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Abstract We introduce a mobile spatial interactive

application that uses a combination of a GPS, inertial

sensing, gestural interaction, probabilistic models and

Monte Carlo sampling, with vibration and audio feedback.

This system allows the probing or querying of targets in a

local area, based on a model of the local environment and

specific context variables of interest, to enable a rich,

embodied and location–aware spatial interaction. An

experiment was conducted to investigate how spatial target

selection at different distances, target separations and tar-

get widths is affected by a system with added ‘typical’

noise characteristics. Results showed that the successful

selection of targets in the virtual environment is maximised

with a combination of high angular separation and angular

width.

Keywords GPS Navigation � Uncertainty �Monte Carlo �
Feedback � Audio � Tracking � Probabilistic display �
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1 Introduction

Mobile spatial interaction is an emerging field prompted by

the growth of increasingly powerful and multi-functional

mobile devices. The provision of context or location-aware

information while ‘on the move’ has become increasingly

relevant in recent years. This information has traditionally

been delivered in a static, visual way via tools such as

Yahoo! Local or Google Maps. The ability to interact with

this data in a rich and natural manner is now possible and

with the incorporation of inertial sensing into mass market

devices a wealth of opportunity has emerged for the

development of applications with a dynamic, intuitive,

natural, flowing and embodied style of interaction. Meth-

ods of interaction with the mobile internet are currently

limited to traditional screen and button-based techniques.

These techniques are visually demanding, time consuming,

not contextually sensitive and can become hazardous

in situations where the user is required to focus their

attention on more safety critical tasks. Instead, techniques

that take more advantage of the users other senses (such as

the audio or touch senses) are considered more appropriate

for systems to be used whilst ‘on the move’ [1–4]. And

with the introduction of gesture-based systems to the

commercial market, such as the Nintendo Wii or the

Samsung SCH-S310 mobile phone, making gesture-based

techniques more socially acceptable, these techniques are

becoming increasingly relevant in this domain [5, 6].

Cheverst et al. [7] introduced the notion of information

push versus information pull for location-aware systems. A

‘pull’ system is one where the emphasis is on the user to

decide when context-aware information is presented to

them. They can then pull this information to their device. A

‘push’ system, on the other hand, is based on information

being presented automatically to the user, which is trig-

gered by contextual events. The system we describe here

takes the form of a highly interactive ‘push-pull’ system

with elements of both but with slightly more emphasis on

the ‘pull’ aspect. Our system both empowers and provides

a sense of control to the user as they probe the geo-coded

information in their immediate environment and actively
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pull information from their surroundings, rather than

relying on the system to push the information to them. This

system differs from other context-aware applications in

that we can directly interact in an ‘eyes-free’ manner with

the hybrid physical/virtual environment and any informa-

tion that may be placed there, eliminating the user’s

dependence on visual feedback from the device screen.

We first quantify the main sources of error and uncer-

tainty that can be detrimental to this kind of system,

focussing primarily on the effects of bearing and positional

error. We introduce a framework which deals with this

uncertainty and provide the first steps in quantifying the

effects of bearing based uncertainty on a pointing task

given varying target sizes and separations.

2 Related work

The representation and sensing of context is an important

but challenging area of research for location-aware mobile

applications. Some of the earliest work on mobile context-

aware computing includes that of Abowd et al. [8] who

describe the construction of a context-aware tour guide.

Similarly Feiner et al. [9] describe a self-contained back-

pack-based system that includes magnetometers and

accelerometers for head orientation tracking and a differ-

ential GPS for location information. Cheverst et al. [10]

also describe an intelligent electronic tourist guide,

GUIDE, which was built to overcome many of the limi-

tations of the traditional information and navigation tools

available to city visitors. Their system combines mobile

computing technology with a positioning system to present

city visitors with information tailored to both their personal

and environmental contexts. Although these ‘‘backpack’’

based outdoor systems have been successful proof-of-

concept prototypes, they lack the convenience of a fully

hand-held system.

Although GPS is the most often used positioning system

for location-aware applications, there exist a number of

systems which use other forms of positioning technology

such as Wi-Fi or GPRS cell based positioning. Drozd et al.

[11] describe a game for mobile phones, Hitchers, that

makes use of cellular positioning. Players create digital

hitch hikers, giving them names, destinations and questions

to ask other players, and then drop them into their current

phone cell. Players then search their current cell for hit-

chers, pick them up, answer their questions, carry them to

new locations and drop them again. One example of a

system that combines the use of GPS, Wi-Fi and GSM cell

positioning to provide a position estimate is Navizon [12],

detailed in [13]. This system uses GPS to build a database

of WiFi and GSM sources through war driving and a

position is provided to a user who queries this database

with information about which Wi-Fi points and cell towers

with which they are currently in contact. Such hybrid

approaches lead to variable accuracy as, for example, we

move from one form of positioning to another and such

systems can benefit from interfaces designed with this in

mind. Kontkanen et al. [14] describe probabilistic approa-

ches to locationing in wireless radio networks and

demonstrate the utility of a probabilistic modelling

framework in solving location estimation problems. An

example use of this kind of approach is given in [15],

which shows that it is possible to derive complex behav-

ioral patterns and device location from collected Bluetooth

data.

The development of smaller and more powerful devices

has led to the emergence of an increasing number of

applications on hand-held devices for truly mobile context

and location aware computing. Some completely handheld

applications make use of the screen and cameras available

on these devices. Baillie et al. [16] describe a context-

aware application in a fully contained handheld system

which combines GPS and attitude information in order to

visualise a virtual image of a building in the present or past

on screen by simply pointing their device at that building.

There are also a number of systems using mobile devices,

that aim to attach digital information to locations in the

real-world. E-grafitti [17] is a context-aware application,

which senses a user’s location and displays notes depen-

dent on that location. They conduct a field study with 57

participants, finding the idea of location-specific notes was

something that appealed to users. Espinoza et al. [18]

describe a similar system, GeoNotes, arguing that location-

based systems must allow users to participate as content

providers in order to achieve a social and dynamic infor-

mation space. Their system attempts to blur the boundary

between physical and digital space while at the same time

striving to socially enhance digital space by letting users

leave virtual messages, which are linked to specific geo-

graphical positions.

The exposure of locally relevant information has

become an active area of research. Rantanen et al. [19]

describe their novel radar style interface for accessing

messages placed in the real world to create an interface that

‘‘strives to create an isomorphic representation of the vir-

tual content relative to the directly observable physical

world’’. As a consequence they remove the need for a map

of the locality and provide the user with an intuitive

graphical representation of information in that area, unlike

the systems described before which use a list-based inter-

face and present a much lower positional resolution. An

initial field trial encouragingly indicates that location-based

aspects have a role to play in facilitating mobile commu-

nication. Simon and Fröhlich [20] describe a system that

displays locally relevant wikipedia articles using a GPS
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equipped PDA and Jones et al. [21, 22] have introduced a

handheld system designed to expose to users what other

people have searched for in a particular location with the

aim of providing useful insights into the ‘character’ of that

location or context. Interaction with this information is a

new area of research. Fröhlich and Simon describe their

GeoPointing [23] system that allows a user to point at an

object and discover information about that object. They

describe a study conducted with ‘real world’ conditions

highlighting the problems associated with GPS uncertainty

in differing contexts. Faisal [24] describes early work on

algorithms for pointing error correction. He develops an

efficient error compensation model to reduce the discrep-

ancy between the line-of-sight of the eye and the pointer

direction.

There are significant social and safety advantages to a

non-visual, eyes-free display in a mobile context where

visual attention is likely to be directed towards tasks not

involving the device display. As such, the utility of the

navigation system is greatly enhanced by the accurate

presentation of the feedback in the audio and haptic

modalities. This is also important in a social sense since it

allows people to concentrate more on social interactions

rather than focussing their attention on a small screen.

There are context-aware augmented reality systems which

focus completely on the audio sense, leaving a user’s visual

attention free. Bederson [25] describes a prototype auto-

mated tour guide which superimposes audio on the world

based on a user’s location. Users in a museum may hear

information about exhibits in their local vicinity using a

hand held device and sensors located in the ceiling of the

museum. Another example is the GuideShoes [26] appli-

cation, a shoe-based GPS navigation system, which

consists of a pair of shoes, equipped with a GPS and CPU.

They describe the use of emons, short musical ‘‘emotional

cues‘‘, to guide a user to their desired location. Similarly

Stahl [27] describes a system designed to guide customers

round a zoo using spatial audio. The audio is sourced in the

direction of the enclosure of a particular kind of animal

where the sound of that animal can be heard. He finds that a

‘lightweight’ navigational aid can be sufficient for way-

finding tasks in certain environments. Increasingly music is

being used as a mechanism for guiding users with context-

aware applications. Work on music-based guidance

includes the gpsTunes [28, 29] system where initial testing

of a prototypical system had shown that it was possible for

users to navigate in the real world using a combined audio/

GPS player to aid navigation along specified trajectories.

Similar systems include Melodious Walkabout [30] and

OnTrack [31]. Other work which utilises music as a tool for

influencing a user in this mobile domain was conducted by

Oliver et al. [32] who constructed a system that takes

advantage of the influence of music in exercise

performance, enabling users to more easily achieve their

exercise goals. It works by selecting music depending on a

user’s jogging speed and on their current heart rate. Like-

wise, Elliott et al. [33] describes a context aware music

player, which makes real time choices of music based on

user pace.

3 Uncertainty

The issue of uncertainty is an important one for mobile,

instrumented, continuously sensing systems. The kind of

system we present here is susceptible to a range of

uncertainties from a number of sources. These sources can

be broken into two main categories. ‘Human sources’ and

‘sensor sources’. Sensor sources can include the fact that

we are required to sense things indirectly, such as the

heading of the device from magnetometers or the tilt of the

device from accelerometers. Any disturbances to the data

from these sensors can in turn affect the estimates inferred

from them. Magnetic anomalies can cause deviations in

heading estimates and significant movements (e.g., gait,

muscle tremor, vehicle motion), sensed by the accelerom-

eters, can affect the estimation of the tilt of the device.

There is also considerable and varying uncertainty from the

kind of positioning system we choose to use. For example,

there are significant and well documented problems with

the spatially varying uncertainty arising from shadowing

and reflection artifacts in GPS fixation [34]. Seager et al.

[35] conducted a study, designed to assess the usefulness of

the GPS position information displayed by a commercial

GPS navigation system, which found that during a navi-

gation task users perceived the position information to be

‘‘at best, redundant and, at worst, confusing’’. This was

thought to be directly related to the inaccuracy of the

software position estimate, caused by lags with the GPS

data and inaccuracy with the map matching algorithm.

Likewise wireless positioning systems can display com-

plicated behaviour and so an important design decision is

how much of this inaccuracy to present to the user so that

they can appropriately modify their behaviour to improve

their location accuracy. In the GPS case, Seager advocates

the explicit display of uncertainty to the user in the form of

an icon with variable size.

Human sources of error are physiological in nature. Any

purposeful movement generated from the human body is

inherently variable and this affects the range of readings

measured on the sensors and the accuracy with which we

can define one particular movement. Our system is also

susceptible to tremor from our muscles, which injects a

further level of uncertainty. Morrison and Keogh [36],

whilst investigating the effects of tremor in goal-directed

pointing tasks found that the influence of tremor increased
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significantly for tasks that required more accuracy. These

kind of systematic physiological effects are something that

must be considered when designing systems of this nature.

3.1 Heading uncertainty

Our system makes use of bearing data calculated from a

combination of integrated magnetometers and accelerom-

eters. The earth has a magnetic field that resembles that of a

simple bar magnet with field lines originating at the south

pole and and terminating at the north pole. The field lines

have slightly varying strength and direction at different

points around the earth but at a local level we can think of

these fields as being constant and use them as a reference

for the direction our sensor is pointing, given a suitable

calibration. Determination of the compass heading is

achieved by first rotating the magnetometer data into the

horizontal plane, that is, the plane perpendicular to the

Earth’s gravitational vector, using accelerometer data then

using this magnetometer data to calculate a heading value

for the device [37]. Most systems would assume complete

accuracy from this heading estimate but in reality any

measured uncertainty in the magnetometer and acceler-

ometer data is propagated through to the final heading

calculation meaning that we do not have a pinpoint accu-

rate heading measurement with which to work.

Figure 1 illustrates how any uncertainty in the calcu-

lated compass heading is propagated as we project into the

distance. In an ideal world there would be no noise from

the sensor and h in Fig. 1 would be 0. It is then simple to

define some distance d and be completely certain about the

point in space at which at we are aiming. In the real world

we are faced with uncertainties in the calculated compass

heading. So, using basic trigonometry, it can be shown that

if we point at an object with an uncertainty of h in the

compass heading estimate, this corresponds to a possible

discrepancy at distance d1 of r1 = d1tan(h)) and at distance

d2 of r2 = d2tan(h).

3.1.1 Illustration

As an example of how this uncertainty in the heading

estimate varies between users, a simple pointing task was

devised whereby five different participants were asked to

point at two targets 5 times for 25 s each time. Both targets

were identical small lamp posts situated on campus. Target

1 was positioned approximately 15 m away and target 2

was positioned approximately 80 m away. Figure 2a shows

a histogram for the measured bearing for a sensor sitting on

a stable platform (i.e., not in a human hand), Fig. 2b and c

shows histograms for two of the five participants both for

the close and far targets. As we can see from Fig. 2a, in a

situation where the sensor is stationary and undisturbed we

still observe a standard deviation of 0.67� on the heading

estimate. The standard deviation over all the participants

for the close target task was 2.32� and for the far target task

was 2.04�. At a distance of 15 m this measured standard

deviation corresponds to a maximum measurement error of

15tan(2ph/360) = 0.60m and at a distance of 80 m this

corresponds to a maximum error of 80tan(2ph/360)

= 3.24 m. So obviously if this uncertainty is not treated

appropriately it can have detrimental effects on the use of

this kind of system.

Data was also recorded for a walking task. The device

was pointed at the far target as a user walked towards it for a

slow walk and a fast walk. For the walking task the mea-

sured standard deviation was 9.54� for the slow case and

27.48� for the fast case, which corresponds to a spread of

13.44 m for the slow case (Fig. 3a) and 41.6 m for the fast

case (Fig. 3b) at a distance of 80 m. This level of uncer-

tainty can render this kind of system unusable. It is clear

though that accuracy can be increased significantly if the

user simply stops walking and if this uncertainty is fed back

this will be clear to the user. It is possible that, with

appropriate filtering of foot steps from the accelerometer

signal, that uncertainty whilst walking can be reduced sig-

nificantly. Figure 4 shows that it is possible to average the

received bearing signal over a users gait cycle in order to

reduce the uncertainty in the bearing signal whilst walking.

3.2 Position uncertainty

For any location-aware system, uncertainty and inaccuracy

in the estimated position can be critical to the effective use

and acceptance of the system. GPS determined locations

can be very uncertain in situations where a user is in a built

up area or at a high latitude, for example. For a discussion

of the potential error sources in GPS see [38]. This inac-

curacy is also apparent if we move to a different kind of

positioning system such as GSM cell triangulation or

Wi-Fi-based positioning. These systems display consider-

able variability in the level of uncertainty in their position

θ

r2

r1

d2

d1

Fig. 1 Accuracy in the point of

interest is decreased for

increasing h, the measured

uncertainty on our heading

estimate and d, the distance to

the point of interest
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estimates and any movement between two different kinds

of positioning system, for example, moving from an out-

door positioning system with fairly high resolution

estimates to an indoor positioning system with fairly low

resolution estimates, can cause sudden and large changes in

the measured uncertainty. Figure 5 shows the estimated

position for device over a 15 min period in very good

conditions on the top of a building with a mean hdop value

of 0.82. As we can see from Fig. 5, even with good con-

ditions in a relatively unobstructed environment the

standard deviation of the estimated position from the GPS

is 1.46 m in the latitude estimate and 0.96 m in the lon-

gitude estimate. Although more than sufficient for motor

vehicle and aircraft applications, this likely to disrupt any

pedestrian based location-aware system that requires the

kind of detailed interaction we desire and places constraints

on target placement and separation. It is unlikely though

that in typical use, a user is going to have such good

conditions. Figure 6 shows GPS data logged in the case

where the GPS antenna is attached to the side of the same

building, effectively shadowed from a number of potential

satellites.

In this case the standard deviation of the estimated

position from the GPS is 3.95 m in the latitude coordinate

and 13.55 m in the longitude coordinate in what are likely

to be much more typical conditions for this kind of system.
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It is clear then that the appropriate treatment of this

uncertainty is essential.

4 A probabilistic approach

In our system we explicitly use the display of uncertainty to

assist the user in their navigation of and interaction with the

local environment. Our display fully represents all esti-

mated uncertainty in the prediction of which areas in the

local environment the user may be interested in, and where

and how they are likely to move to them. This is achieved

in a probabilistic way via the combination of a model of the

local environment, knowledge of our sensor noise and

Monte Carlo sampling.

Using knowledge of the main sources of uncertainty and

constraints in the local environment, it is possible to infer

potential future user positions via Monte Carlo simulations.

The inference mechanism is coupled with feedback to give

the user a display of the distribution of potential future

states or positions providing appropriate information to

make a reasonable choice of actions. Simply approximating

our position in the local area with a single best estimate, as

is commonly done in current navigation software, gives a

user unreasonable confidence in the accuracy of a system

and prevents the interactor from choosing an optimal
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strategy for dealing with the true state of the world.

Unrealistically precise feedback can make smooth, stable

control difficult; this ‘‘jumpy’’ interaction is familiar to

users of conventional GPS devices where the postulated

location may sporadically shift in an unpredictable manner.

Displaying the position density, which incorporates the

best estimate of the uncertainty of the system, means that

the user can appropriately simplify their behaviour when

limited information is available [39], achieving a graceful,

interpretable degradation in interaction performance. For

example, if a user points at a target and there is a sudden

jump in the estimated position a loss of feedback might

lead to a loss of trust in the system.

The major novel feature of this system is the browsing

interface which facilitates active probing of the locality.

This is achieved by projecting possible paths into the future

from some location along a given heading. As the infor-

mation from our sensors is uncertain, any prediction by the

system of where in the locality we are interested will inherit

this uncertainty. Ideally, an estimate of a user’s area of

interest or potential future locations would be represented as

a probability density function over the whole navigable

space, taking into account available information such as

areas in the locality where the user would usually move to

or has moved to in the past, or sensor noise models, for

example. This function, however, is generally extremely

complex for non-trivial landscapes, and no solution of

simple form is available. Instead, we approximate using a

set of samples drawn from the density, known as Monte

Carlo sampling [40]. It is much more computationally

efficient to draw such approximating samples than it is to

directly evaluate the full probability density function.

For our browsing task, a simple algorithm for sampling

future possible trajectories is as follows:

• Draw samples x0... xS from a distribution e around the

current state. This distribution represents the sensor

uncertainty at the initial position (e.g., from the shadow

maps described later).

• For each step t until some horizon T:

– xs
t = xs

t-1 + h + l(xs
t) + r(xs

t) where r(xs
t) repre-

sents the model noise at the new point xs
t (Gaussian,

in our examples), and l(xs
t) represents the derivative

of the likelihood map at that point. h is the heading

from our magnetometers. r(xs
t) can be a constant

value or a more complex function; for example,

from a map indicating the resolution or quality of

the likelihood map.

• Display the samples xs
T

This is similar to the Hamiltonian (or hybrid) Monte Carlo

sampling process; Chap. 30 of MacKay [40] has further

details.

4.1 User defined context landscapes

The process described above can be imagined as a beam of

particles flowing out from around an initial state, probing

into likely destinations or areas of interest. A straightforward

propagation of particles through the locality in time would

lead to a fairly simple distribution of points at the time

horizon, which would be unlikely to model possible user

destinations effectively. It is extremely unlikely, for exam-

ple, that the user would be inside a solid wall at any point in

the future or at the top of a mountain in the next 5 min. This

straightforward propagation of the particles also takes no

account of the varying uncertainty in sensor measurements.

To represent these varying positional likelihoods we use

a likelihood map, giving a probability p of being in a par-

ticular position (as measured by the sensors) in the mapped

area. An example of such a map is shown in Fig. 7; in this

example the buildings have very low likelihood and there is

increased likelihood around pathways on the map. It is also

possible for particles to flow along walls and round the

corners of buildings, channeling themselves into areas of

increased likelihood. In this example, the landscape is

generated by hand from an existing map, but such land-

scapes can also, for example, be derived automatically from

digital photogrammetry maps or generated from a users

general behaviour or location history.

Representation of uncertainty in the measured position

can take the form of occlusion maps generated from

knowledge of the geometry of potential occlusions(for

example, see [41]). As an example we have constructed a

simple static occlusion map with a raytracing technique

based on currently locked satellite positions. An example

combined sensor uncertainty map resulting from estimated

shadow positions is shown in Fig. 8.

It is possible to include these sensor uncertainty maps in

the sampling algorithm by modulating the diffusion

parameter e at each time step by the calculated sensor

uncertainty at the point. The total sensor uncertainty will be

a combination of the map input and accuracy reading

produced by the GPS device itself. The accuracy of a GPS

fix is also computed in the sensor hardware in real-time.

This includes the number of satellites which have locks and

more specific data giving the fix quality. For example, the

‘‘horizontal dilution of precision’’ provides us with a

scaling factor for the current uncertainty from 1 to 50.

These values are combined with the a priori sensor maps to

obtain a certainty estimate for the current location.

In the simplest way the propagation algorithm can be

modified to take account of these maps simply by removing

particles at a rate inversely proportional to their likelihood

given their current position and the sensor uncertainty at that

point. For increased computational throughput; however,

our implementation instead modifies the dynamics of the
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particles such that they are deflected away from regions

which are less likely or more diffuse, causing the samples to

‘‘flow’’ across the surface (i.e., by following the gradients of

the map much like a ball bearing on an uneven surface). This

produces a browsing system that channels Monte Carlo

samples towards regions of increased likelihood, following

traversable paths and avoiding obstacles in a natural manner.

5 The gpsTunes system

The current system runs on a Samsung Q1 Ultra Mobile PC

with a bluetooth connection to a sensing hardware

accessory for kinaesthetic expression (SHAKE) inertial

sensing pack as shown in Fig. 9a. This device contains the

magnetometers, accelerometers and vibration device that

we required for this study as well as gyroscopes, capacitive

sensing and an analog input for external sensors. Users

interact with the system by scanning the local environment

with the SHAKE device. The direction in which the user is

pointing is taken from the compass heading. Accelerome-

ters are used to monitor the orientation (pitch and roll) of

the device with respect to gravity, which we can use to

control the level of ‘look-ahead’. If the user wishes to look-

ahead into the space in front (effectively projecting the

Monte Carlo predictions further ahead in time) they tilt the

device forward. If they wish to bring the predictions back

to their current position they tilt the device back again,

effectively pulling the device to their chest as illustrated in

Fig. 9b. By scanning via a variable time horizon the in-

teractor can effectively project their current location into

the distance (as with user 2 in Fig. 10) to examine any

objects of interest or bring the particle cloud in close (as

with user 1 in Fig. 10) to examine nearby objects. A user

can obtain information about the space around them by

listening and feeling for impacts that we can intuitively

think of as being generated by the particles impacting with

targets in our virtual environment (analogous to ball

bearings hitting a surface. Different kinds of surface pro-

duce different impact sounds). We can also listen for slight

changes in the audio or haptic texture which may be gen-

erated differently for different contextual areas. This way

Fig. 7 Particles flowing around

the campus likelihood map.

Higher red values indicate

lower probability. The particle

paths are illustrated in blue; the

samples at the time horizon are

highlighted as bright green dots.

From top left to bottom right:
top-left shows particles on

likelihood map which is a model

for walking behaviour and top-
right shows the effect of a more

constrained map which, in this

case, models a user on a bike,

where particles tend to flow

along available paths. Bottom-
left and bottom-right show the

effect of the GPS shadow map

on the propagation; bottom-left
is a point outside of shadow,

while bottom-right is a nearby

point with heavy shadowing.

The increased dispersion in the

more shadowed case is clear

Fig. 8 Estimated GPS shadows for the test campus region. Shadows
are computed via a raytracing algorithm, based on satellite azimuth/

elevation and an estimated height map for buildings in the area.

Darker regions have less satellite coverage
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of interacting enables a user to obtain information from the

area around them without the explicit need to move to that

particular area as is the case with most location-aware

systems. A user of our system can effectively say ‘‘what

would I feel if I was over there?’’. This way of thinking

allows users to take a much more active, embodied and

empowering approach to the querying and retrieval of

information from their current context that would be

extremely difficult to implement in a responsive manner

without uncertain feedback.

6 Scenarios

There are a number of applications for this kind of system.

The predictive and probabilistic nature opens up a wealth

of opportunity for a more advanced form of route planning

or map matching, for example. We choose to focus though,

on the use of this system for mobile spatial interaction, as a

tool for interacting, probing and querying information in

the local environment. The notion of egocentric and exo-

centric interfaces becomes important here. Marentakis and

Brewster [42] in their work with a spatial audio interfaces,

define an egocentric display to be one where the sound

position is fixed to the user and remains unchanged no

matter what the direction of the user, whereas in an exo-

centric interface, sound position is fixed to the world and is

updated in real time based on the direction of the user

relative to the sounds. In an egocentric setting we have the

ability to build highly personal spatial interfaces. Exocen-

tric spatial interfaces on the other hand are much more

open and expansive. An exocentric interface, in this con-

text, becomes a place to store information in specific

locations or discover information left by other people,

creating new opportunities for the exploration and analysis

of the social mechanisms for this kind of interaction or

sharing of experiences.

The egocentric version of this system effectively

becomes a highly personal eyes-free desktop for the user

with his personal items stored on and around his body, a

similar concept to [6], as in shown Fig. 11a. We may

imagine a situation where a user is out and receives a text

message. He points his device at where he usually keeps his

text messages and the message appears. He then decides

Fig. 9 a The equipment used to

run the system. Samsung Q1

UMPC and the SHAKE inertial

sensing device. b Tilting the

device forward looks into the

distance (effectively projecting

the Monte Carlo predictions

further ahead in time as

illustrated in the inset). Tilting

the device back again, or pulling

it towards the chest, bring the

predictions back to the current

position

Fig. 10 User 1 takes a passive

approach to interacting with the

density with particles spread

around the body. User 2 takes a

more active and embodied

approach to interacting with the

density and any objects, which

that ‘contextual’ density may

contain. Interacting with

different kinds of density can

produce different kinds of

response from the system.

Fig. 11 a A user has a number of objects arranged around himself

which he can point at to activate. The objects are arranged in a

layered fashion creating more space. b The local area has a number of

objects left there by other users with which it is possible to interact
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that he would like to listen to some music so he points the

device in the direction he usually keeps his mp3 player.

This is a basic example but we also have here the oppor-

tunity to create a layered-ego system where by the user can

create increasingly large rings of items around his body, all

of which are selectable with skillful use of the system.

In an exocentric interface the user places items in spe-

cific locations in the world around him. As illustrated in

Fig. 11b, the user may interact with, for example, the

geocoded wikipedia article about the building ahead of

him. He may interact with the object containing informa-

tion about that building or look at some photographs left

outside the building by other users. He may even get the

attention of his friend who is close by or browse some

music files that have been left in that specific location. This

is effectively a form of geo-coded Internet for users to

interact with whilst mobile and paves the way for a new

kind of highly interactive mobile internet. Another appli-

cation of this kind of system is for the provision of

information in public spaces, at a train station, for example.

A user could access timetable or train information just by

pointing their device at the train station, or a specific part of

the train station as soon as they were in range. They could

then negotiate their way through a hierarchical system to

find out information about their specific train. Just as train

stations use specific colouring and fonts for signage, the

kind of feedback provided in this context would be specific

to that train station context.

7 Experiment

7.1 Background

We have shown previously that the explicit display of

uncertainty to a user can significantly improve their inter-

action with the local environment when compared to a

system that assumes complete accuracy [43]. So what

limits do ‘typical’ noise characteristics place on the overall

system design both in a high uncertainty walking situation

and a lower uncertainty still situation? How far apart can

we place targets and what size can we make these targets in

the virtual environment without it becoming impossible to

accurately resolve more than one target? And what effect,

if any, does the distance of a target have on user

performance?

7.2 Set-up

To answer these questions an experiment was conducted

with eight participants. Each participant was given a brief

introduction to the system with a visual example and were

allowed to practice for a number of minutes before the trial

began. The trial took place outdoors and involved users

remaining in a static position (with simulated noise added

to this position in order to mimic the effects of an uncertain

position estimate), scanning the area ahead for three dif-

ferent targets with each target having it’s own distinct

impact sound, described to the users as ‘pop’, ‘plastic’ and

‘metal’. This set-up is illustrated in Fig. 12. The typical

noise characteristics measured in Sect. 3 for both the

walking and standing still conditions were added to the

system, a standard deviation of 20.41� for the high uncer-

tainty trial and a standard deviation of 2.3� for the lower

uncertainty trial were added to the heading estimate and a

standard deviation of 3 m was added to the GPS position

estimate.

The experiment was conducted in two main parts (eight

participants for each). In part 1a, participants were asked to

complete two acquisitions of each target with the measured

low uncertainty for four different distances, d (7.5, 12.5,

17.5 and 22.5 m corresponding to tilt angles of 20�, 13.3�,

6.6� and 0�) and 4 different target angular separations, hs

(20�, 30�, 40� and 50�) with the aim of investigating both

the effect of varying distance on target acquisition and the

effect of varying angular separation on target acquisition at

this lower uncertainty level. Throughout this part of the

experiment the angular size of the targets, ht was kept

constant at 9� for each value of d and hs. This meant that

effectively the targets were increasing in size as they were

moved further into the distance.

Part 1b of the experiment involved the participants again

completing two acquisitions of each target for 4 different

distances but this time for a constant angular separation and

varying angular width of the target for angular widths of

10�, 16�, 24� and 32�.

Part 2 of the experiment consisted of the same set-up as

part 1 but with a higher uncertainty added to the system in

order to observe the effects of the high uncertainty levels

θs

θt

d

r

1

Fig. 12 Users stand at position 1 and scan the area ahead. The

angular size of the target is represented by ht and the angular

separation of the targets is represented by hs. The distance d to the

target is also varied throughout the experiment
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observed in the walking task. Part 2 of the experiment took

place in the same static location used for part 1. Although

this is slightly unrealistic, as actual walking data is likely to

introduce different kinds of disturbance, it was necessary in

order to compare the high and low uncertainty cases in a

valid way. The presentation of each combination of values

for each part was given in a counterbalanced order.

Selection of a target was achieved by activating a

capacitive switch on the device when the participant

believed that they had the best possible fix on the target and

had isolated the particular impact sound for that target.

They are then requested to select the next target and this

continues until the end of the run. The impact energy level

signals the number of impacts on each target and was

measured and recorded for each acquisition. This allows us

to examine any clear acquisitions or any cross-talk between

acquisitions.

7.3 Results

7.3.1 Low uncertainty experiment: Part 1

In part 1a of the experiment, out of a possible 96 selections

the average correct selection rate over all participants was

69.7%. The average clear correct selection rate, where

‘clear’ indicates that the target with the highest energy

level is at least 10% higher than the next highest, was

61.3% over all the conditions. Figure 13a shows how the

number of successful selections varies for different dis-

tances. There is a slight improvement overall at higher

distance (corresponding to a lower device tilt angle) indi-

cating not necessarily that the participants were more

comfortable with higher distances but that the participants

are more comfortable when the device was flatter in their

hand. Figure 13b shows the number of successful selec-

tions for varying angular separation, hs. There is a general

increase in the number of clear selections for higher

angular separation indicating, as we might expect, that in

general the participants found the task easier if the targets

were further apart.

In part 1b of the experiment (to examine the effects of

varying angular width) participants were more successful

with an average of 81% correct selections in the ‘non-clear’

case but slightly less successful in the ‘clear’ case with

54.2% correct selections. Figure 14a shows how the num-

ber of successful selections varies for increasing distance.

Participants perform consistently better for the targets at

lower distance (corresponding to a higher tilt angle). As

distance increases participants are slightly more successful.

Figure 14b shows the number of successful selections for

varying angular width, ht. This shows that participants were

less successful in making clear selections for increasing

angular width (i.e., decreasing space between targets) of the

target. But if we observe Fig. 14c for the case of correct

‘non clear’ selections only we see that the number of correct

selections actually increases slightly for large angular

width. And if we observe Fig. 15 we see that there is a slight

decrease in selection times for increasing angular width,

indicating that participants were finding it easier to locate

these targets. It is likely then that participants were

becoming much less precise for the perceived easier task

and so the number of clear selections was decreasing with

the decreasing concentration or attention of the user.

7.3.2 High uncertainty experiment: Part 2

In part 2a of the experiment the average correct selection

rate over all participants was 70%. The average clear

correct selection rate was 50% over all the conditions.

Figure 16a shows how the number of successful selections

varies for different distances. There is a slight improvement

overall at higher distance (lower device tilt angle) indi-

cating again that participants were more comfortable when

the device is flatter in their hand. This is backed up if we

examine Fig. 17, which shows the selection times for clear

selections over increasing distance. We observe a decrease
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in the selection time for higher distances, indicating that

users found this configuration slightly easier. It is likely

then that the increased uncertainty at shorter distances,

corresponding to higher tilt angles, severely affected per-

formance at this distance. Figure 16b shows the number of

successful selections for varying angular separation, hs.

There is a general increase in the number of clear selec-

tions for higher angular separation as was the case in part

1a. There is also a decrease in the selection times for

increasing angular separation (Fig. 18) indicating that in

general the participants found the task easier if the targets

were further apart, which is what we had expect from a

system with such high uncertainty.

In part 2b of the experiment participants were slightly

more successful with an average of 82.3% correct selections

and 60.3% clear correct selections. Figure 20a shows how

the number of successful selections varies for increasing

distance. There is little variation as distance increases. If we

observe the corresponding selection times for each distance

as shown in Fig. 19 we see that there is a general decrease in

selection time as the distance is increased or as the required

tilt level of the device is decreased, confirming somewhat

that which was observed in part 2a of the experiment. It is

interesting that this was not observed in part 1 of the

experiment for lower uncertainty, indicating again that high

uncertainty is a significant limiting factor. Figure 20b

shows the number of successful selections for varying

angular width, ht. We observe that participants were less

successful in making clear selections for increasing angular

width of the target, as was also observed in part 1b of the

experiment. But if we observe Fig. 20c for the case of

correct ‘non clear’ selections only there is again little var-

iation for increasing angular width. This indicates that while

participants found it easy to select targets with large width,

there is a point where clear selections become very difficult

as angular size is increased, particularly where there is high

uncertainty. Looking at Fig. 21 we see that there is a slight

decrease in the selection time as angular width increases for

both the left and right targets but not for the center target.

This indicates that in the case with maximum angular width

users were finding it difficult to localise one individual set

of impact sounds. In the left and right target case it is

possible to move to the outer edge of target to isolate one

kind of impact sound but in the center target case this is not

possible. Again, this shows that high uncertainty in a system

places limits on the system design.

8 Discussion

This experiment has shown that users can isolate their

desired targets effectively with a basic system that

6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

nu
m

be
r 

su
cc

es
sf

ul
ly

 s
el

ec
te

d

distance (m)

number of correct selections for each distance

10 15 20 25 30
0

5

10

15

20

25

30

35

40

nu
m

be
r 

su
cc

es
sf

ul
ly

 s
el

ec
te

d

angular width

number of correct selections for each angular width

10 15 20 25 30
0

5

10

15

20

25

30

35

40

nu
m

be
r 

su
cc

es
sf

ul
ly

 s
el

ec
te

d

angular width

number of correct selections for each angular width(a) (b) (c)

Fig. 14 a Red circles show the number of clear correct selections for

each user in part 1b of the experiment, with blue crosses indicating

the mean value for that distance. b The number of clear correct

selections in part 1b of the experiment drops for increasing angular

width where as the number of correct ‘non-clear’ selections actually

increases for increasing angular width indicating that participants

become less accurate as the perceived difficulty of the task decreases

as illustrated in c
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Fig. 15 Mean selection times for each target for varying target

angular width in part 1b of the experiment. Selection time decreases

slightly with increasing angular width
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incorporates ‘typical’ noise conditions. It has shown that

although the range of distances used in this experiment was

perhaps smaller than it could have been (using a 30� range

mapped to a 15 m distance), in the high uncertainty case

users tended to be slightly quicker and slightly more

effective at higher distance, corresponding to a lower tilt

angle of the device. This is almost certainly down to the

increased uncertainty making selection at lower distance

(higher tilt) much more difficult. In the low uncertainty

case it was found that increasing width (decreasing tilt) had

little effect on the results. It must be mentioned that this

experiment was more a test of effects of varying the tilt

angle of a device since no real world objects were being

used for the pointing task.

The varying angular separation experiment has, quite

intuitively, illustrated to us that users are more effective

with increasing distance between targets. At lower sepa-

rations users tend to take longer to select the target due to
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significant cross-talk between the targets, especially in the

case with high uncertainty, although the minimum sepa-

ration between targets obviously depends on this level of

uncertainty in a particular environment or context.

The varying angular width experiment for both the high

and low uncertainty cases provided an intriguing insight to

the design of this kind of system. In the low uncertainty

case it was found that as the width of the target is increased

users in general become more successful. But the accuracy

of their target selections decreases significantly. This is

thought to be due to the participants taking a less accurate

approach when the task was perceived to be significantly

easier.

In the high uncertainty case the number of successful

and clear selections was found to fall off with increasing

width. This was found to be due to the decreasing distance

between the targets as the width increases leading to

increasing cross-talk between neighbouring targets. The

more successful participants were found to combat this by

moving to the outer-edge of the target in order to isolate the

correct impact sound but this was not possible with the

center target, leading to much higher selection times for

this target with higher angular width. Designers of this kind

of system then should be aware that although increasing the

width of a target will, in general, increase the ease of

selection for that target, care has to be taken not to decrease

too much the distance to any neighbouring targets. Highest

success was achieved in this experiment for angular widths

between 10� and 24�, implying a minimum distance

between targets of 26�.

The system described here is a basic one and highlights

some of the problems that may be encountered but there

exist a number of possible ways in which this basic system

that incorporates typical noise conditions can be improved.

One possible improvement to this kind of system could be

the use of a more complicated kind of dynamic adaptation
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Fig. 20 a Red circles show the number of clear correct selections for

each user in part 2b of the experiment, with blue crosses indicating

the mean value for that distance. b Red circles show the number of

clear correct selections for each user in part 2b of the experiment for

increasing angular width. c Red circles show the number of non-clear

correct selections for each user in part 2b of the experiment for

increasing angular width. This shows that although users were failing

to select the correct target clearly, they were still selecting the correct

target indicating that perhaps less effort is expended on the perceived

easier task
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Fig. 21 Selection times for each target for varying target angular

width in part 2b of the experiment. Selection time decreases slightly

with increasing angular width for the left and right targets but not for

the center target. This is due to the space between targets decreasing

as the size of the target is increased making it increasingly difficult to

clearly select the center target without any interference from the other

targets. For both the left and the right targets a clear selection was

possible if the user focussed their selections on the outer edge of the

target
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of the system. For example, attractors could be placed

around targets that channel our particle probe to that par-

ticular target, reducing, if not eradicating, any cross-talk

between targets and allowing users to focus on a particular

target with greater ease. The explicit use of natural con-

straints in our environment can be used to channel our

probe into particular locations. For example, a natural

building corridor may exist in the real world that could be

incorporated into the virtual environment and used to

channel our probe and constrain it to any natural openings

in the real world where targets may be placed.

9 Conclusions

This paper has introduced a new framework for providing a

highly interactive and embodied context-based querying

mechanism to location-aware mobile spatial interactive

applications. We have quantified the main sources of error

present in this kind of system, focussing primarily on the

effect of bearing and positional errors and have introduced

and described a probabilistic framework which deals with

these sources of uncertainty.

An experiment was conducted to analyse the effect on

bearing-based selections in a virtual environment of vary-

ing target distance, target width and angular size. Although

it is difficult to give precise values after these initial

experiments, it was found that effective selection is

maintained down to 26� separation with a 9� target width in

the high uncertainty case. In the low uncertainty case it was

found that effective selection was maintained even at the

lowest limit examined in this experiment, that is, up to 20�
separation with a 10� target width.

9.1 Outlook

There is great scope for extension of the ideas presented in

this paper. The implementation of this kind of system on a

commercial mobile phone is the next step and requires only

the incorporation of magnetometers and accelerometers

into a device for accurate heading and tilt determination.

The audio and vibrotactile feedback used at the moment is

relatively simple and there exist many degrees-of-freedom

in the display, which could be used creatively, balancing

the artistic presentation of the system augmenting the

physical environment with the information content avail-

able. As the richness of the models and feedback

mechanisms develop, we might find exciting new ways of

engaging with this augmented environment. For example,

it may become possible to perceive the shapes and sizes of

objects as we are interacting with them in the virtual

environment, and sculpt them interactively using a mobile

device.

In this work we have shown that with the use of

uncertain feedback it is possible for users to rapidly select

objects in a virtual environment. Without uncertain feed-

back target selection would be slower and less precise

unless targets were made very large and spaced far apart.

Future work in this area must include a study of how to

deal with uncertainty from walking user data compared to

static user data and in particular how to graciously move

between these two levels of uncertainty. It is likely that in

this high uncertainty walking or jogging environments

that new methods of target access will need to be

designed.
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H (2006) Sensing in rich bluetooth environments. In: Proceedings

of workshop on World-Sensor-Web, SenSys

16. Baillie L, Kunczier H, Anegg H (2005) Rolling, rotating and

imagining in a virtual mobile world. In: MobileHCI ’05: pro-

ceedings of the 7th international conference on Human computer

interaction with mobile devices & services. ACM Press, New

York, pp 283–286

17. Burrell J, Gay GK (2002) E-graffiti: evaluating real-world use of

a context-aware system. Interact Comput 14:301–312

18. Espinoza F, Persson P, Sandin A, Nyström H, Cacciatore E,

Bylund M (2001) Geonotes: social and navigational aspects of

location-based information systems. In: UbiComp ’01: proceed-

ings of the 3rd international conference on ubiquitous computing.

Springer, London, pp 2–17

19. Rantanen M, Oulasvirta A, Blom J, Tiitta S, Mäntylä M (2004)
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