
1

Buffer Sizing for 802.11 Based Networks
Tianji Li, Douglas Leith, David Malone

Hamilton Institute, National University of Ireland Maynooth, Ireland
Email: {tianji.li, doug.leith, david.malone}@nuim.ie

Abstract—We consider the sizing of network buffers in 802.11
based networks. Wireless networks face a number of fundamental
issues that do not arise in wired networks. We demonstrate that
the use of fixed size buffers in 802.11 networks inevitably leads to
either undesirable channel under-utilization or unnecessary high
delays. We present two novel dynamic buffer sizing algorithms
that achieve high throughput while maintaining low delay across
a wide range of network conditions. Experimental measurements
demonstrate the utility of the proposed algorithms in a produc-
tion WLAN and a lab testbed.

Index Terms—IEEE 802.11, IEEE 802.11e, Wireless LANs
(WLANs), Medium access control (MAC), Transmission control
protocol (TCP), Buffer Sizing, Stability Analysis.

I. INTRODUCTION

In communication networks, buffers are used to accommo-
date short-term packet bursts so as to mitigate packet drops
and to maintain high link efficiency. Packets are queued if
too many packets arrive in a sufficiently short interval of time
during which a network device lacks the capacity to process
all of them immediately.

For wired routers, the sizing of buffers is an active research
topic ([31] [5] [27] [32] [9]). The classical rule of thumb for
sizing wired buffers is to set buffer sizes to be the product of
the bandwidth and the average delay of the flows utilizing this
link, namely the Bandwidth-Delay Product (BDP) rule [31].
See Section VII for discussion of other related work.

Surprisingly, however the sizing of buffers in wireless
networks (especially those based on 802.11/802.11e) appears
to have received very little attention within the networking
community. Exceptions include the recent work in [21] relating
to buffer sizing for voice traffic in 802.11e [2] WLANs, work
in [23] which considers the impact of buffer sizing on TCP
upload/download fairness, and work in [29] which is related
to 802.11e parameter settings.

Buffers play a key role in 802.11/802.11e wireless net-
works. To illustrate this, we present measurements from the
production WLAN of the Hamilton Institute, which show that
the current state of the art which makes use of fixed size
buffers, can easily lead to poor performance. The topology
of this WLAN is shown in Fig. 23. See the Appendix for
further details of the configuration used. We recorded RTTs
before and after one wireless station started to download a
37MByte file from a web-site. Before starting the download,
we pinged the access point (AP) from a laptop 5 times, each
time sending 100 ping packets. The RTTs reported by the
ping program was between 2.6-3.2 ms. However, after starting

This work is supported by Irish Research Council for Science, Engineering
and Technology and Science Foundation Ireland Grant 07/IN.1/I901.

the download and allowing it to continue for a while (to
let the congestion control algorithm of TCP probe for the
available bandwidth), the RTTs to the AP hugely increased
to 2900-3400 ms. During the test, normal services such as
web browsing experienced obvious pauses/lags on wireless
stations using the network. Closer inspection revealed that the
buffer occupancy at the AP exceeded 200 packets most of the
time and reached 250 packets from time to time during the
test. Note that the increase in measured RTT could be almost
entirely attributed to the resulting queuing delay at the AP, and
indicates that a more sophisticated approach to buffer sizing
is required. Indeed, using the A* algorithm proposed in this
paper, the RTTs observed when repeating the same experiment
fall to only 90-130 ms. This reduction in delay does not come
at the cost of reduced throughput, i.e., the measured throughput
with the A* algorithm and the default buffers is similar.

In this paper, we consider the sizing of buffers in
802.11/802.11e ([1] [2]) based WLANs. We focus on single-
hop WLANs since these are rapidly becoming ubiquitous as
the last hop on home and office networks as well as in so-
called “hot spots” in airports and hotels, but note that the
proposed schemes can be easily applied in multi-hop wireless
networks. Our main focus in this paper is on TCP traffic
since this continues to constitute the bulk of traffic in modern
networks (80–90% [35] of current Internet traffic and also of
WLAN traffic [28]), although we extend consideration to UDP
traffic at various points during the discussion and also during
our experimental tests.

Compared to sizing buffers in wired routers, a number of
fundamental new issues arise when considering 802.11-based
networks. Firstly, unlike wired networks, wireless transmis-
sions are inherently broadcast in nature which leads to the
packet service times at different stations in a WLAN being
strongly coupled. For example, the basic 802.11 DCF ensures
that the wireless stations in a WLAN win a roughly equal
number of transmission opportunities [19], hence, the mean
packet service time at a station is an order of magnitude longer
when 10 other stations are active than when only a single
station is active. Consequently, the buffering requirements at
each station would also differ, depending on the number of
other active stations in the WLAN. In addition to variations
in the mean service time, the distribution of packet service
times is also strongly dependent on the WLAN offered load.
This directly affects the burstiness of transmissions and so
buffering requirements (see Section III for details). Secondly,
wireless stations dynamically adjust the physical transmission
rate/modulation used in order to regulate non-congestive chan-
nel losses. This rate adaptation, whereby the transmit rate
may change by a factor of 50 or more (e.g. from 1Mbps to

2

54Mbps in 802.11a/g), may induce large and rapid variations
in required buffer sizes. Thirdly, the ongoing 802.11n stan-
dards process proposes to improve throughput efficiency by
the use of large frames formed by aggregation of multiple
packets ([3] [18]). This acts to couple throughput efficiency
and buffer sizing in a new way since the latter directly affects
the availability of sufficient packets for aggregation into large
frames.

It follows from these observations that, amongst other
things, there does not exist a fixed buffer size which can be
used for sizing buffers in WLANs. This leads naturally to
consideration of dynamic buffer sizing strategies that adapt to
changing conditions. In this paper we demonstrate the major
performance costs associated with the use of fixed buffer sizes
in 802.11 WLANs (Section III) and present two novel dynamic
buffer sizing algorithms (Sections IV and V) that achieve
significant performance gains. The stability of the feedback
loop induced by the adaptation is analyzed, including when
cascaded with the feedback loop created by TCP congestion
control action. The proposed dynamic buffer sizing algorithms
are computationally cheap and suited to implementation on
standard hardware. Indeed, we have implemented the algo-
rithms in both the NS-2 simulator and the Linux MadWifi
driver [4]. In this paper, in addition to extensive simulation
results we also present experimental measurements demon-
strating the utility of the proposed algorithms in a testbed
located in office environment and with realistic traffic. This
latter includes a mix of TCP and UDP traffic, a mix of uploads
and downloads, and a mix of connection sizes.

The remainder of the paper is organized as follows. Section
II introduces the background of this work. In Section III
simulation results with fixed size buffers are reported to further
motivate this work. The proposed algorithms are then detailed
in Sections IV and V. Experiment details are presented in
Section VI. After introducing related work in Section VII, we
summarize our conclusions in Section VIII.

II. PRELIMINARIES

A. IEEE 802.11 DCF
IEEE 802.11a/b/g WLANs all share a common MAC al-

gorithm called the Distributed Coordinated Function (DCF)
which is a CSMA/CA based algorithm. On detecting the
wireless medium to be idle for a period DIFS, each wireless
station initializes a backoff counter to a random number
selected uniformly from the interval [0, CW-1] where CW
is the contention window. Time is slotted and the backoff
counter is decremented each slot that the medium is idle.
An important feature is that the countdown halts when the
medium is detected busy and only resumes after the medium
is idle again for a period DIFS. On the counter reaching
zero, a station transmits a packet. If a collision occurs (two or
more stations transmit simultaneously), CW is doubled and the
process repeated. On a successful transmission, CW is reset
to the value CWmin and a new countdown starts.

B. IEEE 802.11e EDCA
The 802.11e standard extends the DCF algorithm (yielding

the EDCA) by allowing the adjustment of MAC parameters

TSIFS (µs) 10
Idle slot duration (σ) (µs) 9
Retry limit 11
Packet size (bytes) 1000
PHY data rate (Mbps) 54
PHY basic rate (Mbps) 6
PLCP rate (Mbps) 6

TABLE I
MAC/PHY PARAMETERS USED IN SIMULATIONS, CORRESPONDING TO

802.11G.

AP

1

n

...............

wired
hostsWLAN

wired link

Fig. 1. WLAN topology used in simulations. Wired backhaul link bandwidth
100Mbps. MAC parameters of the WLAN are listed in Table I.

that were previously fixed. In particular, the values of DIFS
(called AIFS in 802.11e) and CWmin may be set on a per
class basis for each station. While the full 802.11e standard is
not implemented in current commodity hardware, the EDCA
extensions have been widely implemented for some years.

C. Unfairness among TCP Flow

Consider a WLAN consisting of n client stations each
carrying one TCP upload flow. The TCP ACKs are transmitted
by the wireless AP. In this case TCP ACK packets can be
easily queued/dropped due to the fact that the basic 802.11
DCF ensures that stations win a roughly equal number of
transmission opportunities. Namely, while the data packets
for the n flows have an aggregate n/(n + 1) share of the
transmission opportunities the TCP ACKs for the n flows have
only a 1/(n+1) share. Issues of this sort are known to lead to
significant unfairness amongst TCP flows but can be readily
resolved using 802.11e functionality by treating TCP ACKs as
a separate traffic class which is assigned higher priority [15].
With regard to throughput efficiency, the algorithms in this
paper perform similarly when the DCF is used and when TCP
ACKs are prioritized using the EDCA as in [15]. Per flow
behavior does, of course, differ due to the inherent unfairness
in the DCF and we therefore mainly present results using the
EDCA to avoid flow-level unfairness.

D. Simulation Topology

In Sections III, IV and V-G, we use the simulation topology
shown in Fig. 1 where the AP acts as a wireless router between
the WLAN and the Internet. Upload flows originate from
stations in the WLAN on the left and are destined to wired
host(s) in the wired network on the right. Download flows are
from the wired host(s) to stations in the WLAN. We ignore
differences in wired bandwidth and delay from the AP to the
wired hosts which can cause TCP unfairness issues on the
wired side (an orthogonal issue) by using the same wired-
part RTT for all flows. Unless otherwise stated, we use the

3

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

MAC service time (ms)

fr
eq

ue
nc

y

(a) 2 stations

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

MAC service time (ms)

fr
eq

ue
nc

y

(b) 12 stations

Fig. 2. Measured distribution of per packet MAC service time. Solid vertical
lines mark the mean values of distributions. Physical layer data/basic rates are
11/1 Mbps.

IEEE 802.11g PHY parameters shown in Table I and the
wired backhaul link bandwidth is 100Mbps with RTT 200ms.
For TCP traffic, the widely deployed TCP Reno with SACK
extension is used. The advertised window size is set to be
4096 packets (each has a payload of 1000 bytes) which is the
default size of current Linux kernels. The maximum value of
the TCP smoothed RTT measurements (sRTT) is used as the
measure of the delay experienced by a flow.

III. MOTIVATION AND OBJECTIVES

Wireless communication in 802.11 networks is time-varying
in nature, i.e., the mean service time and the distribution of
service time at a wireless station vary in time. The variations
are primarily due to (i) changes in the number of active
wireless stations and their load (i.e. offered load on the
WLAN) and (ii) changes in the physical transmit rate used
(i.e. in response to changing radio channel conditions). In the
latter case, it is straightforward to see that the service time can
be easily increased/decreased using low/high physical layer
rates. To see the impact of offered load on the service time at
a station, Fig. 2 plots the measured distribution of the MAC
layer service time when there are 2 and 12 stations active. It
can be seen that the mean service time changes by over an
order of magnitude as the number of stations varies. Observe
also from these measured distributions that there are significant
fluctuations in the service time for a given fixed load. This is a
direct consequence of the stochastic nature of the CSMA/CA
contention mechanism used by the 802.11/802.11e MAC.

This time-varing nature directly affects buffering require-
ments. Figure 3 plots link utilization1 and max sRTT (propa-
gation plus smoothed queuing delay) vs buffer size for a range
of WLAN offered loads and physical transmit rates. We can
make a number of observations.

First, it can be seen that as the physical layer transmit
rate is varied from 1Mbps to 216Mbps, the minimum buffer
size to ensure at least 90% throughput efficiency varies from
about 20 packets to about 800 packets. No compromise buffer
size exists that ensures both high efficiency and low delay
across this range of transmit rates. For example, a buffer size
of 80 packets leads to RTTs exceeding 500ms (even when
only a single station is active and so there are no competing

1Here the AP throughput percentage is the ratio between the actual
throughput achieved using buffer sizes show on the x-axis and the maximum
throughput using the buffer sizes shown on the x-axis.

wireless stations) at 1Mbps and throughput efficiency below
50% at 216Mbps. Note that the transmit rates in currently
available draft 802.11n equipment already exceed 216Mbps
(e.g. 300Mbps is supported by current Atheros chipsets) and
the trend is towards still higher transmit rates. Even across the
restricted range of transmit rates 1Mbps to 54Mbps supported
by 802.11a/b/g, it can be seen that a buffer size of 50 packets
is required to ensure throughput efficiency above 80% yet this
buffer size induces delays exceeding 1000 and 3000 ms at
transmit rates of 11 and 1 Mbps, respectively.

Second, delay is strongly dependent on the traffic load and
the physical rates. For example, as the number of competing
stations (marked as “uploads” in the figure) is varied from 0
to 10, for a buffer size of 20 packets and physical transmit rate
of 1Mbps the delay varies from 300ms to over 2000ms. This
reflects that the 802.11 MAC allocates available transmission
opportunities equally on average amongst the wireless stations,
and so the mean service time (and thus delay) increases with
the number of stations. In contrast, at 216Mbps the delay
remains below 500ms for buffer sizes up to 1600 packets.

Our key conclusion from these observations is that there
exists no fixed buffer size capable of ensuring both high
throughput efficiency and reasonable delay across the range
of physical rates and offered loads experienced by modern
WLANs. Any fixed choice of buffer size necessarily carries
the cost of significantly reduced throughput efficiency and/or
excessive queuing delays.

This leads naturally therefore to the consideration of adap-
tive approaches to buffer sizing, which dynamically adjust
the buffer size in response to changing network conditions to
ensure both high utilization of the wireless link while avoiding
unnecessarily long queuing delays.

IV. EMULATING BDP

We begin by considering a simple adaptive algorithm based
on the classical BDP rule. Although this algorithm cannot
take advantage of statistical multiplexing opportunities, it is
of interest both for its simplicity and because it will play a
role in the more sophisticated A∗ algorithm developed in the
next section.

As noted previously, and in contrast to wired networks,
in 802.11 WLANs the mean service time is generally time-
varying (dependent on WLAN load and the physical transmit
rate selected by a station). Consequently, there does not exist a
fixed BDP value. However, we note that a wireless station can
measure its own packet service times by direct observation,
i.e., by recording the time between a packet arriving at the
head of the network interface queue ts and being successfully
transmitted te (which is indicated by receiving correctly the
corresponding MAC ACK). Note that this measurement can
be readily implemented in real devices, e.g. by asking the
hardware to raise an interrupt on receipt of a MAC ACK,
and incurs only a minor computational burden. Averaging
these per packet service times yields the mean service time
Tserv . To accommodate the time-varying nature of the mean
service time, this average can be taken over a sliding window.
In this paper, we consider the use of exponential smoothing

4

5 10 20 50 80 150 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(a) 1/1Mbps, throughput

5 10 20 50 80 150 400

200

400
500

1000

2000

AP buffer size (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(b) 1/1Mbps, delay

5 10 20 50 80 150 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(c) 11/1Mbps, throughput

5 10 20 50 80 150 400

200

400
500

1000

2000

AP buffer size (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(d) 11/1Mbps, delay

5 10 20 50 80 150 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(e) 54/6Mbps, throughput

5 10 20 50 80 150 400

200

400
500

1000

2000

AP buffer size (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(f) 54/6Mbps, delay

20 50 80 200 400 800 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(g) 216/54Mbps, throughput

20 50 150 400 800 1600

200

400
500

2000

AP buffer size (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
1 download, 1 upload
1 download, 2 uploads
1 download, 5 uploads
1 download, 10 uploads
10 downloads, 0 upload
10 downloads, 1 upload

(h) 216/54Mbps, delay

Fig. 3. Throughput efficiency and maximum smoothed round trip delays (max sRTT) for the topology in Fig. 1 when fixed size buffers are used. Here,
the AP throughput efficiency is the ratio between the download throughput achieved using buffer sizes indicated on the x-axis and the maximum download
throughput achieved using fixed size buffers. Rates before and after the ’/’ are used physical layer data and basic rates. For the 216Mbps data, 8 packets are
aggregated into each frame at the MAC layer to improve throughput efficiency in an 802.11n-like scheme. The wired RTT is 200 ms.

Tserv(k + 1) = (1 − W)Tserv(k) + W (te − ts) to calculate
a running average since this has the merit of simplicity
and statistical robustness (by central limit arguments). The
choice of smoothing parameter W involves a trade-off between
accommodating time variations and ensuring the accuracy of
the estimate – this choice is considered in detail later.

Given an online measurement of the mean service time
Tserv , the classical BDP rule yields the following eBDP
buffer sizing strategy. Let Tmax be the target maximum
queuing delay. Noting that 1/Tserv is the mean service
rate, we select buffer size QeBDP according to QeBDP =
min(Tmax/Tserv, QeBDP

max) where QeBDP
max is the upper limit

on buffer size. This effectively regulates the buffer size to
equal the current mean BDP. The buffer size decreases when
the service rate falls and increases when the service rate rises,
so as to maintain an approximately constant queuing delay of
Tmax seconds. We may measure the flows’ RTTs to derive the
value for Tmax in a similar way to measuring the mean service
rate, but in the examples presented here we simply use a fixed
value of 200ms since this is an approximate upper bound on
the RTT of the majority of the current Internet flows.

We note that the classical BDP rule is derived from the
behavior of TCP congestion control (in particular, the reduc-
tion of cwnd by half on packet loss) and assumes a constant
service rate and fluid-like packet arrivals. Hence, for example,
at low service rates the BDP rule suggests use of extremely
small buffer sizes. However, in addition to accommodating
TCP behavior, buffers have the additional role of absorbing
short-term packet bursts and, in the case of wireless links,
short-term fluctuations in packet service times. It is these
latter effects that lead to the steep drop-off in throughput
efficiency that can be observed in Fig. 3 when there are
competing uploads (and so stochastic variations in packet
service times due to channel contention, see Fig. 2.) plus small

Algorithm 1 Drop tail operation of the eBDP algorithm.
1: Set the target queuing delay Tmax.
2: Set the over-provision parameter c.
3: for each incoming packet p do
4: Calculate QeBDP = min(Tmax/Tserv + c,QeBDP

max)
where Tserv is from MAC Algorithm 2.

5: if current queue occupancy < QeBDP then
6: Put p into queue
7: else
8: Drop p.
9: end if

10: end for

buffer sizes. We therefore modify the eBDP update rule to
QeBDP = min(Tmax/Tserv + c,QeBDP

max) where c is an over-
provisioning amount to accommodate short-term fluctuations
in service rate. Due to the complex nature of the service
time process at a wireless station (which is coupled to the
traffic arrivals etc at other stations in the WLAN) and of the
TCP traffic arrival process (where feedback creates coupling
to the service time process), obtaining an analytic value for
c is intractable. Instead, based on the measurements in Fig. 3
and others, we have found empirically that a value of c = 5
packets works well across a wide range of network conditions.
Pseudo-code for eBDP is shown in Algorithms 1 and 2.

The effectiveness of this simple adaptive algorithm is illus-
trated in Fig. 4. Fig. 4(a) shows the buffer size and queue
occupancy time histories when only a single station is active
in a WLAN while Fig. 4(b) shows the corresponding results
when ten additional stations now also contend for channel
access. Comparing with Fig. 3(e), it can be seen that buffer
sizes of 330 packets and 70 packets, respectively, are needed
to yield 100% throughput efficiency and eBDP selects buffer

5

Algorithm 2 MAC operation of the eBDP algorithm.
1: Set the averaging parameter W .
2: for each outgoing packet p do
3: Record service start time ts for p.
4: Wait until receive MAC ACK for p, record service end

time te.
5: Calculate service time of p: Tserv = (1 − W)Tserv +

W (te − ts).
6: end for

50 100 150 200
0

100

200

300

400

500

600

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(a) 1 download, 0 upload

50 100 150 200
0

100

200

300

400

500

600

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(b) 1 download, 10 uploads

Fig. 4. Histories of buffer size and buffer occupancy with the eBDP
algorithm. In (a) there is one download and no upload flows. In (b) there
are 1 download and 10 upload flows. 54/6Mbps physical data/basic rates.

sizes which are in good agreement with these thresholds.
In Fig. 5 we plot the throughput efficiency (measured as

the ratio of the achieved throughput to that with a fixed
400-packet buffer) and max smoothed RTT over a range of
network conditions obtained using the eBDP algorithm. It can
be seen that the adaptive algorithm maintains high throughput
efficiency across the entire range of operating conditions.
This is achieved while maintaining the latency approximately
constant at around 400ms (200ms propagation delay plus
Tmax = 200ms queuing delay) – the latency rises slightly with
the number of uploads due to the over-provisioning parameter
c used to accommodate stochastic fluctuations in service rate.

While Tmax = 200ms is used as the target drain time in the
eBDP algorithm, realistic traffic tends to consist of flows with
a mix of RTTs. Fig. 6 plots the results as we vary the RTT
of the wired backhaul link while keeping Tmax = 200ms.
We observe that the throughput efficiency is close to 100%
for RTTs up to 200ms. For an RTT of 300ms, we observe a

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads

(a) Throughput

0 2 4 6 8 10
0

100

200

300

400

500

600

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(b) Delay

Fig. 5. Performance of the eBDP algorithm as the number of upload flows
is varied. Data is shown for 1, 10 download flows and 0, 2, 5, 10 uploads.
Wired RTT 200ms. Here the AP throughput percentage is the ratio between
the throughput achieved using the eBDP algorithm and that by a fixed buffer
size of 400 packets (i.e. the maximum achievable throughput in this case).

50 100 150 200 250 300
0

20

40

60

80

100

RTT (ms)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads

(a) Throughput

50 100 150 200 250 300
150

200

250

300

350

400

450

500

550

600

RTT (ms)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads

(b) Delay

Fig. 6. Performance of the eBDP algorithm as the RTT of wired backhaul
is varied. Data is shown for 1, 10 downloads and 0, 10 uploads. Here the
AP throughput percentage is the ratio between the throughput achieved using
the eBDP algorithm and that by a fixed buffer size of 400 packets (i.e. the
maximum achievable throughput in this case).

slight decrease in throughput when there is 1 download and
10 contending upload flows, which is to be expected since
Tmax is less than the link delay and so the buffer is less
than the BDP. This could improved by measuring the average
RTT instead of using a fixed value, but it is not clear that the
benefit is worth the extra effort. We also observe that there is
a difference between the max smoothed RTT with and without
upload flows. The RTT in our setup consists of the wired link
RTT, the queuing delays for TCP data and ACK packets and
the MAC layer transmission delays for TCP data and ACK
packets. When there are no upload flows, TCP ACK packets
can be transmitted with negligible queuing delays since they
only have to contend with the AP. When there are upload flows
however, stations with TCP ACK packets have to contend with
other stations sending TCP data packets as well. TCP ACK
packets therefore can be delayed accordingly, which causes
the increase in RTT observed in Fig. 6.

Fig. 7 demonstrates the ability of the eBDP algorithm to
respond to changing network conditions. At time 300s the
number of uploads is increased from 0 to 10 flows. It can be
seen that the buffer size quickly adapts to the changed condi-
tions when the weight W = 0.001. This roughly corresponds
to averaging over the last 1000 packets2. When the number of
uploads is increased at time 300s, it takes 0.6 seconds (current
throughput is 13.5Mbps so t = 1000 ∗ 8000/13.5 ∗ 106 = 0.6)
to send 1000 packets, i.e., the eBDP algorithm is able to react
to network changes roughly on a timescale of 0.6 second.

V. EXPLOITING STATISTICAL MULTIPLEXING: THE A*
ALGORITHM

While the eBDP algorithm is simple and effective, it is
unable to take advantage of the statistical multiplexing of
TCP cwnd backoffs when multiple flows share the same link.
For example, it can be seen from Fig. 8 that while a buffer
size of 338 packets is needed to maximize throughput with a
single download flow, this falls to around 100 packets when
10 download flows share the link. However, in both cases the
eBDP algorithm selects a buffer size of approximately 350

2As per [8], the current value is averaged over the last t observations for
x% percentage of accuracy where x = 1 − (1 − W)t, t is the number of
updates (which are packets in our case). When W = 0.001 and t = 1000
we have that x = 0.64.

6

50 100 150 200 250 300 350 400
0

100

200

300

400

500

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

Fig. 7. Convergence of the eBDP algorithm following a change in network
conditions. One download flow. At time 200s the number of upload flows is
increased from 0 to 10.

10 50 100 150 300 400
0

5

10

15

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 (

M
bp

s)

1 download, 0 upload
10 downloads, 0 upload

BDP/N1/2=102 BDP=338

(a) Throughput

10 50 80 200 300 400
100

150

200

250

300

350

AP buffer limit (pkts)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
10 downloads, 0 upload

BDP/N1/2=102 BDP=338

(b) Delay

Fig. 8. Impact of statistical multiplexing. There are 1/10 downloads and no
uploads. Wired RTT 200ms.

packets (see Figs. 4(a) and 9). It can be seen from Fig. 9 that
as a result with the eBDP algorithm the buffer rarely empties
when 10 flows share the link. That is, the potential exists to
lower the buffer size without loss of throughput.

In this section we consider the design of a measurement-
based algorithm (the ALT algorithm) that is capable of taking
advantage of such statistical multiplexing opportunities.

A. Adaptive Limit Tuning (ALT) Feedback Algorithm

Our objective is to simultaneously achieve both efficient
link utilization and low delays in the face of stochastic time-
variations in the service time. Intuitively, for efficient link
utilization we need to ensure that there is a packet available to
transmit whenever the station wins a transmission opportunity.
That is, we want to minimize the time that the station buffer
lies empty, which in turn can be achieved by making the buffer
size sufficiently large (under fairly general traffic conditions,
buffer occupancy is a monotonically increasing function of

50 100 150 200
0

100

200

300

400

500

600

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(a) Time history

Fig. 9. Histories of buffer size and buffer occupancy with the eBDP algorithm
when there are 10 downloads and no uploads.

buffer size [13].). However, using large buffers can lead to high
queuing delays, and to ensure low delays the buffer should
be as small as possible. We would therefore like to operate
with the smallest buffer size that ensures sufficiently high link
utilization. This intuition suggests the following approach. We
observe the buffer occupancy over an interval of time. If the
buffer rarely empties, we decrease the buffer size. Conversely,
if the buffer is observed to be empty for too long, we increase
the buffer size. Of course, further work is required to convert
this basic intuition into a well-behaved algorithm suited to
practical implementation. Not only do the terms “rarely” ,
“too long” etc need to be made precise, but we note that an
inner feedback loop is created whereby buffer size is adjusted
depending on the measured link utilization, which in turn
depends on the buffer size. This new feedback loop is in
addition to the existing outer feedback loop created by TCP
congestion control, whereby the offered load is adjusted based
on the packet loss rate, which in turn is dependent on buffer
size. Stability analysis of these cascaded loops is therefore
essential.

We now introduce the following Adaptive Limit Tuning
(ALT) algorithm. The dynamics and stability of this algorithm
will then be analyzed in later sections. Define a queue
occupancy threshold qthr and let ti(k) (referred to as the
idle time) be the duration of time that the queue spends at or
below this threshold in a fixed observation interval t, and tb(k)
(referred to as the busy time) be the corresponding duration
spent above the threshold. Note that t = ti(k)+ tb(k) and the
aggregate amount of idle/busy time ti and tb over an interval
can be readily observed by a station. Also, the link utilitisation
is lower bounded by tb/(tb + ti). Let q(k) denote the buffer
size during the k-th observation interval. The buffer size is
then updated according to

q(k + 1) = q(k) + a1ti(k) − b1tb(k), (1)

where a1 and b1 are design parameters. Pseudo-code for this
ALT algorithm is given in Algorithm 3. This algorithm seeks
to maintain a balance between the time ti that the queue is idle
and the time tb that the queue is busy. That is, it can be seen
that when a1ti(k) = b1tb(k), the buffer size is kept unchanged.
When the idle time is larger so that a1ti(k) > b1tb(k), then
the buffer size is increased. Conversely, when the busy time
is large enough that a1ti(k) < b1tb(k), then the buffer size is
decreased.

More generally, assuming q converges to a stationary dis-
tribution (we discuss this in more detail later), then in steady-
state we have that a1E[ti] = b1E[tb], i.e., E[ti] = b1

a1
E[tb]

and the mean link utilization is therefore lower bounded by

E[
tb

ti + tb
] =

E[tb]
t

=
1

1 + b1/a1
. (2)

where we have made use of the fact that t = ti(k) + tb(k)
is constant. It can therefore be seen that choosing b1

a1
to be

small then ensures high utilization. Choosing values for the
parameters a1 and b1 is discussed in detail in Section V-B,
but we note here that values of a1 = 10 and b1 = 1 are
found to work well and unless otherwise stated are used in
this paper. With regard to the choice of observation interval

7

Algorithm 3 : The ALT algorithm.
1: Set the initial queue size, the maximum buffer size qmax

and the minimum buffer size qmin.
2: Set the increase step size a1 and the decrease step size b1.
3: for Every t seconds do
4: Measure the idle time ti.
5: qALT = qALT + a1ti − b1(t − ti).
6: qALT = min(max(qALT , qmin), qmax)
7: end for

Q(k) Q(k+1)

TI(k) TB(k)

cwnd
buffer size
occupancy

Fig. 10. Illustrating evolution of the buffer size.

t, this is largely determined by the time required to obtain
accurate estimates of the queue idle and busy times. In the
reminder of this paper we find a value of t = 1 second to be
a good choice.

It is prudent to constrain the buffer size q to lie between
the minimum and the maximum values qmin and qmax. In the
following, the maximum size qmax and the minimum buffer
size qmin are set to be 1600 and 5 packets respectively.

B. Selecting the Step Sizes for ALT

Define a congestion event as an event where the sum of
all senders’ TCP cwnd decreases. This cwnd decrease can be
caused by the response of TCP congestion control to a single
packet loss, or multiple packet losses that are lumped together
in one RTT. Define a congestion epoch as the duration between
two adjacent congestion events.

Let Q(k) denote the buffer size at the k-th congestion event.
Then,

Q(k + 1) = Q(k) + aTI(k) − bTB(k) (3)

where TI is the “idle” time, i.e., the duration in seconds when
the queue occupancy is below qthr during the k-th congestion
epoch, and TB the “busy” time, i.e., the duration when the
queue occupancy is above qthr. This is illustrated in Fig. 10
for the case of a single TCP flow.

Notice that a = a1 and b = b1 where a1 and b1 are
parameters used in the ALT algorithm. In the remainder of
this section we investigate conditions to guarantee convergence
and stability of the buffer dynamics with TCP traffic, which
naturally lead to guidelines for the selection of a1 and b1. We
first define some TCP related quantities before proceeding.

Consider the case where TCP flows may have different
round-trip times and drops need not be synchronized. Let n
be the number of TCP flows sharing a link, wi(k) be the

cwnd of flow i at the k-th congestion event, Ti the round-trip
propagation delay of flow i. To describe the cwnd additive
increase we define the following quantities: (i) αi is the
rate in packet/s at which flow i increases its congestion
window3, (ii) αT =

∑n
i=1 αi is the aggregate rate at which

flows increase their congestion windows, in packets/s, and
(iii) AT =

∑n
i=1 αi/Ti approximates the aggregate rate,

in packets/s2, at which flows increase their sending rate.
Following the k-th congestion event, flows backoff their cwnd
to βi(k)wi(k). Flows may be unsynchronized, i.e., not all
flows need back off at a congestion event. We capture this with
βi(k) = 1 if flow i does not backoff at event k. We assume
that the αi are constant and that the βi(k) (i.e. the pattern of
flow backoffs) are independent of the flow congestion windows
wi(k) and the buffer size Q(k) (this appears to be a good
approximation in many practical situations, see [26]).
To relate the queue occupancy to the flow cwnds, we adopt

a fluid-like approach and ignore sub-RTT burstiness. We also
assume that qthr is sufficiently small relative to the buffer size
that we can approximate it as zero. Considering now the idle
time TI(k), on backoff after the k-th congestion event, if the
queue occupancy does not fall below qthr then TI(k) = 0.
Otherwise, immediately after backoff the send rate of flow i
is βi(k)wi(k)/Ti and we have that

TI(k) =
E[B] −

∑n
i=1 βi(k)wi(k)/Ti

AT
, (4)

where E[B] is the mean service rate of the considered buffer.
At congestion event k the aggregate flow throughput nec-

essarily equals the link capacity, i.e.,
n∑

i=1

wi(k)
Ti + Q(k)/E[B]

= E[B].

We then have that
n∑

i=1

wi(k)
Ti

=
n∑

i=1

wi(k)
Ti

Ti + Q(k)/E[B]
Ti + Q(k)/E[B]

=
n∑

i=1

wi(k)
Ti + Q(k)/E[B]

+

Q(k)
E[B]

n∑
i=1

wi(k)
Ti + Q(k)/E[B]

1
Ti

Assume that the spread in flow round-trip propagation
delays and congestion windows is small enough that∑n

i=1(wi(k)/(E[B]Ti + Q(k))(1/Ti) can be accurately ap-
proximated by 1/TT , where TT = n

Pn
i=1

1
Ti

is the harmonic
mean of Ti. Then

n∑
i=1

wi(k)
Ti

≈ E[B] + Q(k)
TT

,

and

TI(k) ≈ (1 − βT (k))E[B] − βT (k)Q(k)/TT

AT
(5)

3Standard TCP increases the flow congestion window by one packet per
RTT, in which case αi ≈ 1/Ti.

8

where βT (k) =
Pn

i=1 βi(k)wi(k)/Ti
Pn

i=1 wi(k)/Ti
is the effective aggregate

backoff factor of the flows. When flows are synchronized, i.e.,
βi = β ∀i, then βT = β. When flows are unsynchronized but
have the same average backoff factor, i.e., E[βi] = β, then
E[βT] = β .

If the queue empties after backoff, the queue busy time
TB(k) is directly given by

TB(k) = Q(k + 1)/αT (6)

where αT =
∑n

i=1 αi is the aggregate rate at which flows
increase their congestion windows, in packets/s. Otherwise,

TB(k) = (Q(k + 1) − q(k))/αT (7)

where q(k) is the buffer occupancy after backoff. It turns out
that for the analysis of stability it is not necessary to calculate
q(k) explicitly. Instead, letting δ(k) = q(k)/Q(k), it is enough
to note that 0 ≤ δ(k) < 1.

Combining (3), (5), (6) and (7),

Q(k + 1) =
{

λe(k)Q(k) + γe(k)E[B]TT , q(k) ≤ qthr

λf (k)Q(k), otherwise

where

λe(k) =
αT − aβT (k)αT /(AT TT)

αT + b
,

λf (k) =
αT + bδ(k)

αT + b
, γe(k) = a

1 − βT (k)
αT + b

αT

AT TT
.

Taking expectations,

E[Q(k + 1)]
=E[λe(k)Q(k) + γe(k)E[B]TT |q(k) ≤ qthr]pe(k)

+ E[λf (k)Q(k)|q(k) > qthr](1 − pe(k))

with pe(k) the probability that the queue ≤ qthr following the
k-th congestion event. Since the βi(k) are assumed indepen-
dent of Q(k) we may assume that E[Q(k)|q(k) ≤ qthr] =
E[Q(k)|q(k) > qthr] = E[Q(k)] and

E[Q(k + 1)] = λ(k)E[Q(k)] + γ(k)E[B]TT (8)

where

λ(k) =pe(k)E[λe(k)|q(k) ≤ qthr]
+ (1 − pe(k))E[λf (k)|q(k) > qthr],

γ(k) =pe(k)E[γe(k)|q(k) ≤ qthr]

C. A Sufficient Condition for Stability

Provided |λ(k)| < 1 the queue dynamics in (8) are ex-
ponentially stable. In more detail, λ(k) is the convex com-
bination of E[λe(k)] and E[λf (k)] (where the conditional
dependence of these expectations is understood, but omitted
to streamline notation). Stability is therefore guaranteed pro-
vided |E[λe(k)]| < 1 and |E[λf (k)]| < 1. We have that
0 < E[λf (k)] < 1 when b > 0 since αT is non-negative
and 0 ≤ δ(k) < 1. The stability condition is therefore that
|E[λe(k)]| < 1.

2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Buffer occupancy
Buffer limit
Cwnd

(a) Instability

100 200 300 400 500
0

100

200

300

400

500

600

700

800

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Buffer occupancy
Buffer limit
Cwnd

(b) Stability

Fig. 11. Instability and stability of the ALT algorithm. In (a), a=100, b=1,
the maximum buffer size is 50000 packets. In (b), a=10, b=1, the maximum
buffer size is 400 packets. In both figures, there is 1 download and no upload.

Under mild independence conditions,

E[λe(k)] =
αT − aE[βT (k)]αT /(AT TT)

αT + b
.

Observe that,

αT

AT TT
=

1
n

(
∑n

i=1 1/Ti)2∑n
i=1 1/T 2

i

when we use the standard TCP AIMD increase of one packet
per RTT, in which case αi ≈ 1/Ti. We therefore have that
1/n ≤ αT /(AT TT) ≤ 1. Also, when the standard AIMD
backoff factor of 0.5 is used, 0.5 < E[βT (k)] < 1. Thus,
since a > 0, b > 0, αT > 0, it is sufficient that

−1 <
αT − a

αT + b
≤ E[λe(k)] ≤ αT

αT + b
< 1

A sufficient condition (from the left inequality) for stability is
then that a < 2αT +b. Using again (as in the eBDP algorithm)
200ms as the maximum RTT , a rough lower bound on αT

is 5 (corresponding to 1 flow with RTT 200ms). The stability
constraint is then that

a < 10 + b. (9)

Fig. 11(a) demonstrates that the instability is indeed ob-
served in simulations. Here, a = 100 and b = 1 are used as
example values, i.e., the stability conditions are not satisfied. It
can be seen that the buffer size at congestion events oscillates
around 400 packets rather than converging to a constant
value. We note, however, that in this example and others the
instability consistently manifests itself in a benign manner
(small oscillations). However, we leave detailed analysis of
the onset of instability as future work.

Fig. 11(b) shows the corresponding results with a = 10 and
b = 1, i.e., when the stability conditions are satisfied. It can
be seen that the buffer size at congestion events settles to a
constant value, thus the buffer size time history converges to
a periodic cycle.

D. Fixed point

When the system dynamics are stable and pe = 0, from (8)
we have that

lim
k→∞

E[Q(k)] =
(1 − E[βT])
b/a + E[βT]

E[B]TT . (10)

For synchronized flows with the standard TCP backoff
factor of 0.5 (i.e., E[βT] = 0.5) and the same RTT,

9

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

b/a

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (

%
)

1 download, 0 upload
10 downloads, 0 upload
1 download, 10 uploads
10 downloads, 10 uploads
1/(1+b/a)

Fig. 12. Impact of b/a on throughput efficiency. The maximum buffer size
is 400 packets, and the minimum buffer size is 2 packets.

(1−E[βT])
b/a+E[βT]E[B]TT reduces to the BDP when b/a = 0. This
indicates that for high link utilization we would like the ratio
b/a to be small. Using (5), (6) and (10) we have that in steady-
state the expected link utilization is lower bounded by

1
1 + b

a
αT

AT TT

≥ 1
1 + b

a

. (11)

This lower bound is plotted in Fig. 12 together with the
measured throughput efficiency vs b/a in a variety of traffic
conditions. Note that in this figure the lower bound is violated
by the measured data when b/a > 0.1 and we have a
large number of uploads. At such large values of b/a plus
many contending stations, the target buffer sizes are extremely
small and micro-scale burstiness means that TCP RTOs occur
frequently. It is this that leads to violation of the lower bound
(11) (since pe = 0 does not hold). However, this corresponds
to an extreme operating regime and for smaller values of b/a
the lower bound is respected. It can be seen from Fig. 12 that
the efficiency decreases when the ratio of b/a increases. In
order to ensure throughput efficiency ≥ 90% it is required
that

b

a
≤ 0.1. (12)

Combined with the stability condition in inequality (9), we
have that a = 10, b = 1 are feasible integer values, that is, we
choose a1 = 10 and b1 = 1 for the A* algorithm.

E. Convergence rate

In Fig. 13(a) we illustrate the convergence rate of the ALT
algorithm. There is one download, and at time 500s the number
of upload flows is increased from 0 to 10. It can be seen
that the buffer size limit converges to its new value in around
200 seconds or 3 minutes. In general, the convergence rate is
determined by the product λ(0)λ(1)...λ(k). In this example,
the buffer does not empty after backoff and the convergence
rate is thus determined by λf (k) = αT +bδ(k)

αT +b . To achieve
fast convergence, we require small λf (k) so that Q(k + 1) =
λf (k)Q(k) is decreased quickly to the desired value. We thus
need large b to achieve fast convergence. However, b = 1 is
used here in order to respect the stability condition in (9) and
the throughput efficiency condition in (12). Note that when
conditions change such that the buffer size needs to increase,
the convergence rate is determined by the a parameter. This
has a value of a = 10 and thus the algorithm adapts much
more quickly to increase the buffer than to decrease it and the

200 400 600 800 1000
0

100

200

300

400

500

Time (second)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(a) The ALT algorithm

200 400 600 800 1000
0

100

200

300

400

500

Time (second)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(b) The A* algorithm

Fig. 13. Convergence rate of the ALT and A* algorithms. One download
flow, a = 10, b = 1. At time 500s the number of upload flows is increased
from 0 to 10.

100 200 300 400 500
0

100

200

300

400

500

Time (seconds)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(a) 10 downloads only

200 400 600 800 1000
0

100

200

300

400

500

Time (second)

A
P

 b
uf

fe
r

(p
kt

s)

Occupancy
Buffer size

(b) 10 downloads, with 10 uploads
starting at time 500s

Fig. 14. Buffer time histories with the A* algorithm, a=10, b=1.

example in Fig. 13(a) is essentially a worst case. In the next
section, we address the slow convergence by combining the
ALT and the eBDP algorithms to create a hybrid algorithm.

F. Combining eBDP and ALT: The A* Algorithm

We can combine the eBDP and ALT algorithms by using
the mean packet service time to calculate QeBDP as per the
eBDP algorithm (see Section IV), and the idle/busy times to
calculate qALT as per the ALT algorithm. We then select the
buffer size as min{QeBDP , qALT } to yield a hybrid algorithm,
referred to as the A* algorithm, that combines the eBDP and
the ALT algorithms.

When channel conditions change, the A* algorithm uses
the eBDP measured service time to adjust the buffer size
promptly. The convergence rate depends on the smoothing
weight W . As calculated in Section IV, it takes around 0.6
second for QeBDP to converge. The A* algorithm can further
use the ALT algorithm to fine tune the buffer size to exploit
the potential reduction due to statistical multiplexing. The
effectiveness of this hybrid approach when the traffic load
is increased suddenly is illustrated in Fig. 13(b) (which can
be directly compared with Fig. 13(a)). Fig. 14(b) shows the
corresponding time histories for 10 download flows and a
changing number of competing uploads.

G. Performance

The basic impetus for the design of the A* algorithm is
to exploit the possibility of statistical multiplexing to reduce
buffer sizes. Fig. 14(a) illustrates the performance of the A*
algorithm when there are 10 downloads and no upload flows.
Comparing with the results in Fig. 9 using fixed size buffers,
we can see that the A* algorithm can achieve significantly

10

50 100 150 200 300
0

20

40

60

80

100

RTT (ms)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads
1/(1+b/a)

(a) Throughput efficiency

50 100 150 200 300
0

100

200

300

400

500

600

RTT (ms)

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download, 0 upload
10 download, 0 upload
1 download, 10 uploads

(b) Delay

Fig. 16. Performance of the A* algorithm as the wired RTT is varied.
Physical layer data and basic rates are 54 and 6 Mbps. Here the AP
throughput percentage is the ratio between the throughput achieved using
the A* algorithm and the maximum throughput using fixed size buffers.

smaller buffer sizes (i.e., a reduction from more than 350 pack-
ets to 100 packets approximately) when multiplexing exists.
Fig. 15 summarizes the throughput and delay performance of
the A* algorithm for a range of network conditions (numbers
of uploads and downloads) and physical transmit rates ranging
from 1Mbps to 216Mbps. This can be compared with Fig.
3. It can be seen that in comparison with the use of a fixed
buffer size the A* algorithm is able to achieve high throughput
efficiency across a wide range of operating conditions while
minimizing queuing delays.

In Fig. 16 we further evaluate the A* algorithm when
the wired RTTs are varied from 50-300ms and the number
of uploads is varied from 0-10. Comparing these with the
results (Fig. 5 and 6) of the eBDP algorithm we can see
that the A* algorithm is capable of exploiting the statistical
multiplexing where feasible. In particular, significantly lower
delays are achieved with 10 download flows whilst maintaining
comparable throughput efficiency.

H. Impact of Channel Errors

In the foregoing simulations the channel is error free and
packet losses are solely due to buffer overflow and MAC-layer
collisions. In fact, channel errors have only a minor impact
on the effectiveness of buffer sizing algorithms as errors play
a similar role to collisions with regard to their impact on
link utilization. We support this claim first using a simulation
example with a channel having an i.i.d noise inducing a bit
error rate (BER) of 10−5. Results are shown in Fig. 17 where
we can see a similar trend as in the cases when the medium
is error free (Figs. 15(e) 15(f)).

We further confirm this claim in our test-bed implementa-
tions where tests were conducted in 802.11b/g channels and
noise related losses were observed. See Section VI for details.

I. DCF Operation

The proposed buffer sizing algorithms are still valid for
DCF since link utilization and delay considerations remain
applicable, as is the availability of service time (for the eBDP
algorithm) and idle/busy time measurements (for the ALT
algorithm). In particular, if the considered buffer is heavily
backlogged, to ensure low delays, the buffer size should be
reduced. If otherwise the buffer lies empty, it may be due

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(a) Throughput

0 2 4 6 8 10
0

100

200

300

400

500

600

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(b) Delay

Fig. 17. Performance of the A* algorithm when the channel has a BER of
10−5. Physical layer data and basic rates are 54 and 6 Mbps. Here the AP
throughput percentage is the ratio between the throughput achieved using the
A* algorithm and the maximum throughput using fixed size buffers.

to that the current buffer size is too small which causes the
TCP source backs off after buffer overflow. To accommodate
more future packets, the buffer size can be increased. Note
that increasing buffer sizes in this case would not lead to
high delays but has the potential to improve throughput. This
tradeoff between the throughput and the delays thus holds for
both EDCA and DCF.

However, the DCF allocates roughly equal numbers of
transmission opportunities to stations. A consequence of using
DCF is thus that when the number of upload flows increases,
the uploads may produce enough TCP ACK packets to keep
the AP’s queue saturated. In fact, once there are two upload
flows, TCP becomes unstable due to repeated timeouts (see
[20] for a detailed demonstration), causing the unfairness issue
discussed in Section II-C. Therefore, we present results for up
to two uploads in Fig. 18, as this is the greatest number of
upload flows where TCP with DCF can exhibit stable behavior
using both fixed size buffers and the A* algorithm. Note that
in this case using the A* algorithm on upload stations can also
decrease the delays and maintain high throughput efficiency if
their buffers are frequently backlogged.

We also present results when there are download flows only
(so the unfairness issue does not exist). Fig. 19 illustrates
the throughput and delay performance achieved using the A*
algorithm and fixed 400-packet buffers. As in the EDCA cases,
we can see that the A* algorithm is able to maintain a high
throughput efficiency with comparatively low delays.

Note that DCF is also used in the production WLAN test
where the A* algorithm is observed to perform well (see
Section I).

J. Rate Adaptation

We did not implement rate adaptation in our simulations.
However, we did implement the A* algorithm in the Linux
MadWifi driver which includes rate adaptation algorithms.
We tested the A* algorithm in the production WLAN of
the Hamilton Institute with the default SampleRate algorithm
enabled. See Section I.

VI. EXPERIMENTAL RESULTS

We have implemented the proposed algorithms in the Linux
MadWifi driver, and in this section we present tests on an

11

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(a) 1/1Mbps, throughput

0 2 4 6 8 10
0

500

1000

1500

2000

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(b) 1/1Mbps, delay

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(c) 11/1Mbps, throughput

0 2 4 6 8 10
0

200

400

600

800

1000

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(d) 11/1Mbps, delay

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(e) 54/6Mbps, throughput

0 2 4 6 8 10
0

200

400

600

800

1000

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(f) 54/6Mbps, delay

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(g) 216/54Mbps, throughput

0 2 4 6 8 10
0

200

400

600

800

1000

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(h) 216/54Mbps, delay

Fig. 15. Throughput efficiency and maximum smoothed round trip delays (max sRTT) for the topology in Fig. 1 when the A* algorithm is used. Here, the
AP throughput efficiency is the ratio between the throughput achieved using the A* algorithm and the maximum throughput achieved using fixed size buffers.
Rates before and after the ’/’ are used physical layer data and basic rates. For the 216Mbps data, 8 packets are aggregated into each frame at the MAC layer
to improve throughput efficiency in an 802.11n-like scheme. The wired RTT is 200 ms.

0 2 4 6 8 10
0

20

40

60

80

100

of uploads

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download
10 downloads
1/(1+b/a)

(a) Throughput

0 2 4 6 8 10
0

100

200

300

400

500

600

of uploads

M
ax

 s
m

oo
th

ed
 R

T
T

 (
m

s)

1 download
10 downloads

(b) Delay

Fig. 18. Performance of the A* algorithm for 802.11 DCF operation when
there are both upload and download flows in the network. Here the AP
throughput percentage is the ratio between the throughput achieved using the
A* algorithm and the maximum throughput using fixed size buffers. Physical
layer data and basic rates used are 54 and 6 Mbps.

10 50 100 150 300 400
0

20

40

60

80

100

120

140

160

180

200

AP buffer size (pkts)

A
P

 th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
10 downloads, 0 upload

(a) Throughput

10 50 100 150 300 400
0

20

40

60

80

100

120

140

160

180

200

AP buffer size (pkts)

M
ax

 R
T

T
 p

er
ce

nt
ag

e
(%

)

1 download, 0 upload
10 downloads, 0 upload

(b) Delay

Fig. 19. Performance of the A* algorithm for 802.11 DCF operation when
there are download flows only in the network. Here we illustrate the percentage
(between the results achieved using the A* algorithm and those using varied
AP buffer sizes as shown on the x-axis) of both throughput and delays.
Physical layer data and basic rates used are 54 and 6 Mbps.

experimental testbed located in an office environment and
introduce results illustrating operation with complex traffic that
includes both TCP and UDP, a mix of uploads and downloads,
and a mix of connection sizes.

A. Testbed Experiment

The testbed topology is shown in Fig. 20. A wired network
is emulated using a desktop PC running dummynet software on
FreeBSD 6.2 which enables link rates and propagation delays
to be controlled. The wireless AP and the server are connected
to the dummynet PC by 100Mbps Ethernet links. Routing
in the network is statically configured. Network management
is carried out using ssh over a wired control plane to avoid
affecting wireless traffic.

In the WLAN, a desktop PC is used as the AP and 12 PC-
based embedded Linux boxes based on the Soekris net4801
are used as client stations. All are equipped with an Atheros
802.11b/g PCI card with an external antenna. All nodes
run a Linux 2.6.21.1 kernel and a MadWifi wireless driver
(version r2366) modified to allow us to adjust the 802.11e
CWmin, CWmax and AIFS parameters as required. Specific
vendor features on the wireless card, such as turbo mode, rate
adaptation and multi-rate retries, are disabled. All of the tests
are performed using a transmission rate of 11Mbps (i.e., we
use an 802.11b PHY) with RTS/CTS disabled and the channel
number explicitly set. Channel 1 has been selected to carry
out the experiments. The testbed is not in an isolated radio
environment, and is subject to the usual impairments seen in
an office environment. Since the wireless stations are based on
low power embedded systems, we have tested these wireless
stations to confirm that the hardware performance (especially
the CPU) is not a bottleneck for wireless transmissions at
the 11Mbps PHY rate used. The configuration of the various
network buffers and MAC parameters is detailed in Table II.

Although both SACK enabled TCP NewReno and TCP
CUBIC with receiver buffers of 4096KB have been tested,
here we only report the results for the latter as CUBIC is
now the default congestion control algorithm used in Linux.
Default values of Linux Kernel 2.6.21.1 are used for all the

12

AP ServerWLAN

STA_1

STA_2

STA_11

STA_12

Dummynet......

Fig. 20. Topology used in experimental tests.

Parameters Values
Interface tx queue 2 packets
Dummynet queue 100 packets
MAC Preamble long
MAC data rate 11Mbps
MAC ACK rate 11Mbps
MAC retries 11

TABLE II
TESTBED PARAMETERS SUMMARY.

other TCP parameters. We put TCP ACK packets into a high
priority queue (we use the WME AC VO queue of MadWifi
as an example) which is assigned parameters of CWmin = 3,
CWmax = 7 and AIFS = 2. TCP data packets are collected
into a lower priority queue (we use the WME AC VI queue)
which is assigned CWmin = 31, CWmax = 1023 and
AIFS = 6. We use iperf to generate TCP traffic and results
are collected using both iperf and tcpdump.

B. Traffic Mix

We configure the traffic mix on the network to capture
the complexity of real networks in order to help gain greater
confidence in the practical utility of the proposed buffer sizing
approach. With reference to Fig. 20 showing the network
topology, we create the following traffic flows:

• TCP uploads. One long-lived TCP upload from each of
STAs 1, 2 and 3 to the server in the wired network. STAs
2 and 3 always use a fixed 400-packet buffer, while STA 1
uses both a fixed 400-packet buffer and the A* algorithm.

• TCP downloads. One long-lived TCP download from the
wired server to each of STAs 4, 5 and 6.

• Two way UDP. One two-way UDP flow from the wired
server to STA 7. The packet size used is 64 bytes and the
mean inter-packet interval is 1s. Another UDP flow from
the wired server to STA 8 with the used packet size of
1000 bytes and the mean inter-packet interval of 1s.

• Mix of TCP connection sizes. These flows mimic web
traffic4. A short TCP download from the wired server to
STA 9, the connection size of which is 5KB (approxi-
mately 3 packets). A slightly longer TCP download from
the wired server to STA 10 with a connection size of
20KB (approximately 13 packets) and another to STA 11
(connection size 30KB, namely, around 20 packets). A
fourth connection sized 100KB from the server to STA
12. For each size of these connection, a new flow is

4Note that in the production WLAN test, we used real web traffic.

started every 10s to allow collection of statistics on the
mean completion time.

C. Results

Fig. 21 shows example time histories of the buffer size
and occupancy at the AP with a fixed buffer size of 400
packets and when the A* algorithm is used for dynamic buffer
sizing. Note that in this example the 400 packet buffer never
completely fills. Instead the buffer occupancy has a peak value
of around 250 packets. This is due to non-congestive packet
losses caused by channel noise (the testbed operates in a real
office environment with significant interference, because there
are bluetooth devices and WLANs working in channel 1.)
which prevent the TCP congestion window from growing to
completely fill the buffer. Nevertheless, it can be seen that the
buffer rarely empties and thus it is sufficient to provide an
indication of the throughput when the wireless link is fully
utilized.

We observe that while buffer histories are very different
with a fixed size buffer and the A* algorithm, the throughput
is very similar in these two cases (see Table III).

One immediate benefit of using smaller buffers is thus a
reduction in network delays. Table IV shows the measured
delays experienced by the UDP flows sharing the WLAN with
the TCP traffic. It can be seen that for STA 8 both the mean
and the maximum delays are significantly reduced when the
A* algorithm is used. This potentially has major implications
for time sensitive traffic when sharing a wireless link with
data traffic. Note that the queuing delays from STA 7 are for
traffic passing through the high-priority traffic class used for
TCP ACKs, while the measurements from STA 8 are for traffic
in the same class as TCP data packets. For the offered loads
used, the service rate of the high-priority class is sufficient to
avoid queue buildup and this is reflected in the measurements.

The reduction in network delay not only benefits UDP
traffic, but also short-lived TCP connections. Fig. 22 shows the
measured completion time vs connection size for TCP flows.
It can be seen that the completion time is consistently lower
by a factor of at least two when A* dynamic buffer sizing is
used. Since the majority of internet flows are short-lived TCP
connections (e.g., most web traffic), this potentially translates
into a significant improvement in user experience.

Note that STA’s 2 and 3 in the A* column of Table III use
fixed size buffers rather than the A* algorithm. The results
shown are the throughput they achieve when other stations run
the A* algorithm. It can be seen that the A* algorithm does
not significantly impact STAs 2 and 3, confirming that A*
can support incremental roll-out without negatively impacting
legacy stations that are using fixed size buffers.

VII. RELATED WORK

The classical approach to sizing Internet router buffers is the
BDP rule proposed in [31]. Recently, in [5] it is argued that
the BDP rule may be overly conservative on links shared by a
large number of flows. In this case it is unlikely that TCP
congestion window sizes (cwnd) evolve synchronously and
due to statistical multiplexing of cwnd backoff, the combined

13

50 100 150 200 250
0

50

100

150

200

250

300

350

400

Time (seconds)

A
P

 b
uf

fe
r(

pk
ts

)

Buffer occupancy: fixed 400 pkts
Buffer occupancy: A*
Buffer size: A*

Fig. 21. Buffer size and occupancy time histories measured at the AP with
fixed 400-packet buffers and the A* algorithm.

Fixed 400 packets A*
Throughput of STA 1 1.36Mbps 1.33Mbps
Throughput of STA 2 1.29Mbps 1.30Mbps
Throughput of STA 3 1.37Mbps 1.33Mbps
Throughput of STA 4 0.35Mbps 0.41Mbps
Throughput of STA 5 0.39Mbps 0.39Mbps
Throughput of STA 6 0.52Mbps 0.42Mbps

TABLE III
MEASURED THROUGHPUT.

buffer requirement can be considerably less than the BDP.
The analysis in [5] suggests that it may be sufficient to size
buffers as BDP/

√
n. This work is extended in [25], [10] and

[33] to consider the performance of TCP congestion control
with many connections under the assumption of small, medium
and large buffer sizes. Several authors have pointed out that
the value n can be difficult to determine for realistic traffic
patterns, which not only include a mix of connections sizes and
RTTs, but can also be strongly time-varying [9], [32]. In [32],
it is observed from measurements on a production link that
traffic patterns vary significantly over time, and may contain
a complex mix of flow connection lengths and RTTs. It is
demonstrated in [9][32] that the use of very small buffers can
lead to an excessive loss rate. Motivated by these observations,

Fixed 400 packets A*
mean (max) mean (max)

RTT to STA 7 201ms (239ms) 200ms (236ms)
RTT to STA 8 1465ms (2430ms) 258ms (482ms)

TABLE IV
MEASURED DELAYS OF THE UDP FLOWS. STA 7’S TRAFFIC IS PRIORITIZED

TO AVOID QUEUE BUILDUP AND THIS IS REFLECTED IN THE
MEASUREMENTS.

5 20 30 50 100
0

5

10

15

Connection size (KB)

M
ea

n
co

m
pl

et
io

n
tim

e
(s

ec
on

ds
)

Fixed 400 packets
A*

Fig. 22. Measured completion time vs connection size. Results are averages
of multiple runs.

in [27] [12] a measurement-based adaptive buffer size tuning
method is proposed. However, this approach is not applicable
to WLANs since it requires a priori knowledge of the link
capacity or line rate, which in WLANs is time-varying and
load dependent. [34] introduces another adaptive buffer sizing
algorithm based on control theory for Internet core routers.
[24], [14] consider the role of the output/input capacity ratio
at a network link in determining the required buffer size. [6]
experimentally investigates the analytic results reported in [5],
[25], [10] and [33]. [11] considers sizing buffers managed with
active queues management techniques.

The foregoing work is in the context of wired links, and
to our knowledge the question of buffer sizing for 802.11
wireless links has received almost no attention in the literature.
Exceptions include [21] [23] [29]. Sizing of buffers for voice
traffic in WLANs is investigated in [21]. The impact of fixed
buffer sizes on TCP flows is studied in [23]. In [29], TCP
performance with a variety of AP buffer sizes and 802.11e
parameter settings is investigated. In [16] [17], initial inves-
tigations are reported related to the eBDP algorithm and the
ALT algorithm of the A* algorithm. We substantially extend
the previous work in this paper with theoretical analysis,
experiment implementations in both testbed and a production
WLAN, and additional NS simulations.

VIII. CONCLUSIONS

We consider the sizing of network buffers in 802.11 based
wireless networks. Wireless networks face a number of fun-
damental issues that do not arise in wired networks. We
demonstrate that the use of fixed size buffers in 802.11
networks inevitably leads to either undesirable channel under-
utilization or unnecessary high delays. We present two novel
buffer sizing algorithms that achieve high throughput while
maintaining low delay across a wide range of network con-
ditions. Experimental measurements demonstrate the utility of
the proposed algorithms in a real environment with real traffic.

The source code used in the NS-2 simulations and the
experimental implementation in MadWifi can be downloaded
from www.hamilton.ie/tianji li/buffersizing.html.

APPENDIX

In the production WLAN of the Hamilton Institute, the AP
is equipped with an Atheros 802.11/a/b/g PCI card and an
external antenna. The operating system is a recent Fedora 8
(kernel version 2.6.24.5). The latest MadWifi driver version
(0.9.4) is used, in which the buffer size is fixed at 250 packets.
The AP is running in 802.11g mode with the default rate
adaptation algorithm enabled (i.e., SampleRate [7]). All data
traffic is processed via the Best Effort queue, i.e., MadWifi
is operating in 802.11 rather than 802.11e mode. A mix of
Windows/Apple MAC/Linux laptops and PCs use the WLAN
from time to time.

REFERENCES

[1] IEEE 802.11 WG. International standard for information technology –
local and metropolitan area networks, part 11: wireless LAN MAC and
PHY specifications, 1999.

14

[2] Part 11: wireless LAN medium access control (MAC) and physical layer
(PHY) specifications: Medium Access Control (MAC) Quality of Service
(QoS) Enhancements, IEEE 802.11e/D8.0, Feb. 2004.

[3] S. A. Mujtaba, et. al., “TGn Sync Proposal Technical Specification,”
www.tgnsync.org, IEEE 802.11-04/889r6, May 2005.

[4] Online, madwifi-project.org.
[5] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”

in Proc. of ACM SIGCOMM, 2004. pp. 281–292.
[6] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon,

“Experimental Study of Router Buffer Sizing,” in Proc. of IMC, Oct. 2008.
[7] J. Bicket, “Bit-rate Selection in Wireless Networks,” MSc. Thesis, MIT

2005.
[8] C. Chatfield, The Analysis of Time Series, An Introduction, CRC Press

2004.
[9] A. Dhamdher and C. Dovrolis, “Open Issues in Router Buffer Sizing,” in

Computer Communication Review, Jan. 2006.
[10] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,

“Routers with Very Small Buffers,” in Proc. of INFOCOM, Dec. 2006.
[11] D. Y. Eun and X. Wang, “Achieving 100% Throughput in TCP/AQM

Under Aggressive Packet Marking With Small Buffer,” IEEE/ACM Trans-
actions on Networking, vol. 16, no. 4, pp. 945 - 956, Aug. 2008.

[12] C. Kellett, R. Shorten, and D. Leith, “Sizing Internet Router Buffers,
Active Queue Management, and the Lur’e Problem,” in Proc. of IEEE
CDC, 2006.

[13] K. Kumaran, M. Mandjes, A.L. Stolyar, “Convexity Properties of Loss
and Overflow Functions,” Operations Research Letters, vol. 31, no.2, pp.
95-100, 2003.

[14] A. Lakshmikantha, R. Srikant, and C. Beck, “Impact of File Arrivals
and Departures on Buffer Sizing in Core Routers,” in Proc. of Infocom,
Apr. 2008.

[15] D. Leith, P. Clifford, D. Malone, and A. Ng, “TCP Fairness in 802.11e
WLANs,” IEEE Communications Letters, vol. 9, no. 11, Jun. 2005.

[16] T. Li and D. Leith, “Buffer Sizing for TCP Flows in 802.11e WLANs,”
IEEE Communications Letters, Mar. 2008.

[17] T. Li and D. Leith, “Adaptive Buffer Sizing for TCP Flows in 802.11e
WLANs,” Chinacom 2008.

[18] T. Li, Q. Ni, D. Malone, D. Leith, T. Turletti, and Y. Xiao, “Aggregation
with Fragment Retransmission for Very High-Speed WLANs,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 591-604, Apr. 2009.

[19] D. Malone, K. Duffy, and D.J. Leith, “Modeling the 802.11 dis-
tributed coordination function in non-saturated heterogeneous conditions,”
IEEE/ACM Transactions on Networking, vol. 15, no. 1, Feb. 2007.

[20] D. Malone, D.J. Leith, A. Aggarwal, and I. Dangerfield, “Spurious TCP
Timeouts in 802.11 Networks,” WiNMee, Apr. 2008.

[21] D. Malone, P. Clifford, and D. J. Leith, “On Buffer Sizing for Voice
in 802.11 WLANs,” IEEE Communications Letters, vol. 10, no. 10, pp
701–703, Oct. 2006.

[22] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Trans. Netw., vol. 3, no. 3, pp. 226-244, Jun. 1995.

[23] S. Pilosof, et. al., “Understanding TCP fairness over Wireless LAN,” in
Proc. of IEEE INFOCOM 2003.

AP Test laptop

10 m

v

Fig. 23. WLAN of the Hamilton Institute. Stars represent users’ approximate
locations.

[24] R. Prasad, C. Dovrolis, and M. Thottan, “Router Buffer Sizing Revisited:
The role of the input/output capacity ratio,” IEEE/ACM Transactions on
Networking, to appear.

[25] G. Raina and D. Wischik, “Buffer Sizes for Large Multiplexers: TCP
Queueing Theory and Instability Analysis,” in Proc. of EuroNGI, Jul. 2005.

[26] R. Shorten, F. Wirth, and D. Leith, “A Positive Systems Model of TCP-
Like Congestion Control: Asymptotic Results,” IEEE/ACM Transactions
on Networking, vol. 14, no. 3, pp. 616–629, Jun. 2006.

[27] R. Stanojevic, C. Kellett, and R. Shorten, “Adaptive Tuning of Drop-Tail
Buffers for Reducing Queueing Delays,” IEEE Communications Letters,
vol. 10, no. 7, pp 570–572, Jul. 2006.

[28] D. Tang and M. Baker, “Analysis of A Local-Area Wireless Network,”
in Proc. of ACM MobiCom, Aug. 2000.

[29] M. Thottan, and M. C. Weigle, “Impact of 802.11e EDCA on mixed
TCP-based applications,” in Proc. of IEEE WICON 2006.

[30] O. Tickoo and B. Sikdar, “On the Impact of IEEE 802.11 MAC on
Traffic Characteristics,” IEEE J. on Selected Areas in Commun., vol. 21,
no. 2, Feb. 2003, pp. 189-203.

[31] C. Villamizar and C. Song, “High Performance TCP in ANSNET,” ACM
Computer Communication Review, vol. 24, no. 5, pp. 45–60, Oct. 1994.

[32] G. Vu-Brugier, R. Stanojevic, D. Leith, and R. Shorten, “A Critique of
Recently Proposed Buffer-Sizing Strategies,” ACM Computer Communi-
cation Review, vol. 37. no. 1, Jan. 2007.

[33] D. Wischik and N. McKeown, “Part I: buffer sizes for core router,” ACM
Computer Communication Review, vol. 35, no. 3, Jul. 2005.

[34] Y. Zhang and D. Loguinov, “ABS: Adaptive Buffer Sizing for Hetero-
geneous Networks,” in Proc. of IWQos, Jun. 2008.

[35] Z. Zhao, S. Darbha, and A. L. N. Reddy, “A Method for Estimating the
Proportion of Nonresponsive Traffic At a Router,” IEEE/ACM Transactions
on Networking, vol. 12, no. 4, pp. 708–718, Aug. 2004.

PLACE
PHOTO
HERE

Tianji Li received the M.Sc. (2004) degree in
networking and distributed computation from École
Doctorale STIC, Université de Nice-Sophia Antipo-
lis, France, and the Ph.D. (2008) degree from the
Hamilton Institute, National University of Ireland
Maynooth, Ireland, where he is currently a research
fellow. He is interested in improving performance
for computer and telecommunication networks.

PLACE
PHOTO
HERE

Douglas Leith graduated from the University of
Glasgow in 1986 and was awarded his PhD, also
from the University of Glasgow, in 1989. In 2001,
Prof. Leith moved to the National University of
Ireland, Maynooth to assume the position of SFI
Principal Investigator and to establish the Hamilton
Institute (www.hamilton.ie) of which he is Director.
His current research interests include the analysis
and design of network congestion control and dis-
tributed resource allocation in wireless networks.

PLACE
PHOTO
HERE

David Malone received B.A.(mod), M.Sc. and Ph.D.
degrees in mathematics from Trinity College Dublin.
During his time as a postgraduate, he became a
member of the FreeBSD development team. He
is a research fellow at Hamilton Institute, NUI
Maynooth, working on wireless networking. His
interests include wavelets, mathematics of networks,
IPv6 and systems administration. He is a co-author
of O’Reilly’s ”IPv6 Network Administration”.

