on the extension of the Perron–Frobenius theorem presented in [7] but uses the KKM theorem to establish stability.

The layout of the paper is as follows. In Section 2, we introduce notation as well as definitions and results that are
needed throughout the paper. In Section 3, we establish some fundamental technical facts concerning subhomogeneous
cooperative systems including an extension of Euler’s formula to this setting. The main contributions of the paper are
contained in Sections 4 and 5. In Section 4, we provide two results extending the D-stability property to subhomogeneous
cooperative systems; one covers systemswith an equilibrium at the origin while the other is concernedwith an equilibrium
in the interior of the positive orthant. In Section 5, we extend the results of [12] on the existence of positive equilibria to
subhomogeneous systems. Finally, in Section 6 we present our concluding remarks.

2. Preliminaries

Throughout the paper, R and Rn denote the field of real numbers and the vector space of all n-tuples of real numbers,
respectively. Rn×n denotes the space of n × nmatrices with real entries. Rn

+
:= {x ∈ Rn

: xi ≥ 0, 1 ≤ i ≤ n}. The interior of
Rn

+
is denoted by int (Rn

+
) and its boundary by bd (Rn

+
) := Rn

+
\ int (Rn

+
). For vectors x, y ∈ Rn, we write: x ≥ y if xi ≥ yi for

1 ≤ i ≤ n; x > y if x ≥ y and x ≠ y; x ≫ y if xi > yi, 1 ≤ i ≤ n. For x ∈ Rn and i = 1, . . . , n, xi denotes the ith coordinate
of x. Similarly, for A ∈ Rn×n, aij denotes the (i, j)th entry of A. Also, for x ∈ Rn, diag (x) is the n × n diagonal matrix in which
dii = xi.

For A ∈ Rn×n, we denote the spectrum of A by σ(A). Also, the notation µ(A) denotes the spectral abscissa of A which is
defined as follows:

µ(A) := max{Re(λ) : λ ∈ σ(A)}.

A real n × n matrix A = (aij) is Metzler if and only if its off-diagonal entries aij, ∀i ≠ j are nonnegative. The matrix A is
irreducible if and only if for every nonempty proper subset K of N := {1, . . . , n}, there exists an i ∈ K , j ∈ N \ K such that
aij ≠ 0. When A is not irreducible, it is reducible.

The next result concerning Metzler matrices is standard [13] and follows from the Perron–Frobenius theorem.

Theorem 2.1. Let A ∈ Rn×n be Metzler. Then µ(A) ∈ σ(A). In addition, if A is also irreducible then there exist vectors v ≫ 0,
w ≫ 0 such that vTA = µ(A)vT , Aw = µ(A)w.

The following notation and assumptions are adopted throughout the paper. W is a neighborhood of Rn
+
and f : W → Rn

is a C1 vector field on W .
We are concerned with the system:

ẋ(t) = f (x(t)), x(0) = x0. (1)

The forward solution of (1)with initial condition x0 ∈ W at t = 0 is denoted as x(t, x0) and is defined on themaximal forward
interval of existence Ix0 := [0, Tmax(x0)). A set D ⊂ Rn is called forward invariant if and only if for all x0 ∈ D, x(t, x0) ∈ D
for all t ∈ Ix0 .

We shall be exclusively concerned with positive systems. The system (1) is positive if Rn
+
is forward invariant. Formally,

it means that x0 ≥ 0 implies x(t, x0) ≥ 0 for all t ≥ 0. It is intuitively clear and shown in [14] that given the uniqueness of
solutions of the system (1) the following property is necessary and sufficient for positivity of the system:

P :∀x ∈ bd (Rn
+
) : xi = 0 ⇒ fi(x) ≥ 0.

As is standard, we say that the C1 vector field f : W → Rn is cooperative on U ⊆ W if the Jacobian matrix ∂ f
∂x (a) is

Metzler for all a ∈ U. When we say that f is cooperative without specifying the set U, we understand that it is cooperative
on Rn

+
. It is well known that cooperative systems are monotone [15]. Formally, this means that if f : W → Rn is cooperative

on Rn
+
then x0 ≤ y0, x0, y0 ∈ Rn

+
implies x(t, x0) ≤ x(t, y0) for all t ≥ 0.

Our results here extend previous work on homogeneous systems. In the interest of completeness, we recall now the
definitions of dilation map and homogeneity [7].
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Given an n-tuple r = (r1, . . . , rn) of positive real numbers and λ > 0, the dilation map δr
λ(x) : Rn

→ Rn is given
by δr

λ(x) = (λr1x1, . . . , λrnxn). For an α ≥ 0, the vector field f : Rn
→ Rn is said to be homogeneous of degree α with respect

to δr
λ(x) if

∀x ∈ Rn, λ ≥ 0, f (δr
λ(x)) = λαδr

λ(f (x)).

If r = (1, . . . , 1), then δr
λ(x) is the standard dilation map.

We next recall various fundamental stability concepts. As we are dealing with positive systems throughout the paper, all
definitions are with respect to the state space X = Rn

+
.

Definition 2.1. Let the system (1) have an equilibrium at p ≥ 0. Then we say that the equilibrium point p is
• stable, if for each ϵ > 0, there is δ = δ(ϵ) > 0 such that

‖x0 − p‖ < δ ⇒ ‖x(t, x0) − p‖ < ϵ, ∀t > 0.

• unstable, if it is not stable;
• asymptotically stable if it is stable and there exists a neighborhood N of p such that

x0 ∈ N ⇒ lim
t→∞

x(t, x0) = p.

Given an asymptotically stable fixed point p, the set

A(p) := {x0 ∈ Rn
+

: x(t, x0) → p, as t → ∞}

is the domain of attraction of p. If A(p) = Rn
+
, then we say that p is globally asymptotically stable (GAS).

In this manuscript, we will often use the following lemma, which is Proposition 3.2.1 in [15].

Lemma 2.1. Let f : W → Rn be a cooperative vector field and assume there exists a vector w such that f (w) ≪ 0 (f (w) ≫ 0).
Then the trajectory x(t, w) of system (1) is decreasing (increasing) for t ≥ 0 with respect to the order on Rn

+
. In the case of

f (w) ≤ 0 (f (w) ≥ 0), the trajectory will be non-increasing (non-decreasing).

One immediate consequence of Lemma 2.1 is the following result, which we shall use often in the sequel.

Lemma 2.2. Let f : W → Rn be cooperative and satisfy P. Suppose that the system (1) has an equilibrium point at p ∈ Rn
+
. The

following statements hold.
(i) If there exists w > p with f (w) ≥ 0, then x(t, w) ≥ w for all t ≥ 0.
(ii) If there exists 0 ≤ w < p with f (w) ≤ 0, then x(t, w) ≤ w for all t ≥ 0.
In particular, in both case (i) and case (ii), w cannot lie in the domain of attraction A(p) of p.

Lemma 2.3. Let f : W → Rn be cooperative with a unique equilibrium at the origin. Then the system (1) is positive.

Proof. Since f is cooperative, the system (1) is monotone, which means for every initial condition x1 and x2 we have:

x1 ≤ x2 ⇒ x(t, x1) ≤ x(t, x2) for all t ≥ 0.

Since x(t, 0) = 0 for all t ≥ 0, then for all initial conditions x0 ≥ 0 we have

x0 ≥ 0 ⇒ x(t, x0) ≥ x(t, 0) = 0 for all t ≥ 0

which means the positive orthant is an invariant set for the system (1) and this concludes the proof. �

D-STABILITY
One well-known fact about positive LTI systems is that they are D-stable [16]. Formally, if the positive LTI system

ẋ = Ax

has a GAS equilibrium at the origin, then so does the system

ẋ = DAx

for all diagonal D with positive diagonal entries.
Extending the notion of D-stability to nonlinear positive systems is a central theme for this paper. A restricted form

of this concept was considered in [5] for a specific class of homogeneous systems. A more general definition was then
introduced in [6]whereinD-stability results for arbitrary homogeneous cooperative systemswere established. Such systems
are automatically positive and moreover, they always possess an equilibrium at the origin. In this earlier paper, it was
shown that, analogous to positive LTI systems, any homogeneous cooperative system with a globally asymptotically stable
equilibrium at the origin is in fact D-stable.

To study nonlinear extensions of D-stability to systems such as (1), we consider the system

ẋ(t) = diag (d(x(t)))f (x(t)) (2)

where d : Rn
→ Rn is a C1 mapping satisfying the following condition.
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Condition D.

(i) d(x1, x2, . . . , xn) = (d1(x1), d2(x2), . . . , dn(xn)) for C1 mappings di : R → R, 1 ≤ i ≤ n;
(ii) for 1 ≤ i ≤ n, di(xi) > 0, for xi > 0.

In Section 4 we present results that relate the stability properties of the system (2) to those of the system (1). First, wemake
the following simple observation that the properties of cooperativity and positivity are preserved under pre-multiplication
by diag (d(x)).

Proposition 2.1. Let f : W → Rn be cooperative and satisfy condition P. Further, let d : Rn
→ Rn satisfy condition D. Then the

vector field g : W → Rn given by g(x) = diag (d(x))f (x) is cooperative and satisfies condition P.

Proof. If xi = 0, then fi(x) ≥ 0 as f satisfies condition P. It is now immediate that gi(x) = di(xi)fi(x) ≥ 0 as di(0) ≥ 0 by
continuity. Hence g satisfies condition P. Direct calculation shows that for i ≠ j

∂gi
∂xj

(a) = di(ai)
∂ fi
∂xj

(a) ≥ 0

for all a ∈ Rn
+
as f is cooperative. Hence g is cooperative as claimed. �

KKM Lemma
The arguments presented later in the paper will make considerable use of the Knaster–Kuratowski–Mazurkiewicz (KKM)

Lemma [17,18,8]. The lemma as originally stated was concerned with coverings of a simplex by closed sets, but it is a later
version of the result concerning open coverings that we make use of here. Before stating the lemma we first need to recall
some definitions.

A set {a0, a1, . . . , ar} ∈ Rn is affinely independent if the system of vectors

(a1 − a0), . . . , (ar − a0)

is linearly independent. Given a set of affinely independent vectors, a0, a1, . . . , ar , the set of all vectors of the form

x = λ0a0 + λ1a1 + · · · + λrar

where λi ≥ 0, 0 ≤ i ≤ r , λ0 + λ1 + · · · + λr = 1 is called an r-dimensional simplex, or briefly an r-simplex. The points
a0, a1, . . . , ar are the vertices of the simplex. For simplicity, we denote the simplex by S(a0, . . . , ar).

The simplex whose vertices are the standard basis vectors e1, . . . , en of Rn is referred to as the standard simplex and
denoted by ∆n.

Given a simplex S(a0, . . . , ar) and indices 0 ≤ i0 < i1 < · · · < ip ≤ r , the simplex S(ai0 , . . . , aip) is a face of S(a0, . . . , ar).
We shall need the following open version of the KKM Lemma [17].

Theorem 2.2 (KKM Lemma). Let ∆ := S(a0, a1, . . . , ar) be an r-simplex and let F0, F1, . . . , Fr be (relatively) open subsets of
∆. If

S(ai0 , . . . , aip) ⊂ Fi0 ∪ Fi1 ∪ · · · ∪ Fip

holds for all faces S(ai0 , . . . , aip), 0 ≤ p ≤ r, 0 ≤ i0 < i1 < · · · < ip ≤ r, then

F0 ∩ F1 · · · ∩ Fr ≠ ∅.

3. Subhomogeneous systems

In this section, we introduce the class of subhomogeneous cooperative systems and present some basic properties of
such systems that shall prove useful later.

Definition 3.1. A vector field f : W → Rn is subhomogeneous of degree τ > 0 if f (λv) ≤ λτ f (v), for all v ∈ Rn
+
, λ ∈ R

with λ ≥ 1.

The class of subhomogeneous vector fields given above includes concave vector fields [19]. Furthermore, it includes
vector fields which are homogeneous with respect to the standard dilation map (given by x → λx for λ > 0).
Comment.We are assuming that the vector field f is C1 on a neighborhood W of Rn

+
. In [12], vector fields were not required

to be C1 at the equilibrium at the origin. As shown by the authors of this paper, for homogeneous systems this is sufficient
to guarantee uniqueness of solutions. However, for subhomogeneous systems, this is not the case as can be seen from the
simple 1-dimensional example ẋ = 3x2/3 which has multiple solutions satisfying x(0) = 0.

The following result establishes an inequality for subhomogeneous vector fields that is reminiscent of Euler’s formula for
homogeneous functions [12].
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Lemma 3.1. The vector field f : W → Rn is subhomogeneous of degree τ > 0 if and only if:

∂ f
∂x

(x)x ≤ τ f (x) for all x ≥ 0. (3)

Proof. We first show that f is subhomogeneous of degree τ if and only if for any x ≥ 0, the mapping

λ → λ−τ f (λx)

is a non-increasing function for λ > 0.
Let x ≥ 0 be given. If f is subhomogeneous, then for any µ ≥ λ > 0 we have

f (µx) = f
µ

λ
λx


≤

µ

λ

τ

f (λx)

⇒ µ−τ f (µx) ≤ λ−τ f (λx).

Thus, we can conclude that λ−τ f (λx) is a non-increasing function with respect to λ for all λ > 0. Conversely, if this function
is non-increasing for λ > 0, then by choosing µ ≥ λ = 1, we see immediately that f (µx) ≤ µτ f (x).

Differentiating with respect to λ, we see that f is subhomogeneous if and only if for all λ > 0

d
dλ

(λ−τ f (λx)) ≤ 0

⇔ − τλ−τ−1f (λx) + λ−τ ∂ f
∂x

(λx)x ≤ 0.

Rearranging this inequality, we see that f is subhomogeneous if and only if

∂ f
∂x

(λx)(λx) ≤ τ f (λx) ∀x ≥ 0; ∀λ > 0.

This last statement is equivalent to

∂ f
∂x

(x)(x) ≤ τ f (x) ∀x ≥ 0.

This concludes the proof. �

In the following corollary, some of the basic properties of subhomogeneous systems are stated.

Corollary 3.1. (i) The set of subhomogeneous vector fields of degree τ on Rn
+
is a convex cone.

(ii) A non-negative constant vector field f (x) ≡ c is subhomogeneous of any degree τ > 0.
(iii) Any affine map f (x) = Ax + b where A ∈ Rn×n and b ∈ Rn

+
is subhomogeneous of degree 1 .

Proof. (i) The claim follows as the condition (3) has to be satisfied pointwise and is clearly convex in f and invariant under
positive scaling of f .

(ii) Immediate from (3) as f (x) ≥ 0 = ∂ f /∂x(x) for all x ≥ 0.
(iii) The claim follows from (i), (ii) and (3) as for linear maps we have f (x) = Ax = ∂ f /∂x(x) · x. �

In the following result, we show that subhomogeneous cooperative systems are positive.

Theorem 3.1. Let f : W → Rn be subhomogeneous of degree τ > 0 and cooperative. Then the system (1) is positive.

Proof. It follows from Lemma 3.1 and the fact that the Jacobian matrix is Metzler for all x ∈ Rn
+
that fi(x) ≥ 0 for all x ∈ Rn

+

with xi = 0. Therefore, condition P is satisfied and this immediately implies that (1) is positive. �

4. D-stability for subhomogeneous cooperative systems

In this section, we are concerned with extending results on D-stability to subhomogeneous cooperative systems. We
shall consider two distinct cases: systems with a GAS equilibrium at the origin and systems with an asymptotically stable
equilibrium in int (Rn

+
) whose region of attraction includes int (Rn

+
).

4.1. Equilibrium at the origin

The main result of this subsection states that if a subhomogeneous cooperative system (1) has a GAS equilibrium at
the origin then the system (2) also has a GAS equilibrium at the origin. Before stating this theorem, we establish some
preliminary results.

Lemma 4.1. Let f : W → Rn be a cooperative vector field such that system (1) has a GAS equilibrium at the origin. Let
d : Rn

→ Rn satisfy condition D. Then the system (2) has a unique equilibrium at the origin.
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Proof. Clearly, (2) has an equilibrium at the origin. It remains to show that it is unique.
Based on the definition of d(x), we know that (2) cannot have any equilibrium points in int (Rn

+
). Now, by way of

contradiction, suppose diag (d(p))f (p) = 0 for some p ≠ 0 in bd (Rn
+
).

We define Z := {i : pi = 0} and NZ := {i : pi ≠ 0}. As di(pi) > 0 for all i ∈ NZ by assumption, wemust have fi(p) = 0 for
all i ∈ NZ . As the origin is a GAS equilibrium of (1), it follows from Lemma 2.2 that we cannot have f (p) ≥ 0. Hence, there
must be some i0 ∈ Z such that fi0(p) < 0.

On the other hand

∂ fi0
∂xj

(s) ≥ 0

for all j ≠ i0 and for all s ∈ Rn
+
. Furthermore, pi0 = 0 as i0 ∈ Z . Thus

fi0(p) = fi0(0) +

∫ 1

0

n−
j=1

∂ fi0
∂xj

(sp)pjds ≥ 0.

This is a contradiction and we can conclude that the origin is the only equilibrium of (2). �

The following proposition plays a key role in proving later results. The argument presented here is essentially the same
as was used in [9,10] albeit for a different class of systems.

Proposition 4.1. Let f : W → Rn be a cooperative vector field such that (1) has a GAS equilibrium at the origin. Then there
exists v ≫ 0 such that f (v) ≪ 0.

Proof. Firstly, Lemma 2.3 implies that the system (1) is positive. Secondly, consider the standard simplex ∆n. We define
Ci = {x ∈ ∆n : fi(x) < 0} for i = 1, . . . , n. As f is continuous, Ci is a relatively open set in ∆n for i = 1, . . . , n. On the other
hand, since the system (1) has a GAS equilibrium at 0, there is no w > 0 in the simplex, such that f (w) ≥ 0 by Lemma 2.2.
Therefore, ∪n

i=1 Ci = ∆n.
Let S(ei0 , ei1 , . . . , eis) be an arbitrary face of the simplex and let x ∈ S(ei0 , ei1 , . . . , eis). Then xj = 0 for j ∉ {i0, . . . , is}.

Since the positive orthant is an invariant set for (1), it follows that fj(x) ≥ 0 for j ∉ {i0, . . . , is}. Therefore as (1) has a GAS
equilibrium at the origin, Lemma 2.2 implies that fj(x) < 0 for some j ∈ {i0, . . . , is}. This means that

x ∈ Ci0 ∪ Ci1 ∪ · · · ∪ Cis .

As xwas arbitrary, we conclude that for any face of the simplex, we have

S(ei0 , ei1 , . . . , eis) ⊂ Ci0 ∪ Ci1 ∪ · · · ∪ Cis .

It follows from Theorem 2.2 that ∩
n
i=1 Ci ≠ ∅. As f is continuous, this means there exists a v ≫ 0 in ∆n such that

f (v) ≪ 0. �

Now we are ready to state and prove the following theorem.

Theorem 4.1. Let f : W → Rn be a cooperative vector field that is subhomogeneous of degree τ > 0. Let d : Rn
→ Rn be a C1

mapping satisfying condition D. Assume that (1) has a GAS equilibrium at the origin. Then (2) also has a GAS equilibrium at the
origin.

Proof. It follows from Proposition 2.1 that the system (2) is positive and monotone.
As the origin is a GAS equilibrium of (1), Proposition 4.1 implies that there exists a v ≫ 0 such that f (v) ≪ 0.
Let x0 ∈ Rn

+
be given. We can find a λ ≥ 1 such that w = λv > x0. From subhomogeneity, it follows that

f (w) = f (λv) ≤ λτ f (v) ≪ 0.

Further, it follows from Property D, that

diag (d(w))f (w) ≪ 0.

Lemma 2.1 implies that the trajectory x(t, w) of (2) starting from x(0) = w is decreasing. In addition Rn
+

is invariant
under (2). It now follows from Theorem 1.2.1 of [15] that x(t, w) converges to an equilibrium of (2) as t → ∞. Lemma 4.1
implies that the origin is the only equilibrium of (2). It follows immediately that x(t, w) → 0 as t → ∞.

As (2) is positive and monotone and as x0 < w, it follows that

0 ≤ x(t, x0) ≤ x(t, w) ≤ w

for all t ≥ 0. This implies that x(t, x0) → 0 as t → ∞. This concludes the proof. �
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Example 4.1. Consider the system

ẋ = f (x) =

−x1 +
x2

a + x2

−x2 +
x1

b + x1

 (4)

where a > 1, b > 1. It can be easily checked that f is C1 on Rn
\ {(−b, −a)}, cooperative and subhomogeneous. Hence (4)

is positive and monotone.
Also f (x) = 0 has two solutions, one is x = 0 and the other is

x =


1 − ab
1 + a

,
1 − ab
1 + b


.

Since a, b > 1, the second solution is outside the positive orthant. Hence the positive (4) has a unique equilibrium in Rn
+
. As

f (1, 1) ≪ 0, the argument in the previous proof can be readily adapted to show that the origin is a GAS equilibrium of (4).
If we define

d(x) =

 x21
x21 + 1

1 + sin2(x2)


then it satisfies condition D. Now based on Theorem 4.1 we can say that the system

ẋ = diag (d(x))f (x)

has a GAS equilibrium at the origin. Note that this new system is cooperative but not subhomogeneous.
Wenext note that the result of Theorem4.1 is not true for general cooperative systems (not necessarily subhomogeneous)

with an equilibrium at the origin.

Example 4.2. Consider the system on R2
+
given by

ẋ = f (x) =


−

x1
1 + x31

+ x2

−x2


. (5)

It is easy to verify that f is cooperative and that the origin is the only equilibrium of this system. Also, for v = (1, 0.25)T ,
f (v) = (−0.25, −0.25)T ≪ 0. This system satisfies all the conditions of Theorem 4.1 except subhomogeneity. We will
prove that (5) has a GAS equilibrium at the origin but is not D-stable.

First note that

ẋ1 + ẋ2 = −
x1

1 + x31
+ x2 − x2 = −

x1
1 + x31

≤ 0

for all x1, x2 ∈ R+. This implies that for every K > 0, the bounded set

{(x1, x2) ∈ R2
+

: x1 + x2 ≤ K}

is invariant under (5). In particular, the trajectories of (5) have compact closure in R2
+
. Using Theorem 3.2.2 in [15], we can

conclude that the single equilibrium of this system, which is the origin, is globally asymptotically stable.
In order for (5) to be D-stable, the associated system (2) should have a GAS equilibrium at the origin for all choices of d(x)

satisfying Condition D. Choosing d(x) = (1, x32), (2) takes the form:

ẋ = diag (d(x))f (x) =

−
x1

1 + x31
+ x2

−x42

 . (6)

As stated in Example 3.11 of [10], the origin is not a GAS equilibrium of (6). In fact, for the initial condition (x1(0), x2(0)) =

(1, 1), the x1 component of the associated solution grows without bound. This shows that the system (5) is not D-stable.

4.2. Equilibrium at p ≫ 0

We next derive a version of Theorem 4.1 for the case where (1) has a unique equilibrium at p ≫ 0. For this scenario,
rather than showing that GAS of p for (1) implies GAS of p for (2), we shall show that if the domain of attraction of p under
(1) contains int (Rn

+
), then the domain of attraction of p under (2) contains int (Rn

+
).
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To see why this is necessary, consider a Mutualistic Lotka–Volterra system [20]:

ẋ = f (x) = diag (x)(Ax + b) (7)

where A is Metzler and b > 0.
Based on Corollary 3.1, we know f (x) = Ax + b is subhomogeneous of degree 1. Also since A is Metzler, f is also

cooperative. However, even if this system has a GAS equilibrium at some point p ∈ int (Rn
+
), each axis, xi = 0 is an invariant

set for the system (7). Hence, p cannot be GAS for (7) in this case.
To prove the main result of this section, we will need the following variant of Proposition 4.1. In the statement of the

proposition we use the following notation for p ∈ int (Rn
+
): R1(p) = {x : x ≫ p}; R2(p) = {x ∈ int (Rn

+
) : x ≪ p}.

Proposition 4.2. Let f : W → Rn be a cooperative vector field. Assume that (1) has an asymptotically stable equilibrium
at p ≫ 0 and that the domain of attraction of p contains int (Rn

+
). Then there exists v1 ∈ R1(p) such that f (v1) ≪ 0 and

v2 ∈ R2(p) such that f (v2) ≫ 0.

Proof. Firstly, we prove there exists a v1 ∈ R1(p) such that f (v1) ≪ 0. Let ∆n be the standard simplex. We consider p+∆n,
the standard simplex shifted to point p and define Ci = {x ∈ p + ∆N : fi(x) < 0} for i = 1, . . . , n. Note the following facts.

(i) The set {x ∈ Rn
+

: x ≥ p} is forward invariant under (1). This is because p is an equilibrium and (1) is monotone.
(ii) There is no x > p with f (x) ≥ 0. This follows from Lemma 2.2 as the domain of attraction of p contains int (Rn

+
).

Using (i) and (ii), we can apply Theorem 2.2 in the same way as in Proposition 4.1 to conclude that there exists v1 ≫ p such
that f (v1) ≪ 0.

We next show that there exists a v2 ∈ R2(p) with f (v2) ≫ 0. First, choose r > 0 small enough to ensure that the shifted
simplex p − r∆n is wholly contained in int (Rn

+
). As above, it follows that {x ∈ Rn

+
: x ≤ p} is forward invariant under (1)

and that there can be no x < p with f (x) ≤ 0. Again applying Theorem 2.2, we conclude that there exists a v2 ≪ p, such
that f (v2) ≫ 0. �

With the above proposition, we can now prove the following.

Theorem 4.2. Let f : W → Rn be subhomogeneous of degree τ and cooperative. Let d : Rn
→ Rn satisfy condition D. Assume

that (1) has an asymptotically stable equilibrium at p ≫ 0 and that the domain of attraction of p under (1) contains int (Rn
+
).

Then the system (2) has an asymptotically stable equilibrium at p ≫ 0 and the domain of attraction of p under (2) contains
int (Rn

+
).

Proof. Proposition 4.2 implies that there exists a v1 ≫ p such that f (v1) ≪ 0 and there exists a v2 with 0 ≪ v2 ≪ p such
that f (v2) ≫ 0. It follows from the subhomogeneity of f that for any λ ≥ 1,

f (λv1) ≤ λτ f (v1) ≪ 0.

Similarly, for any 0 < µ ≤ 1,

f (µv2) ≥ µτ f (v2) ≫ 0.

Let x0 ∈ int (Rn
+
) be an arbitrary initial condition. Then we can choose λ > 1 and µ < 1 such that

µv2 ≤ x0 ≤ λv1 (8)

From the properties of d, it follows immediately that d(λv1)f (λv1) ≪ 0 and d(µv2)f (µv2) ≫ 0. Hence the trajectory
x(t, λv1) of (2) is decreasing while the trajectory x(t, µv2) is increasing. Further, as p is an equilibrium of (2) and (2) is
monotone, the trajectories x(t, λv1), x(t, µv2) of (2) satisfy p ≤ x(t, λv1) ≤ λv1, µv2 ≤ x(t, µv2) ≤ p for all t ≥ 0.

Taken together this implies that the trajectories x(t, λv1), x(t, µv2) of (2) converge monotonically to p. It now follows
from the monotonicity of the system (2) and (8) that

x(t, µv2) ≤ x(t, x0) ≤ x(t, λv1)

for all t ≥ 0. Hence, x(t, x0) must also converge to p. This completes the proof. �

5. Stability and positivity of equilibria

In [12], results relating the stability properties of a homogeneous cooperative irreducible system ẋ = f (x) to the existence
of positive equilibria of the associated system ẋ = f (x) + b were presented. The arguments of this earlier paper relied on
an extension of the Perron–Frobenius theorem to homogeneous cooperative systems [7]. In this section, we extend some of
these results to subhomogeneous systems. Specifically, we consider the system (1), where f is assumed to be cooperative,
subhomogeneous and irreducible, and relate its stability properties to the existence and stability of positive equilibria of the
associated system

ẋ = f (x) + b, b > 0. (9)

We first recall the definition of irreducibility from [12].
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Definition 5.1. The vector field f : W → Rn is irreducible, if:

(i) for all a ∈ int (Rn
+
), the Jacobian matrix ∂ f

∂x (a) is irreducible;
(ii) for x ∈ bd (Rn

+
) \ {0} with xi = 0, we must have fi(x) > 0.

The following proposition establishes a sufficient condition for the system (9) to be positive.

Proposition 5.1. Let f : W → Rn be subhomogeneous and cooperative and let b ≥ 0. Then the system (9) is positive.

Proof. Note that the vector field f (x)+bwill again be subhomogeneous and cooperative under these hypotheses. The result
now follows from Theorem 3.1. �

Proposition 5.2. Let f : W → Rn be subhomogeneous of degree τ , cooperative and irreducible and let b > 0 be given. Assume
that the system (1) has a GAS equilibrium at the origin. Then the system (9) has at least one equilibrium in int (Rn

+
).

Proof. From Proposition 4.1, we know there exists a v ≫ 0 such that f (v) ≪ 0. The subhomogeneity of f implies that
f (λv) ≤ λτ f (v) for all λ ≥ 1. By choosing λ large enough we can ensure that f (λv) + b ≪ 0. Since g(x) = f (x) + b is also
cooperative, it follows from Lemma 2.1 that the trajectory x(t, λv) of (9) starting from λv will be decreasing.

Given any x0 ∈ Rn
+
, we can find λ > 1 with λv ≥ x0 and f (λv) + b ≪ 0. Further, as (9) is positive, this implies that

0 ≤ x(t, x0) ≤ x(t, λv) ≤ λv

for all t ≥ 0. Hence, the forward orbit {x(t, x0) : t ≥ 0} is relatively compact for any x0 ∈ Rn
+
.

It follows immediately from Theorem 1.2.1 of [15] that x(t, λv) converges to an equilibrium point p ∈ Rn
+
.

We have now shown that there exists an equilibrium in Rn
+
. To complete the proof, we show that every equilibrium of

(9) is in int (Rn
+
). (Our argument is the same as presented in [12] but we include it here for completeness.) Since b > 0 and

f (0) = 0, z = 0 cannot be an equilibrium of the system (9). Next consider z ∈ bd (Rn
+
) \ {0} with zi = 0. Since b > 0, and

fi(z) > 0, f (z) + b cannot be zero. This concludes the proof. �

We next show that when f is subhomogeneous, cooperative and irreducible with a GAS equilibrium at the origin, then
the system (9) has a unique equilibrium in int (Rn

+
). We will need the following proposition, which extends Proposition 4

of [12] to subhomogeneous vector fields.

Proposition 5.3. Let f : W → Rn be subhomogeneous, cooperative and irreducible and let b > 0 be given. Then the Jacobian
matrix of f (x) + b evaluated at an equilibrium point of the system (9) is a Hurwitz matrix.

Proof. We prove the proposition by contradiction. Choose an arbitrary equilibrium point p. Based on Proposition 5.2 we
know that p ∈ int (Rn

+
).

As f is irreducible and cooperative and p ∈ int (Rn
+
), ∂ f

∂x (p) is an irreducible Metzler matrix. By way of contradiction,
suppose that ∂ f

∂x (p) is not a Hurwitz matrix. Writing µ for the maximal real part of the eigenvalues of ∂ f
∂x (p), we have µ ≥ 0.

Theorem 2.1 then implies that there exists a vector v ∈ int (Rn
+
) with

vT ∂ f
∂x

(p) = µvT . (10)

On the other hand based on Lemma 3.1, we know that

∂ f
∂x

(p)p ≤ τ f (p). (11)

Multiplying (11) by vT on the left and invoking (10) we have

µvTp ≤ τvT f (p). (12)

We know that f (p) = −b < 0. Therefore there exists at least one j such that fj(p) < 0. This implies that the right hand
side of (12) is strictly negative, while the left hand side is nonnegative. We have therefore reached a contradiction and we
can conclude that ∂ f

∂x (p) is a Hurwitz matrix. �

We next prove that the system (9) has a unique GAS stable equilibrium in int (Rn
+
) for each b > 0 provided that f

is subhomogeneous, cooperative and irreducible and that (1) has a GAS equilibrium at 0. This was established in [12] for
homogeneous systems using degree theoretic arguments. Our argument does not involve degree theory but relies directly
on Proposition 5.3.

Theorem 5.1. Let f : W → Rn be subhomogeneous of degree τ , cooperative and irreducible such that the system (1) has a GAS
equilibrium at the origin. Then for any b > 0, the system (9) has a unique equilibrium in int (Rn

+
), and this equilibrium is GAS.
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Proof. We know from Proposition 5.2 that (9) has an equilibrium in int (Rn
+
). We first prove that this equilibrium is unique.

To this end, suppose that there are two distinct equilibria p ≫ 0, q ≫ 0.
Proposition 5.3 implies that that Jacobian of g(x) = f (x) + b evaluated at each equilibrium point is Hurwitz. Further, as

g is cooperative and irreducible, the Jacobian evaluated at each equilibrium point is irreducible and Metzler. Theorem 2.1
implies that there exist vectors xp, xq with ‖xp‖ = 1, ‖xq‖ = 1 and

∂g
∂x

(p)xp ≪ 0

∂g
∂x

(q)xq ≪ 0.

Without loss of generality, we can assume that

max
i

qi
pi

> 1 ∀i = 1, . . . , n.

As g is C1, it follows from Taylor’s theorem that by choosing t > 0 sufficiently small, we can ensure that g(p + txp) ≪ 0,
g(q − txq) ≫ 0. Define v = p + txp, w = q − txq. Then g(v) ≪ 0, g(w) ≫ 0. Also, choosing a smaller t if necessary, we can
ensure that

λ := max
i

wi

vi
=

wk

vk
> 1.

Now note the following facts:

(i) λv ≥ w and λvk = wk;
(ii) g(λv) ≤ λτ g(v) (as b > 0, g will also be subhomogeneous).

As g is cooperative, it follows from (i) that

gk(λv) ≥ gk(w) > 0.

On the other hand, it follows from (ii) that

gk(λv) ≤ λτ gk(v) < 0.

This is a contradiction, which shows that there can only be one equilibrium of (9) in int (Rn
+
) as claimed.

To complete the proof, we show that this unique equilibrium point is GAS. Let p ≫ 0 be the equilibrium point of (9).
As the Jacobian of g evaluated at p is Hurwitz, Metzler and irreducible, it follows from Taylor’s theorem (as in the previous
paragraph) that there is some v ≥ p with g(v) ≪ 0. Further, as f (0) = 0, we have g(0) = b > 0. Hence from Lemma 2.1
the trajectory x(t, 0) of (9) is non-decreasing and satisfies

0 ≤ x(t, 0) ≤ p

for all t ≥ 0. As p is the only equilibrium of (9) it follows that x(t, 0) → p as t → ∞.
Let x0 ∈ Rn

+
be given. As g is subhomogeneous, we can find a λ > 1 such that w = λv ≫ x0, and g(w) ≪ 0. Lemma 2.1

implies that the trajectory x(t, w), starting from w is decreasing and satisfies

w ≥ x(t, w) ≥ p

for all t ≥ 0. Thus x(t, w) → p as t → ∞.
As 0 ≤ x0 ≤ w and (9) is monotone, it follows that

x(t, 0) ≤ x(t, x0) ≤ x(t, w)

for all t ≥ 0. It is now immediate that x(t, x0) → p as t → ∞. �

6. Conclusions

We have extended recent results on nonlinear versions of the concept of D-stability to subhomogeneous cooperative
systems. Specifically, we have presented two separate results relating to D-stability: one for the case of a GAS equilibrium
at the origin and one for the case of an asymptotically stable equilibrium in the interior of Rn

+
, whose domain of attraction

includes int (Rn
+
). We have also extended a result of [12] from homogeneous systems to subhomogeneous systems.
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