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Abstract— A method is proposed to reduce range anxiety
problems for electric vehicle owners using a car sharing model.
Basing the model on elementary models from queueing theory,
it is argued that the potential cost of such a system would be
much less than the current government subsidies offered to
support the deployment of electric vehicles.

I. I NTRODUCTION

Growing concerns over the limited supply of fossil-based
fuels are motivating intense activity in the search for al-
ternative road transportation propulsion systems. Regulatory
pressures to reduce urban pollution,CO2 emissions and city
noise have made zero-emission (ie: fully battery powered)
electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs)
[1] a very attractive choice as the alternative to the internal
combustion engine (ICE) [2]. Road transportation currently
accounts for 22-25% of emissions in the UK [3]–[7], for
example, and thus represents a significant contribution to
global warming in the UK. Such figures are typical of
most western countries, and electric vehicles, which have
zero emissions of pollutants in urban areas, are seen as a
useful tool both in reducing urban pollution, and in reducing
the carbon footprint of road transportation generally (when
combined with clean generation), in addition to reducing our
dependency on fossil fuels.

While the environmental and societal benefits of zero-
emission vehicles are evident, their adoption by users has
been extremely disappointing. According to recent reports
[8], even in Europe, where the green agenda is well received,
fewer than 12000 electric vehicles were sold in the first
half of 2012 (of which only 1000 of these were sold in
the UK). This number represents less than 0.15% of total
new car sales. Figures such as these are nothing short of
disastrous for companies such as Renault or Nissan, both of
whom have placed massive bets on widespread adoption of
electric vehicles [9]. These figures are in spite of the fact that
many European governments have offered incentives for the
purchase of electric vehicles in the form of subsidies and
have also invested massively in infrastructure. For example,
in Portugal, the government installed 1300 charging spots
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in a number of cities, and offered subsidies of $5000 to
encourage the purchase of such vehicles [10].

The key factors hindering the widespread adoption by the
general public of electric vehicles may be summarised briefly
as follows:

(i) Cost and availability of rare earth materials – Plug-
in vehicles tend to be very expensive, even when subsidised.
A major factor in the cost of such vehicles is the cost
of the battery [11]. Lithium-based batteries are expensive,
and while costs are forecast to reduce dramatically over
the next few years [12], this factor is an important one in
understanding the sales of electric vehicles at the present
time. In response to this, Renault, and other companies, are
proposing to lease batteries to the customer to offset some
of the battery related costs. However, even if such initiatives
are successful, there are other battery related questions that
may hinder the adoption of electric vehicles. A fundamental
question concerns whether enough lithium can be sourced
to build batteries to construct enough vehicles to replace the
existing passenger vehicle fleet. Are we simply substituting
one rare resource (oil) with another (lithium)? Also, the
transportation of batteries is not trivial and necessitates
special precautions. This may be an issue that needs attention
before widespread adoption is possible [13].

(ii) Electromagnetic emissions– A recent issue regarding
electric vehicles concerns electromagnetic emissions. While
there is no evidence that EM radiation from EVs is danger-
ous, this issue is a focus point for regulatory authorities (see
EU Green Car Programme) and has been raised by several
research agencies [14].

(iii) Long charging times– One issue that is deserving of
special attention is that of vehicle charging. Charging times
for electric vehicles are known to be long [15]. An often cited
fact by advocates of electric vehicles in response to this is
that fast charging algorithms can service average vehiclesin
about 30 minutes [16]. Such time-scales may be just about
acceptable to a normal car owner. However, in the presence
of queuing, 30 minutes can rapidly become several hours,
and push such fast charging stations into the realm of “not
acceptable.” Thus, it is likely that overnight or workplace
charging will be the principal method of vehicle charging
for the foreseeable future. An associated issue in large cities
concerns the availability of charging points. This is especially
an issue in cities with large apartment block type dwellings.

(iv) Vehicle size– Electric vehicles tend to be designed
small with limited luggage space to reduce energy consump-



tion. This is a significant problem for most potential pur-
chasers of vehicles who on occasion would like to transport
significant loads using their vehicles.

(v) Range anxiety– One of the most pressing issues in
the deployment of EVs concerns the issue of range anxiety
[2], [11], [17]. Maximum ranges (in favourable conditions)
of less than 150km are not unusual for electric vehicles, and
this reduces significantly when air-conditioning or heating
is switched on. The issue of limited range also exacerbates
other issues. For example, the cost of searching for a parking
position at the end of a journey is much higher than for a
conventional vehicle (because the EV’s range is so low and
therefore energy should not be wasted searching for a parking
spot). Research is ongoing to address these issues, with
much of the current work focussing on new battery types,
optimal vehicle charging, vehicle routing, and in-vehicle
energy management systems with a view to minimising
wastage of energy and thereby increasing vehicle range [18].

While all of the above issues are important, and some
others that we have not mentioned, such as the design of
vehicles with in-wheel motors, in this paper, we focus on
the pressing issue of consumerrange anxiety, and to a
lesser extent,vehicle size. A solution is proposed to these
problems based on a car sharing concept along the lines of
car-to-go[19] anddrive-now[20]. In Section II, we present
a high-level overview of the proposed car sharing scheme,
and pose a number of Quality of Service (QoS) questions.
Using elementary probability and queueing theory methods,
solutions to the Quality of Service (QoS) questions are for-
mulated mathematically in Section III. Section IV illustrates
by example how the cost of the proposed car sharing system
compares to current government subsidies offered to support
the deployment of electric vehicles. Directions for future
work are provided in Section V.

II. H IGH-LEVEL DESCRIPTION

The objective is to propose a car sharing concept as
a solution to the consumer range anxiety problem. The
proposed car sharing concept is as follows.

When an electric vehicle is purchased, the new EV owner
also automatically becomes a member of a car sharing
scheme along the lines of car2go or DriveNow [19], [20],
where a shared vehicle may be borrowed from a common
pool on a 24hr basis. The shared vehicles are large ICE-
based vehicles suitable for long range travel and with large
goods transportation capacity.

Remark 1:We suggest free membership of the scheme,
but a pricing model could be implemented to regulate de-
mand on weekends, public holidays, or other occasions when
synchronised (correlated) demand is likely to emerge, or to
regulate emissions.

Remark 2: If the shared ICE-based vehicles are chosen
to be sufficiently high-end, then a further incentive for
consumers to purchase electric vehicles is provided.

Remark 3:What we are proposing is nothing more than
a hybrid vehicle with a temporal component.

A number of issues would need to be resolved before any
such system could be deployed. These issues fundamentally
reduce to the marginal cost of the system. More specifically,
we wish to determine if such a sharing concept could be
deployed giving reasonable quality of service (QoS) to the
electric vehicle owner, without significantly increasing the
cost of each vehicle. Referring to Figure 1, this amounts
to asking whether a reasonable QoS can be delivered when
M, the number of shared ICE-based vehicles, is significantly
less thanN, the number of purchased EVs. To answer
this question, we consider two scenarios (both under the
assumption that a shared vehicle is borrowed for a 24hr
period).

Fleet of N electric

vehicles

Request

Price

Fleet of M

shared

ICE vehicles

Fig. 1. Car sharing concept.

Problem 1: Spontaneous journeys– Given that an indi-
vidual requests a vehicle, what is the fractionM

N correspond-
ing to a fixed (low) probability that the request is declined?

Problem 2: Planned journeys – For a fixedM and N,
how many days in advance does a user have to make a
reservation so that the probability that the request is declined
is lower than some very small constant? This gives rise to a
queuing model.

The following demographical assumptions will be made:
• long journeys in private cars are rare, meaning that

the range of an electric vehicle, even under worst-case
conditions (eg: air conditioning use, traffic congestion,
bad weather), should be sufficient for most journeys;

• most private vehicles are in use1 for an entire “waking
hour” day, and most urban dwellings are houses rather
than apartments, meaning that there is no structural
impediments to overnight charging, and that a full
overnight charge should be sufficient to satisfy the needs
of daily mobility patterns.

Contemporary Irish mobility patterns, for example, align
with the above assumptions. Data for the creation of Table
I and Figures 2, 3 and 4 were obtained from the 2009
Irish National Travel Survey (NTS) Microdata File, Central
Statistics Office,c©Government of Ireland [21]–[23]. In the
NTS, respondents were asked to provide details about their

1In use meaning that a private vehicle is not parked at home for a
sufficient period to fully charge.



TABLE I

PERCENTAGES OF PEOPLE WHO DROVE CUMULATIVE DISTANCES OF

GREATER THAN 50KM , 75KM AND 100KM OVER A 24H PERIOD.

Sample Population >50km >75km >100km

Monday 23% 12% 7%

Tuesday 23% 14% 8%

Wednesday 23% 14% 7%

Thursday 26% 18% 11%

Friday 26% 17% 9%

Saturday 24% 15% 9%

Sunday 24% 17% 11%

travel for a given (randomly selected) 24h period, which
roughly corresponded to a day of the week. Table 1 shows
the percentages of people who drove (over the 24h period
that they were queried about) cumulative daily distances of
greater than 50km, 75km and 100km. Figure 2 relates to
those people who were questioned about their travel over
the 24h “Monday” period (ie: row two of Table I), and
depicts number of people versus total distances they drove
over that 24h Monday period. Figure 2 illustrates a trend
observed in the percentages in Table I; namely, that longer
cumulative journeys over the course of a day were rare.
(Graphs of the nature of Figure 2, but concerning travel
for the other days of the week, were similar in shape to
Figure 2, and have thus been omitted to reduce redundancy.)
For respondents who drove cumulative distances greater than
75km over a 24h period (see the third column of Table I),
Figure 3 illustrates the hours of a 24h period over which
respondents had their vehicles in use (many vehicles were
in use roughly between 8am and 6pm), and Figure 4 depicts
the number of respondents versus total time (out of a 24h
period) their vehicle was in use.
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Fig. 2. Number of survey respondents reporting about their travel for the
24h “Monday” period, versus total distances they drove overthat period.

III. M ATHEMATICS

Using elementary probability and queueing theory meth-
ods, we now pose solutions to the Quality of Service (QoS)
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Fig. 3. Number of respondents (who drove>75km total daily distance)
using their vehicles, versus hour of the day.
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Fig. 4. Number of respondents (who drove>75km total daily distance),
versus total time that their vehicle was in use for over the 24h survey period.

problems presented in Section II. Consider a population of
N electric vehicle owners (ie:N “users”) who occasionally
require access to an ICE-based vehicle (ICEV) for a non-
standard trip (either a long-range trip or a trip where large
load carrying capacity is required). We assume that a user
will keep the ICEV for a full day, based on the driver
behaviours described in the previous section. Thus, each day
is characterised by the number of users who require an ICEV
on that day. There is a fleet ofM ICEVs available to satisfy
this need. The main question is then to determine the relation
betweenM andN. This will be determined by requiring some
quality of service (QoS) conditions to be met. For example,
a QoS condition might be a guarantee on the probability of
finding an ICEV available.

A. Model 1 – Binomial Distribution

In the simplest model, each user independently requests an
ICEV each day with a fixed probabilityp. The probability
can be estimated from the data presented in Table I. Thus
the number of requestsX each day is a binomial random



variable:

X ∼ Bin(N, p)

The mean number of requests per day isNp, and the
standard deviation is

√

Np(1− p). In principle, the number
of requests may be anything from 0 toN, but for largeN it
is very unlikely thatX will deviate from the mean by more
than a few standard deviations.

This QoS condition can be quantified as follows. For each
M ≤ N, define

Q(M) = P(X > M)

Then the QoS condition could be to find the smallestM such
that Q(M)< ε for some specifiedε. For any givenN and p
this can be calculated explicitly using the formula

Q(M) =
N

∑
k=M+1

(

N
k

)

pk (1− p)N−k

However it is more useful to get an approximate formula
from which the scaling relation can be read off. ForN
large enough we can use the normal approximation for the
binomial, which says that

Z =
X−Np

√

Np(1− p)

is approximately a standard normal random variable. There
is a standard rule of thumb regarding applicability of the
normal approximation for the binomial, namely that

N ≥ 9 max

(

p
1− p

,
1− p

p

)

Using the normal approximation, we have

Q(M) ≃ 1√
2π

∫ ∞

r
e−

1
2X2

dX, r =
M−Np

√

Np(1− p)

This readily yields estimates forM in order to satisfy a
desired QoS condition. For example, in order to satisfy the
QoS condition

Q(M)< 0.05

meaning a less than 5% chance of not finding an ICEV
available, it is sufficient to take

r ≥ 1.65⇐⇒ M ≥ Np+1.65
√

Np(1− p)

(see Figure 5). For example, using the valuesN= 1000 users
andp= 0.1 for the probability of a user requesting an ICEV,
this provides a valueM ≥ 116.

B. Model 2 – A Queueing Model

When the number of requests exceeds the number of
available ICEVs, a queue forms and users must wait one or
several days until a vehicle becomes available. It is desirable
to keep the probability of long delays small, and this can be
achieved by appropriate scaling ofM with N.

Let Xn be the number of outstanding requests at the end
of thenth day, and letAn be the number of new requests that
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Fig. 5. Number of required extra vehicles for 5% chance of notfinding a
vehicle

arrive during thenth day. Since the number of vehicles isM,
the relation between these variables on successive days is

Xn+1 = max{0,Xn−M}+An+1

That is, the queue length is reduced byM at the start of
each day (but not reduced below zero), and is then increased
during the day by the number of new requests.

The QoS condition is to ensure thatXn is unlikely to be
large, implying that users are unlikely to have to wait a
long time before being assigned an ICEV. SinceM users
can be serviced each day, in the worst-case a user must
wait ⌊Xn/M⌋ extra days until service. We consider the QoS
condition which guarantees that the probability that any user
needs to waitk extra days or more is less thanε, that is

P(Xn > kM)< ε

By choosingM sufficiently large we can guarantee that this
probability is small. (Due to space constraints, the proof to
the following lemma will appear elsewhere.)

Lemma 1:Define

µ = M−Np, σ2 = Np(1− p), α =
µ

σ2

Then for allk≥ 1,

P(Xn > kM) ≤ 1
2

e−(k−1)Mα
(

eµα/2−1
)−1

Using the bound in Lemma 1 we find a sufficient condition
to guarantee the QoS bound, namely

1
2

e−(k−1)Mα
(

eµα/2−1
)−1

< ε

For a givenk andε we may use this to find a value forM
needed to meet the QoS condition. For example, using the
same values as aboveN=1000,p=0.1, ε =0.05, and taking
k = 3 (meaning we want 95% of users to receive an ICEV



within 4 days or less), we find that the inequality is satisfied
wheneverM ≥ 101. Takingk= 2 we findM ≥ 105, and with
k = 1 we find M ≥ 121. For a fleet size of 20000 vehicles
with M = 2000 (10%) andM = 3500 (17%), the behaviour
of the bound is depicted in Figures 6 and 7, respectively, for
various estimates of the probability of a long distance trip.
As can be seen, the bound tends rapidly to zero, indicating
that the probability of waiting for a shared vehicle longer
than one or two days vanishes rapidly.
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Fig. 6. Probability (bound) of not finding a car with N = 20000 and M =
2000 (10%).
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Fig. 7. Probability (bound) of not finding a car with N = 20000 and M =
3500 (17%).

IV. RESULTS

We now explore the financial cost of setting up the car
sharing model. We ignore, for now, any costs associated
with the management of the car sharing concept, or the
costs of maintenance or replenishment of the shared fleet. We
assume a once-off purchase of the shared fleet. In reality, the
shared cars would be replaced after a fixed period, thereby
reducing the cost of the shared vehicles even further. For
the purpose of benchmarking, we assume that our shared
fleet is constructed to reflect the needs of the EV owners;
namely, sometimes a family car is needed, sometimes a large
vehicle is needed for transporting goods, and sometimes a
smaller car is required for short out of town trips by a single
person/couple.

We use Volkswagen vehicles to benchmark the cost of
the shared vehicle fleet. Note VW is a relatively high-end

marque; and the vehicle fleet could be constructed in a
manner that is considerably cheaper. Table II illustrates the
costs involved in a fleet composed in this manner, with all
costs sourced from the VW website (www.vw.ie) as on 25th
September, 2012. The average vehicle cost is thuse23376.

Purpose Percentage Sample Vehicle Cost
Singles/Couples 20% VW Polo e15345
Family without luggage 20% VW Golf e21180
Family with luggage 50% VW Passat e26245
Transport 10% VW Passat Estatee29480

TABLE II

COMPOSITION OF SHARED VEHICLE FLEET.

We also assume a fleet of Nissan Leaf electric vehicles.
These electric vehicles currently retail fore35000 in Ireland
(25/9/2012).

For convenience, we recall Table I. Table I indicates that
the probability of journeys greater than 75 km is approx-
imately 0.15 (average), and of 100 km is 0.09 (average).
If we conservatively assume that the daily range of a fully
charged vehicle is 75 km, then it follows from Figure 7 that
most customers will be allocated a vehicle within 3 days for
(M,N) = (3500,20000); namely if M

N = 0.17. If we assume
that the daily range is 100 km, it follows from Figure 6 that
most customers will be allocated a vehicle within 3 days for
(M,N) = (2000,20000); namely if M

N = 0.1. From the above
figures the additional cost of these vehicles is 11.4% and
6.7% of the cost of theN Nissan Leafs, respectively.

Finally, to place these figures into context, consider Table
III. As can be seen, the cost of the car sharing scheme is
considerably less than the (typical) level of subsidy afforded
to electric vehicles in major western countries.

Country Subsidy Cost (Nissan Leaf) Percentage
Ireland e5000 e35000 14%
Belgium e9190 e37000 25%
France e5000 e37000 13.5%
Portugal e5000 e35000 14%
United Kingdom £5000 £30000 17%
United States $7500 $32000 23%

TABLE III

SUBSIDIES TOEV PURCHASE(DIRECT AND INDIRECT) AND COST OF

NISSAN LEAF [24] [25].

V. CONCLUSIONS ANDFUTURE WORK

In this paper, a solution to the consumer range anxiety
problem was posed using a car sharing idea. Car sharing
schemes are at an advanced state of development, see for
example Car2Go and DriveNow, and similar ideas could
be employed here to deploy the proposed system. The cost
of this scheme was shown to be low when compared with
current levels of subsidies to electric vehicle manufacturers.
This cost could be reduced further by: (i) exploiting car
sharing on a per-day basis (further multiplexing); (ii) using



low-cost vehicles (as opposed to a premium marque); (iii) se-
lecting locations for the shared vehicles; and (iv) introducing
a pricing model to regulate demand on weekends/holidays.
Also, the pricing model given in Sections III and IV is
primitive and represents a worst-case scenario, and more
advanced modelling is required. These issues will be the
subject of future work.
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