
Adaptive Buffer Sizing for TCP Flows in 802.11e
WLANs

Tianji Li, Douglas Leith
Hamilton Institute, National University of Ireland at Maynooth, Ireland

Email: {tianji.li, doug.leith}@nuim.ie

Abstract—We consider the provision of Access Point buffers
in WLANs. We first demonstrate that the default use of static
buffers in WLANs leads to either undesirable channel under-
utilisation or unnecessary high delays, which motivates the use
of dynamic buffer sizing. Although adaptive algorithms have
been proposed for wired Internet, a number of fundamental
new issues arise in WLANs which necessitates new algorithms
to be designed. These new issues include the fact that channel
bandwidth is time-varying, the mean service rate is dependent
on the level of channel contention, and packet inter-service times
vary stochastically due to the random nature of CSMA/CA
operation. We propose an adaptive sizing algorithms which is
demonstrated to be able to maintain high throughput efficiency
whilst achieving low delay.

I. INTRODUCTION

We consider WLANs where the access point (AP) acts as
a wireless router between the WLAN and the Internet. As
TCP flows account for the vast majority (more than 90% [21])
of current Internet traffic and also of WLAN traffic [17], we
consider buffer sizing for TCP flows.

Buffers are traditionally sized with two primary objectives
in mind.
(i) Accommodating short-term packet bursts. Due to the

nature of TCP, internet traffic tends to be bursty. Should
too many packets arrive in a sufficiently short interval
of time then a network device may lack the capacity to
process all of the packets immediately. The first job of
the buffer is to mitigate packet losses due to bursts by
accommodating these packets in a buffer until they can
be serviced.

(ii) Ensuring AIMD throughput efficiency. Most of the traffic
on networks continues to be carried by the TCP protocol.
The AIMD congestion control algorithm used by TCP
reduces the number of packets in flight by half on
detecting network congestion. If buffers are too small,
this backoff action will cause them to empty with a
corresponding reduction in link utilisation.

The classical rule of thumb is to provision buffers to be
equal to the bandwidth of the link multiplied by the average
delay (which is typically described by round trip time or
RTT) of the flows utilising this link: the Bandwidth-Delay
Product (BDP) [18]. Recent work on buffer sizing for wired
links [2] shows that the BDP rule can be overly conservative,

This work is supported by Irish Research Council for Science, Engineering
and Technology and Science Foundation Ireland Grant 03/IN3/I396.

and suggests sizing buffers to BDP√
n

instead where n is the
number of flows traversing a link. This exploits the statistical
multiplexing when many flows share a link. Since real-world
traffic patterns are often extremely complex, including a mix
of connection sizes, RTTs, etc that change over time, adaptive
buffer sizing is considered in [14] [19].

A number of fundamental new issues arise in 802.11
WLANs. Firstly, the mean service rate at a wireless station
is strongly dependent on the level of channel contention and
thus on the number of active stations and their load. Secondly,
even when the network load is fixed, the packet inter-service
times at a station are not fixed but vary stochastically due to
the random nature of the CSMA/CA operation. As a result,
neither the bandwidth nor the delay in 802.11 WLANs are
constant, in contrast to the wired links. We therefore do not
have a fixed BDP value available to provide a basis for sizing
buffers. In our previous work [9], we design an emulating BDP
algorithm to size buffers according to this BDP rule.

In this paper, we design a new algorithm to exploit statis-
tical multiplexing gains in WLANs, besides providing high
throughput and low delay. This involves feedback control of
buffer size based on measurements of the buffer idle and busy
time. In particular, we observe the buffer occupancy over an
interval of time. If the buffer rarely empties, we decrease the
buffer size to avoid high delay. Conversely, if the buffer is
empty for too long a period, we increase the buffer size to
maintain high throughput. The effectiveness of the algorithm
is demonstrated with extensive simulations.

II. RELATED WORK

The classical approach to sizing Internet router buffers is the
BDP rule proposed in [18]. Recently, in [2] it is argued that
the BDP rule can be overly conservative on links shared by a
large number of flows. In this case it is unlikely that TCP
congestion window sizes (cwnd) evolve synchronously and
due to statistical multiplexing of cwnd backoffs, the combined
buffer requirement can be considerably less than the BDP.
The analysis in [2] suggests that it may be sufficient to size
buffers as the BDP divided by the square root of the number
of active flows n. The potential may therefore exist to reduce
buffer sizes by two to three orders of magnitude. This work
is extended in [12], [5] and [20] to consider the performance
of TCP congestion control with many connections under the
assumption of small, medium and large buffer sizes. Several
authors have pointed out that the value n can be difficult to

AP

1

n

...............

web
serverWLAN

Internet

Fig. 1. Topology used for buffer sizing in WLANs. Each station in WLAN is
the source/destination of a single TCP flow. MAC parameters of the WLAN
are listed in Table I.

determine for realistic traffic patterns, which not only include a
mix of connections sizes and RTTs, but are also strongly time-
varying [4], [19]. In [19], it is observed that in a production
link, traffic patterns vary significantly, and may contain a
complex mix of flow connection lengths and RTTs. It is
demonstrated in [4] that use of very small buffers can lead to
an excessive loss rate. Motivated by these observations, in [14]
[6] a measurement-based adaptive buffer size tuning method
is therefore proposed.

The foregoing work is in the context of wired links, and to
our knowledge the question of buffer sizing for 802.11 wireless
links has received almost no attention in the literature. Besides
our previous work on emulating BDP in WLANs [9], other
notable exceptions include [11] [13] [15]. Sizing of buffers for
voice traffic in WLANs is investigated in [11]. The impact of
fixed buffer sizes on TCP flows is studied in [13]. In [15], TCP
performance with a variety of AP buffer sizes and 802.11e
parameter settings is investigated. With regard to the current
state of the art, some vendors use small static buffers (e.g., in
Proxim APs, up to 8 packets can be temporarily stored in the
interface buffer), while others use large static buffers (e.g., in
Atheros APs, up to 399 packets can be held.).

III. SETUP

We consider the topology shown in Fig. 1 where the AP
acts as a wireless router between the WLAN and the Internet.
Upload flows originate from stations in the WLAN on the
left and are destined to server(s) in the wired network on the
right. Download flows are from the server(s) to stations in the
WLAN. We ignore differences in wired bandwidth and delay
from the AP to the servers which can cause TCP unfairness
issues on the wired side (an orthogonal issue) by using the
same wired-part RTT for all flows.

We note that in WLANs, TCP ACK packets can be easily
queued/dropped due to the fact that the basic 802.11 DCF en-
sures that stations win a roughly equal number of transmission
opportunities. For example consider n stations each carrying
one TCP upload flow. The TCP ACKs are transmitted by the
AP. While the data packets for the n flows have an aggregate
n/(n + 1) share of the transmission opportunities the TCP
ACKs for the n flows have only a 1/(n + 1) share. Issues of
this sort are known to degrade TCP performance significantly
as queuing and dropping of TCP ACKs disrupt the TCP ACK
clocking mechanism. Following [8], we address this problem
using 802.11e. At the AP and each station we treat TCP ACKs
as a separate traffic class, collecting them into a queue which

TSIFS (µs) 10
Idle slot duration (σ) (µs) 9
Retry limit 11
Packet size (bytes) 1000
PHY data rate (Mbps) 54
PHY basic rate (Mbps) 6
PLCP rate (Mbps) 6

TABLE I
MAC/PHY PARAMETERS USED, CORRESPONDING TO 802.11G.

is assigned high priority via CWmin = 3, CWmax = 7,
AIFS = 2. TCP data packets are transmitted by another
queue with parameters CWmin = 31, CWmax = 1023 and
AIFS = 6. This makes use of 2 out of the 4 available queues
in 802.11e.

We use IEEE 802.11g parameters as shown in Table I.
For TCP traffic, the widely deployed TCP Reno with SACK
extension is used. The TCP slow start threshold is set to be
64 packets [16], the maximum congestion window size is set
to be 4096 packets (each has a payload of 1000 bytes) which
is the default size of current Linux kernels (2.6.xxx).

IV. PERFORMANCE WITH FIXED BUFFERS

In contrast to wired networks, the mean service rate at a
wireless station is not fixed but instead depends upon the level
of channel contention and the network load. This is illustrated
in Fig. 2 where the throughput and delay of a download flow
are plotted as a function of AP buffer size when the number
of competing upload flows (with one upload flow per wireless
station) is varied. Similarly to wired networks, the throughput
always increases monotonically with the buffer size, reaching
a maximum above a threshold buffer size. However, it can also
be seen that the download throughput falls as the number of
competing uploads increases. The variation in throughput can
be substantial, e.g., in this example the maximum throughput
falls from 14Mbps to 1.25Mbps as the number of competing
uploads increases from 0 to 10. As a result, the BDP – marked
by vertical lines in Fig. 2 – also varies significantly and this
is reflected in buffering requirements. For example, it can be
seen from Fig. 2 that with no competing uploads the threshold
buffer size above which the AP achieves maximum throughput
is around 300 packets, while for 10 competing uploads this
buffer size falls to approximately 70 packets.

In addition to variations in the mean service rate, the random
nature of 802.11 CSMA/CA operations leads to short time-
scale stochastic fluctuations in service rate. This is funda-
mentally different from wired networks and directly impacts
buffering behaviour. For example, from Fig. 2 with 10 uploads
the maximum download throughput is 1.25Mbps, yielding a
BDP of 31 packets. However, it can be seen that at this buffer
size the achieved download throughput is only about 60%
of the maximum – a buffer size of at least 50 packets is
required to achieve 100% throughput. Stochastic fluctuations
in service rate can lead to early queue overflow or even TCP
retransmission timeouts (RTOs) unless buffer provisioning
over and above the BDP is used. For example, Fig. 3 illustrates

10 50 100 150 300 400
0

2

4

6

8

10

12

14

16

AP Buffer limit (pkts)

A
P

 th
ro

ug
hp

ut
 (

m
bp

s)

1 download, 0 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads

10 50 80 200 300 400
0

500

1000

1500

2000

2500

AP buffer limit (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads

Fig. 2. WLAN buffer sizing requirements. Data is shown for 1 download flow
and 0, 2, 5, 10 competing uploads. Corresponding BDP values are marked by
vertical lines. “Max smoothed RTT” denotes the maximum TCP srtt value
observed. Wired backhaul link bandwidth 100Mbps, RTT 200ms.

10 50 100 150 300 400
0

5

10

15

20

25

30

35

AP buffer limit (pkts)

T
ot

al
 n

um
be

r
of

 R
T

O
s

1 download, 0 upload
10 downloads, 0 upload
1 download, 10 uploads

Fig. 3. Number of TCP RTOs vs AP buffer size. Values collected in
simulations run for 400 seconds.

the total number of TCP RTOs as the buffer size is varied. It
can be seen that the number of RTOs decreases as the buffer
size is increased. The buffer size required to minimise RTOs
is dependent on network conditions.

One possible buffer sizing approach in WLANs is to pro-
vision buffers based on worst case conditions, i.e., based on
the conditions requiring the largest buffering to achieve high
throughput. However, while ensuring high throughput, this
comes at the cost of high latency. For example, it can be
seen from Fig. 2 that when a fixed buffer size of 300 packets
is used (which in this example ensures maximum throughput
regardless of the number of contending uploads), the round-
trip latency experienced by the download flow is about 300ms
with no uploads but rises to around 2s with 10 contending
upload stations. This occurs because TCP’s congestion control
algorithm probes for bandwidth until packet loss occurs and
so flows will tend to fill buffers, regardless of their size.

10 50 100 150 300 400
0

5

10

15

AP buffer limit (pkts)

A
P

 th
ro

ug
hp

ut
 (

M
bp

s)

1 download, 0 upload
10 downloads, 0 upload

BDP/N1/2=102 BDP=338

10 50 80 200 300 400
100

150

200

250

300

350

AP buffer limit (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
10 downloads, 0 upload

BDP/N1/2=102 BDP=338

Fig. 4. Impact of statistical multiplexing. There are 1/10 downloads and no
uploads. Wired backhaul link bandwidth 100Mbps, RTT 200ms.

Conversely, sizing the buffer to achieve lower latency across
all network conditions comes at the cost of reduced through-
put, e.g., a buffer size of 30 packets ensures latency of 200-
300ms for up to 10 contending upload stations but when there
are no contending uploads the throughput of a download flow
is only about 75% of the maximum achievable.

Therefore, neither fixed long nor fixed short buffers can
maintain both high throughput and low delays at the same
time, motivating consideration of adaptive approaches to buffer
sizing.

The potential exists to lower the buffer size (thereby reduc-
ing latency) without loss of throughput. This can be seen from
the example in Fig. 4 that while a buffer size of 300 packets
is needed to maximise throughput with a single download
flow, this falls to around 100 packets when 10 download
flows share the link. In this section we consider the design
of measurement-based algorithms that are capable of taking
advantage of such statistical multiplexing opportunities.

V. ADAPTIVE BUFFER LIMIT TUNING

A. The Algorithm

Our objective is to simultaneously achieve both high
throughput efficiency and low delay. Intuitively, in order to
ensure efficient link utilisation, the buffer should not lie empty
for too long a time. Increasing the buffer size tends to reduce
the link idle time. However, to ensure low delays, the buffer
should be as short as possible and a trade-off therefore exists.
This intuition suggests the following approach. We observe
the buffer occupancy over an interval of time. If the buffer
rarely empties, we decreases the buffer size to avoid high
delay. Conversely, if the buffer is empty for too long a period,
we increase the buffer size to maintain high throughput.

In more detail, we consider an adaptive buffer tuning pro-
cedure as follows. Let ti(k), tb(k) be the durations of idle and
busy time in an observation interval t, i.e., t = ti(k) + tb(k),
and q(k) be the buffer limit during the k-th observation
interval. The buffer limit is updated according to

q(k + 1) = q(k) + ati(k)− btb(k), (1)

where a and b are design parameters. Pseudo-code for this
procedure is given in Algorithm 1.

Assuming q converges, then we have that ati = btb, i.e.,
ti = b

a tb and the link utilisation is therefore lower bounded
by

tb
ti + tb

=
1

1 + b/a
. (2)

Choosing b
a to be small then ensures high utilisation.

The duration of the observation/update interval t should
be so selected to reflect timely changes on buffer usage
which are nonpredictable in reality (see for example [19]
and the references therein). Too small t can therefore yields
similar/repeated observations if traffic patterns are varying
slowly, too large t will likely miss bursty changes. Here we
choose the safer option, i.e., a short t = 1 second is used.

Let αi be the rate in packet/s at which flow i increases its
congestion window and αT =

∑n
i=1 αi be the aggregate rate

at which flows increase their congestion windows, in packets/s.
Standard TCP increases the flow congestion window by one
packet per RTT, in which case αi ≈ 1/Ti where Ti is the
RTT of flow i. In real world Internet, Ti is upper-bounded by
200ms in most of the cases [21]. We then have that a rough
lower bound on αT is 5 (corresponding to 1 flow with RTT
200ms). As the update duration used is 1 second, we choose
a = 10 to be slightly larger than the lower bound of αT , and
b = 1 to ensure b

a to be small in this paper. A formal analysis
as to the selection of a and b is given is our technical report
[10].

It is prudent to constrain q to lie between the minimum and
the maximum values qmin and qmax. In the following, the
maximum limit qmax and the minimum buffer limit qmin are
set to be 400 and 30 packets, respectively. We use 400 packets
as the maximum buffer limit to facilitate comparison with the
fixed buffer scheme used in Atheros chip sets, and 30 packets
as the minimum buffer limit to avoid frequent RTOs.

This procedure is shown in Algorithm 1.

B. Results

The effectiveness of the ALT algorithm is illustrated in Fig.
5. Recall that (Figs. 2 and 4) 330, 100 and 70 packets are
the approximate threshold buffer sizes above which the AP
achieves maximum throughput for perspectively 1 download
only, 10 downloads and 1 download plus 10 upload flows. It
can be seen that using the ALT algorithm, the desired buffer
limits are reached.

In Figs. 6 and 7, we plot more results for cases when the
RTT in the wired part of the network is varied from 50 to
300ms and when the number of upload flows is increased

Algorithm 1 : The adaptive buffer tuning algorithm.
1: Set the initial queue limit, the maximum buffer limit qmax

and the minimum buffer limit qmin.
2: Set the increase step size a and the decrease step size b.
3: for Every t seconds do
4: Measure the idle time ti.
5: qnew = q + ati − b(t− ti).
6: if qnew < qmax then
7: if qnew < qmin then
8: q ← qmin

9: else
10: q ← qnew

11: end if
12: else
13: q ← qmax

14: end if
15: end for

from 0 to 10. The metrics uses are throughput and maximum
smoothed RTT percentage. The throughput percentage is the
ratio between throughput achieved using the ALT algorithm
and that with a 400-packet buffer. The maximum smoothed
RTT percentage is defined in a similar way. That is, these two
metrics are intentionally defined to compare the ALT algorithm
with fixed buffers. It can be seen from the figures that the
ALT algorithm maintains high throughput efficiency across the
entire range of operating conditions. This is achieved while
maintaining low delays compared with fixed buffers. We can
also see that the ALT algorithm is capable of exploiting the
statistical multiplexing where feasible. In particular, significant
lower delays are achieved with 10 download flows whilst
maintaining high throughput efficiency.

VI. CONCLUSIONS

We have shown that the use of static buffers in WLANs
leads to either undesirable channel under utilisation or unnec-
essary high delays. We have proposed an adaptive algorithm
that achieves both high throughput efficiency and low delays
simultaneously. Future work includes theoretical analysis of
the proposed algorithm, and test-bed implementation is in
progress.

REFERENCES

[1] Part 11: wireless LAN medium access control (MAC) and physical layer
(PHY) specifications: Medium Access Control (MAC) Quality of Service
(QoS) Enhancements, IEEE 802.11e/D8.0, Feb. 2004.

[2] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
in Proc. of ACM SIGCOMM, 2004. pp. 281–292.

[3] C. Chatfield, The Analysis of Time Series, An Introduction, CRC Press
2004.

[4] A. Dhamdher and C. Dovrolis, “Open Issues in Router Buffer Sizing,” in
Computer Communication Review, Jan. 2006.

[5] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with Very Small Buffers,” in Proc. of IEEE INFOCOM, Dec.
2006.

[6] C. Kellett, R. Shorten, and D. Leith, “Sizing Internet Router Buffers,
Active Queue Management, and the Lur’e Problem,” in Proc. of IEEE
CDC, 2006.

100 200 300 400 500
0

100

200

300

400

500

Time (seconds)

P
ac

ke
ts

Buffer occupancy
Buffer limit

(a) 1 download, 0 upload

100 200 300 400 500
0

100

200

300

400

500

Time (seconds)

P
ac

ke
ts

Buffer occupancy
Buffer limit

(b) 10 downloads, 0 upload

100 200 300 400 500
0

100

200

300

400

500

Time (seconds)

P
ac

ke
ts

Buffer occupancy
Buffer limit

(c) 1 download, 10 uploads

Fig. 5. Buffer histories with the ALT algorithm.

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

P
er

ce
nt

ag
e

(%
)

1 download
10 downloads

(a) Throughput

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

P
er

ce
nt

ag
e

(%
)

1 download
10 downloads

(b) Maximum smoothed RTT

Fig. 6. Performance of the ALT algorithm as the number of upload flows is
varied. The wired RTT is 200ms.

[7] S. Floyd, and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[8] D. Leith, P. Clifford, D. Malone, and A. Ng, “TCP Fairness in 802.11e
WLANs,” IEEE Communications Letters, vol. 9, no. 11, pp 964–966, Jun.
2005.

[9] T. Li and D. Leith, “Buffer Sizing for TCP Flows in 802.11e WLANs,”
IEEE Communications Letters, to appear.

[10] T. Li and D. Leith, “Buffer Sizing Access Point in WLANs,” Technical
report of Hamilton Institute, NUI Maynooth, Ireland. Nov. 2007.

[11] D. Malone, P. Clifford, and D. J. Leith, “On Buffer Sizing for Voice
in 802.11 WLANs,” IEEE Communications Letters, vol. 10, no. 10, pp
701–703, Oct. 2006.

[12] G. Raina and D. Wischik, “Buffer Sizes for Large Multiplexers: TCP
Queueing Theory and Instability Analysis,” in Proc. of EuroNGI, Jul. 2005.

[13] S. Pilosof, et. al., “Understanding TCP fairness over Wireless LAN,” in
Proc. IEEE INFOCOM 2003.

[14] R. Stanojevic, C. Kellett, and R. Shorten, “Adaptive Tuning of Drop-Tail
Buffers for Reducing Queueing Delays,” IEEE Communications Letters,
vol. 10, no. 7, pp 570–572, Jul. 2006.

100 200 300 400 500
0

20

40

60

80

100

RTT (ms)

P
er

ce
nt

ag
e

(%
)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads

(a) Throughput

100 200 300 400 500
0

20

40

60

80

100

RTT (ms)

P
er

ce
nt

ag
e

(%
)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads

(b) Maximum smoothed RTT

Fig. 7. Performance of the ALT algorithm as the wired RTT is varied.

[15] M. Thottan, and M. C. Weigle, “Impact of 802.11e EDCA on mixed
TCP-based applications,” in Proc. IEEE WICON 2006.

[16] A. S. Tanenbaum, Computer Networks Fourth Edition. New Jersey,
Prentice Hall PTR, 2003.

[17] D. Tang and M. Baker, “Analysis of A Local-Area Wireless Network,”
in Proc. of ACM MobiCom, Aug. 2000.

[18] C. Villamizar and C. Song, “High Performance TCP in ANSNET,” ACM
Computer Communication Review, vol. 24, no. 5, pp. 45–60, Oct. 1994.

[19] G. Vu-Brugier, R. Stanojevic, D. Leith, and R. Shorten, “A Critique of
Recently Proposed Buffer-Sizing Strategies,” ACM Computer Communi-
cation Review, vol. 37. no. 1, Jan. 2007.

[20] D. Wischik and N. McKeown, “Part I: buffer sizes for core router,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 3, Jul. 2005.

[21] Z. Zhao, S. Darbha, and A. L. N. Reddy, “A Method for Estimating the
Proportion of Nonresponsive Traffic At a Router,” IEEE/ACM Transactions
on Networking, vol. 12, no. 4, pp. 708–718, Aug. 2004.

