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For a connected graph G, we derive tight inequalities relating the smallest

signless Laplacian eigenvalue to the largest normalised Laplacian eigenvalue.

We investigate how vectors yielding small values of the Rayleigh quotient for

the signless Laplacian matrix can be used to identify bipartite subgraphs. Our

results are applied to some graphs with degree sequences approximately fol-

lowing a power law distribution with exponent value 2.1 (scale-free networks),

and to a scale-free network arising from protein-protein interaction.

1. Introduction

Let G be a graph with adjacency matrix A, and denote the diagonal matrix
of vertex degrees for G by D. The matrix Q = D + A is known as the signless
Laplacian matrix for G, and has been the subject of a flurry of recent papers. The
surveys [5], [6] and [7] give an overview of the research on the signless Laplacian
matrix from the perspective of spectral graph theory. In particular, it is known that
the signless Laplacian matrix Q for a graph G is positive semi-definite, and that
the multiplicity of 0 as an eigenvalue of Q coincides with the number of connected
components of G that are bipartite [4]; thus, for a connected graph G, the smallest
eigenvalue of Q is positive if and only if G is not bipartite.

In a similar vein, if G is a graph with no isolated vertices, the matrix L =
I −D

−1
2 AD

−1
2 is known as the normalised Laplacian matrix for G (here, A and D

are as above). The spectral properties of the normalised Laplacian matrix are also
well-studied, and [3] gives an extensive discussion of how the spectral properties of
L reflect the structure of G. In particular, it is known that the eigenvalues of the
normalised Laplacian matrix fall in the interval [0, 2], and that the multiplicity of
2 as an eigenvalue of Q coincides with the number of connected components of G

that are bipartite. Thus, as above, for a connected graph G, the largest eigenvalue
of L is less than 2 if and only if G is not bipartite.

Suppose now that we have a graph G with signless Laplacian matrix Q and
normalised Laplacian matrix L. In view of the observations above, we might inter-
pret the smallest eigenvalue of Q, say µ, as a measure of how bipartite our graph G

is; alternatively, we might interpret the largest eigenvalue of L, say λ, as a measure
of how bipartite our graph G is. (We note in passing that both interpretations are
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philosophically related to the work of Fielder [8], who proposed that the second
smallest eigenvalue of the Laplacian matrix D − A be used as a measure of the
connectivity of G.) Since both µ and λ provide notions of how bipartite G is, it is
natural to investigate the relationship between these two quantities. We do so in
section 2, providing upper and lower bounds on λ in terms of µ; both bounds are
tight, and we give examples of infinite families of nonbipartite, nonregular graphs
for which the upper and lower bounds are attained, respectively.

The discussion above gives rise to the following scenario. Suppose that our
connected graph G is not bipartite, but its smallest signless Laplacian eigenvalue
is close to zero. One might then have the intuition that G contains a bipartite
subgraph that is not very well connected with the rest of the graph. How might
we identify such a subgraph? In section 3, we provide a condition (based on a
Rayleigh quotient) that is sufficient to identify a bipartite subgraph H. We also
give a condition under which we can bound the number of vertices of the subgraph
H having at least one neighbour in G \ H. Both results serve to reinforce the
intuition noted above.

Part of our interest in identifying bipartite subgraphs that are only weakly
connected to the rest of the graph stems from the study of complex networks such
as protein-protein interaction networks, the world wide web, and certain social net-
works (see [14] for a survey of work on this topic). Within such networks, bipartite
structures are important in verifying some useful properties [9], [15]. For example,
in the case of protein-protein interaction networks, these bipartite subgraphs repre-
sent biologically relevant interaction motifs [13]. In section 4, we use eigenvectors
of the signless Laplacian matrix to generate certain Rayleigh quotients that enable
us to identify bipartite subgraphs using the results of section 3. That approach is
applied to randomly generated graphs that approximate scale-free networks, and
to a particular protein-protein interaction network.

Throughout the paper we will make use of basic results and techniques from
matrix theory and from graph theory. The reader is referred to [10] and [12] for
the necessary background material on these topics.

2. Extreme eigenvalues for the signless and normalised Laplacian
matrices

As noted in section 1, for a connected graph G, both the smallest signless
Laplacian eigenvalue and the largest normalised Laplacian eigenvalue for G serve
as indicators as to whether or not G is bipartite. Since both of these eigenvalues
identify a common feature of G (i.e. bipartiteness, or the lack thereof) it is natural
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to seek a quantifiable relationship between these two eigenvalues. The following
result does precisely that.

Theorem 2.1. Let G be a connected graph on n vertices with signless Lapla-
cian matrix Q and normalised Laplacian L. Let the smallest eigenvalue of Q be µ

and the largest eigenvalue of L be λ. Denote the maximum and minimum degrees
of G by ∆ and δ, respectively. Then

(1) 2− µ

δ
≤ λ ≤ 2− µ

∆
.

Proof: Let A denote the adjacency matrix of G, and D denote the diagonal matrix
of vertex degrees, so that Q = D + A and L = I −D

−1
2 AD

−1
2 .

We first consider the left hand inequality in (1). Let x be an eigenvector of

Q corresponding to µ. Without loss of generality, we write x as

[
x1

−x2

]
, where

both x1 and x2 are nonnegative vectors. Partition D and A conformally with x as[
D1 0
0 D2

]
and

[
A11 A12

A21 A22

]
.

Since xT Qx = µxT x, we find that

(2) xT
1 D1x1 + xT

1 A11x1 − 2xT
1 A12x2 + xT

2 D2x2 + xT
2 A22x2 = µ(xT

1 x1 + xT
2 x2).

Next, let z =

[
D

1
2
1 x1

−D
1
2
2 x2

]
. Then

zTLz = xT
1 D1x1 − xT

1 A11x1 + 2xT
1 A12x2 + xT

2 D2x2 − xT
2 A22x2,

and using (2) we thus find that zTLz = 2xT Dx−µxT x. Thus we find that zTLz
zT z

=
2− µxT x

zT z
≥ 2− µ

δ . Finally, using the fact that λ = max{uTLu
uT u

|u 6= 0}, we find that

(3) λ ≥ 2− µ

δ
.

Next, we consider the right hand inequality in (1). Now let y be an eigen-

vector of L corresponding to λ, and partition y as

[
y1

−y2

]
, where y1 and y2 are

nonnegative vectors. Partition D and A conformally with y as

[
D̂1 0
0 D̂2

]
and[

Â11 Â12

Â21 Â22

]
(observe that the partitioning for A and D here may be different

than the partitioning arising from x).
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Since yTLy = λyT y, we have

yT
1 y1 − yT

1 D̂1
− 1

2 Â11D̂1
− 1

2 y1 + 2yT
1 D̂1

− 1
2 Â12D̂2

− 1
2 y2 + yT

2 y2 − yT
2 D̂2

− 1
2 Â22D̂2

− 1
2 y2

= λ(yT
1 y1 + yT

2 y2).(4)

Now let w =

 D̂1

1
2 y1

−D̂2

1
2 y2

 , and note that wT Qw = yT
1 y1 + yT

1 D̂1
− 1

2 Â11D̂1
− 1

2 y1 −

2yT
1 D̂1

− 1
2 Â12D̂2

− 1
2 y2+yT

2 y2+yT
2 D̂2

− 1
2 Â22D̂2

− 1
2 y2. From (4) we find that wT Qw =

(2− λ)yT y.

Since µ = min{uT Qu
uT u

|u 6= 0}, we find that µ ≤ (2 − λ) yT y
wT w

. Observing that
yT y
wT w

≤ ∆, we thus find that µ ≤ (2− λ)∆. Rearranging this yields

(5) λ ≤ 2− µ

∆
.

�

Evidently if G is regular (so that δ = ∆) or bipartite (so that µ = 0), then
equality holds throughout (1). The next two examples show that for nonbipar-
tite, nonregular graphs, equality can still hold in either of the inequalities in (1).
Throughout, we use 1p to denote an all ones vector of order p; the subscript will
be suppressed when the order is clear from the context.

Example 2.2. Suppose that m ∈ N with m ≥ 2, and let G be the graph given
by (Km ∪Km) ∨K1, where ∪ denotes the union and ∨ denotes the join operation
(see [12]). Observe that G is not bipartite, not regular, and has minimum degree
m. The signless Laplacian matrix for G can be written as

Q =

 (m− 1)I + J 0 1
0 (m− 1)I + J 1
1T 1T 2m

 ;

(here J denotes an all ones matrix). From this we find that the signless Laplacian
spectrum consists of 2m− 1, 4m−1±

√
8m+1

2 , and m− 1, the latter with multiplicity
2m− 2. Similarly, the normalised Laplacian matrix for G is

L =


m+1

m I − 1
mJ 0 − 1

m
√

2
1

0 m+1
m I − 1

mJ − 1
m
√

2
1

− 1
m
√

2
1T − 1

m
√

2
1T 1

 ;

we then find that the normalised Laplacian spectrum is given by 0, 1
m and m+1

m ,

the latter with multiplicity 2m− 1.
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Consequently we find that the largest normalised Laplacian eigenvalue is λ =
m+1

m , the smallest normalised Laplacian eigenvalue is µ = m− 1, and that equality
holds in (3).

Example 2.3. Suppose that m ∈ N with m ≥ 3, and consider the graph G

on 2m + 1 vertices constructed as follows: start with Km,m, and delete an edge
from it, say between vertices i and j; then take an isolated vertex k, and add the
edges k ∼ i and k ∼ j. Observe that G is not regular, is not bipartite, and has
maximum degree m.

The signless Laplacian matrix for G can be written as

Q =


m 0T 0 1T 1
0 mI 1 J 0
0 1T m 0T 1
1 J 0 mI 0
1 0T 1 0T 2

 .

It now follows that the signless Laplacian spectrum of G consists of m (with mul-
tiplicity 2m − 4), m+1±

√
m2+2m−3
2 , and the roots of the cubic z3 − (3m + 1)z2 +

(2m2 + 4m− 3)z − (4m2 − 8m + 4). An uninteresting computation shows that the
smallest signless Laplacian eigenvalue for G is µ = m+1−

√
m2+2m−3
2 .

The normalised Laplacian matrix for G is given by

L =


1 0T 0 − 1

m1T − 1√
2m

0 I − 1
m1 − 1

mJ 0
0 − 1

m1T 1 0T − 1√
2m

− 1
m1 − 1

mJ 0 I 0
− 1√

2m
0T − 1√

2m
0T 1

 .

The eigenvalues of L are 0, 1 (with multiplicity 2m− 4), 2− 1
m (m+1±

√
m2+2m−3
2 ),

and
2+ 1

m±
q

4
m−

3
m2

2 . It follows that the largest normalised Laplacian eigenvalue is
λ = 2− 1

m (m+1−
√

m2+2m−3
2 ), and that equality holds in (5).

3. Small Rayleigh quotients for the signless Laplacian matrix

From the results of section 2, we find that both the largest normalised Lapla-
cian eigenvalue, and the smallest signless Laplacian eigenvalue can be thought of
as providing a measure of how close a connected graph is to being bipartite. In this
section, we focus on the signless Laplacian matrix, as the analysis for that matrix
is somewhat more tractable than for the normalised Laplacian matrix.
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Recall that the algebraic connectivity of a graph is the second smallest eigen-
value of its Laplacian matrix; see [1] and [11] for surveys on this remarkable quan-
tity. The algebraic connectivity plays a role in the following result, which provides
a sufficient condition for a subgraph to be bipartite.

Theorem 3.1. Let G be a graph on k vertices with signless Laplacian matrix
Q, and let x ∈ Rk be a vector with at least one positive entry and at least one
negative entry. By permuting the entries of x and simultaneously permuting the
rows and columns of Q, we assume without loss of generality that xj > 0, j =
1, . . . , l, xj < 0, j = l + 1, . . . , n, and xj = 0, j = n + 1, . . . , k. Let y denote the

subvector of x on its first n entries, let s =

[
1l

−1n−l

]
, let z = y − yT s

n s, and let

H0 denote the subgraph of G induced by the edges in G of the form i ∼ j where
1 ≤ i ≤ l < j ≤ n. Set ν = xT Qx

xT x
and θ = n2yT y

(yT s)2
− n; denote the algebraic

connectivity of H0 by α, and let ε = min{(yi + yj)2|i, j = 1, . . . , l, i 6= j} ∪ {(yi +
yj)2|i, j = l + 1, . . . , n, i 6= j}. If

(6) ν <

n2ε
(yT s)2

+ αθ

n + θ
,

then the nonzero entries of x induce a bipartite subgraph of G.

Proof: We begin by remarking that θ provides a measure of how close y is to s, since
θ = 0 if and only if y = s, by the Cauchy-Shwarz inequality. Observing that z is
orthogonal to s, we find readily that zT z = (yT s)2

n2 θ. We partition z conformally with

s as z =

[
u

−v

]
, and let z̃ =

[
u

v

]
; observe that z̃T 1 = 0. For each j = 1, . . . , n,

let d0(j) = |{r|j ∼ r, n + 1 ≤ r ≤ k}|. Since xT Qx = νxT x, we find that

νyT y =
∑

i∼j,1≤i,j≤l

(yi+yj)2+
∑

i∼j,l+1≤i,j≤n

(yi+yj)2+
∑

i∼j,1≤i≤l,l+1≤j≤n

(yi+yj)2+
n∑

j=1

d0(j)y2
j .

Hence,

νyT y ≥∑
i∼j,1≤i,j≤l

(yi + yj)2 +
∑

i∼j,l+1≤i,j≤n

(yi + yj)2 +
∑

i∼j,1≤i≤l,l+1≤j≤n

(yi + yj)2 =

∑
i∼j,1≤i,j≤l

(yi + yj)2 +
∑

i∼j,l+1≤i,j≤n

(yi + yj)2 + z̃T L(H0)z̃,

where L(H0) is the Laplacian matrix of H0. As z̃T 1 = 0, we have z̃T L(H0)z̃ ≥
αz̃T z̃ = αzT z.
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We proceed by contraposition, so suppose that the induced subgraph on ver-
tices 1, . . . , n, which we denote by H, is not bipartite. Then without loss of gen-
erality we may assume that l ≥ 2 and that H contains the edge 1 ∼ 2. From the
above, we have νyT y ≥ (y1 + y2)2 + αzT z ≥ ε + αzT z. Since zT z = (yT s)2

n2 θ and

yT y = (yT s)2

n + zT z, we find that

ν ≥
ε + αθ (yT s)2

n2

(n + θ) (yT s)2

n2

.

The conclusion now follows. �

Example 3.2. In this example we illustrate the fact that, in the context of
Theorem 3.1, some constraint on ν is needed in order to conclude that the subgraph
is bipartite.

Here we consider K3, whose corresponding signless Laplacian matrix is Q = 2 1 1
1 2 1
1 1 2

 . Let x =

 3
4
3
4
−3
2

 . We find readily that ν = xT Qx
xT x

= 1, yT s = 3 =

n, θ = 3
8 and ε = 9

4 ; the subgraph H0 induced by the edges 1 ∼ 3, 2 ∼ 3 is K1,2,

so α = 1. All of this yields ε+αθ
n+θ = 7

9 , which is of course less than ν, as K3 is not
bipartite.

Remark 3.3. Suppose that in the context of Theorem 3.1, the subgraph of G

on vertices 1, . . . , n - H say - is bipartite. Letting R denote the principal submatrix
of Q on rows and columns 1, . . . , n, we find readily that sT Rs is the number of
edges between vertices in H and vertices in G \H. It is not difficult to determine
that sT Rs ≥ µn, where µ denotes the smallest eigenvalue of Q.

It is natural to anticipate that if ν is small, then the number of edges between
H and G \H will also be small; the results below are an attempt to reinforce that
intuition.

In our next result, we continue with the notation of Theorem 3.1.

Theorem 3.4. Suppose that ν < α, and let q = |{j|d0(j) ≥ 1, j = 1, . . . , n}|.
Then q ≤ νn

(
1+α−ν

α−ν

)
.

Proof: Let H denote the subgraph of G induced by vertices 1, . . . , n. We begin
by remarking that q denotes the number of vertices in the subgraph H that are
adjacent to at least one vertex in G \H. Suppose for concreteness that d0(jp) ≥ 1
for p = 1, . . . , q. Arguing as in the proof of Theorem 3.1, we have νn−(α−ν)zT z ≥∑q

p=1 d0(jp)(1 + zjp)2 ≥
∑q

p=1(1 + zjp)2.
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Set wT =
[

zj1 . . . zjq

]
. Then νn − (α − ν)wT w ≥

∑q
i=1(1 + wi)2. Ap-

plying the Cauchy-Schwarz inequality (twice), and letting β = wT 1, we find that
νn−(α−ν)β2

q ≥ (q+β)2

q . Consequently, we find that (1+α−ν)β2+2qβ+q2−νqn ≤ 0,

and by considering the left hand side as a quadratic in β, and then minimising that
quadratic, we find that− q2

1+α−ν +q2−νqn ≤ 0. It now follows that q ≤ νn
(

1+α−ν
α−ν

)
,

as desired. �

Remark 3.5. In the context of Theorem 3.4, we always (trivially) have q ≤ n,

so Theorem 3.4 only yields useful information in the case that ν(1+α−ν)
α−ν < 1. It is

straightforward to determine that this last holds only when either ν < 2+α−
√

4+α2

2

or ν > 2+α+
√

4+α2

2 . Evidently the latter condition violates the hypothesis that
ν < α in Theorem 3.4, so we conclude that Theorem 3.4 yields a nontrivial bound
on q when ν < 2+α−

√
4+α2

2 .

As above, we continue with the notation of Theorem 3.1. In the special case
that the vector x of Theorem 3.1 is an eigenvector corresponding to the smallest
signless Laplacian eigenvalue, we can derive an upper bound on the number of edges
between H and G \H.

Theorem 3.6. Let G be a graph on k vertices, and let x be an eigenvec-
tor corresponding to the smallest eigenvalue µ of Q. Suppose that xj > 0, j =
1, . . . , l, xj < 0, j = l + 1, . . . , n, and xj = 0, j = n + 1, . . . , k. Let y denote the

subvector of x on its first n entries, let s =

[
1l

−1n−l

]
. Let θ = n2yT y

(yT s)2
− n, let

R denote the principal submatrix of Q on vertices 1, . . . , n, and denote the largest
eigenvalue of R by ρ.

Then sT Rs ≤ µ n2

n+θ + ρ nθ
n+θ .

Proof: Note that y is an eigenvalue of R corresponding to its smallest eigenvalue,
which is necessarily µ. Denote the remaining eigenvalues of R by λ2 ≤ . . . ≤
λn ≡ ρ, and let uj , j = 2, . . . , n denote the corresponding eigenvectors, which we
take (without loss of generality) to be pairwise orthogonal, and orthogonal to y.

We find that s = yT s
yT y

y +
∑n

j=2

uT
j s

uT
j uj

uj . In particular, we find that n = sT s =

(yT s)2

yT y
+

∑n
j=2

(uT
j s)2

uT
j uj

.
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Next, we note that sT Rs = µ (yT s)2

yT y
+

∑n
j=2 λj

(uT
j s)2

uT
j uj

≤ µ (yT s)2

yT y
+ρ

∑n
j=2

(uT
j s)2

uT
j uj

=

µ (yT s)2

yT y
+ ρ

(
n− (yT s)2

yT y

)
. Using the fact that θ = n2yT y

(yT s)2
− n, and rewriting the in-

equality slightly now yields the desired conclusion. �

Example 3.7. In this example, we revisit the graph G of Example 2.3, and
use it to illustrate the results of Theorems 3.1, 3.4 and 3.6. As we saw earlier, the
signless Laplacian matrix for G can be written as

Q =


m 0T 0 1T 1
0 mI 1 J 0
0 1T m 0T 1
1 J 0 mI 0
1 0T 1 0T 2

 ,

and the smallest signless Laplacian eigenvalue is µ = m+1−
√

m2+2m−3
2 . It is straight-

forward to determine that the vector x =


1− µ

1m−1

−1 + µ

−1m−1

0

 serves as a µ-eigenvector.

Applying Theorem 3.1 with the vector x, we note that the subgraph H identified
by the nonzero entries of x is the subgraph of G formed by deleting the vertex of
degree 2. Computing the relevant quantities, we find that ν = µ, ε = (2−µ)2, yT s =
2(m− µ), n = 2m,α = 3m−2−

√
m2+4m−2
2 and θ = 2m(m−1)µ2

(m−µ)2 . It is straightforward
to show that as m → ∞, µ is asymptotic to 1

m ; on the other hand, the right-hand
side of (6) is asymptotic to 2

m as m →∞, so that for all sufficiently large values of
m, we find that (6) is satisfied.

Referring to Theorem 3.4, we find that for the subgraph H of G, the value
of q is 2. Since α is readily seen to be asymptotic to m − 2 as m → ∞, it follows
that as m → ∞, the expression νn

(
1+α−ν

α−ν

)
converges to 2 as m → ∞. Thus we

find that for all sufficiently large values of m, the upper bound on q furnished by
Theorem 3.4 is accurate.

Turning to Theorem 3.6, we find that for the subgraph H, we have sT Rs = 2.

Note that the largest eigenvalue ρ of R is readily seen to lie between 2m − 1 and
2m. It now follows that the expression µ n2

n+θ + ρ nθ
n+θ converges to 2 as m →∞, so

that Theorem 3.6 provides an accurate estimate of sT Rs for this example.
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Figure 1. 2− µ
δ ≤ λ ≤ 2− µ

∆

4. Computations and applications

4.1. Inequality (1) for large graphs. Using NetworkX we randomly gen-
erated 100 multigraphs, each on 1000 vertices, whose degree sequences followed a
power law distribution with exponent 2.1. Loops and multiple edges were then
removed to generate simple loop-free graphs whose degree sequences were close to
following a power law distribution. For each such graph, we considered the con-
nected component with the largest number of vertices, and for that component, we
computed the largest normalised Laplacian eigenvalue λ, as well as the expressions
2− µ

∆ and 2− µ
δ , where µ is the smallest signless Laplacian eigenvalue, and where

δ,∆ represent the minimum and maximum degrees, respectively. The results are
depicted in Figure 1, which plots 2− µ

δ (blue), λ (red), and 2− µ
∆ (yellow), for each

graph; here the graphs were sorted according to increasing values of µ. The values
of µ for these examples ranged between approximately 0.05055 and 0.23191. Since
the graphs that were generated have degree sequences that are roughly distributed
according to a power law, their maximum degrees are typically quite large, while
the minimum degrees are quite small. These observations are reflected in Figure 1:
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the blue graph corresponding to 2− µ
∆ is approximately constant, while the yellow

graph corresponding to 2 − µ
δ is more sensitive to the value of µ. Note that for

all of the graphs, the quantities 2− µ
δ and 2− µ

∆ provide a fairly small interval in
which λ is contained.

4.2. Scale-free networks. Theorem 3.1 suggests a strategy for identifying
bipartite subgraphs of a given graph G. The approach is as follows:
a) compute a unit eigenvector v corresponding to the smallest signless Laplacian
eigenvalue for G;
b) construct the vector x from v by setting its entries of small absolute value equal
to zero;
c) if it happens that (6) holds, then the nonzero entries of x induce a bipartite
subgraph of G.

We implemented that approach on a collection of randomly generated graphs.
Specifically, using NetworkX we randomly generated 500 multigraphs, each on 600
vertices, whose degree sequences followed a power law distribution with exponent
2.1. Loops and multiple edges were then removed to generate simple loop-free
graphs whose degree sequences were close to following a power law distribution.
For each graph so generated, we considered the connected component G containing
the maximum number of vertices, and computed the unit eigenvector vG for the
smallest eigenvalue of its signless Laplacian matrix.

Next, we formed the vector xG from vG by rounding all of its entries to the
first decimal place. We then considered the subgraph HG induced by the nonzero
entries of xG. We remark here that our decision to round the entries of vG to the
first decimal place is motivated by a need to introduce some zeros into the vectors
with which we work, since an actual value of 0 is a rare occurrence when computing
eigenvectors numerically. Evidently different strategies for approximating vG will
yield different subgraphs; however the results below suggest that our rounding
method is reasonably successful in identifying bipartite subgraphs that are weakly
connected to the rest of the graph G.

For a total of 403 different graphs G, the subgraphs HG were connected,
and the corresponding vectors xG satisfied (6), so that bipartiteness was assured
by Theorem 3.1. These bipartite subgraphs were all of small order, containing
between 3 and 10 vertices, while the original connected graphs had orders ranging
from 548 to 598 vertices. For each of these 403 graphs the number of edges between
HG and the rest of G was at most 9; for 208 of these graphs, there was just one
edge between HG and the rest of G.
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Pajek@yeast. 2224 nodes, 6609 edges.

Figure 2. The connected component Ĝ

For a further 63 graphs G, the subgraphs HG were connected and bipartite,
but (6) did not hold. Again, the HG’s were of small order – between 3 and 16
vertices – while the orders of the connected graphs G ranged from 568 to 592. In
each of these cases, there were at most 11 edges connecting HG to the rest of G.
For the remaining 34 graphs, the subgraph HG was either not connected, or not
bipartite, or contained just two vertices.

Based on these computations, it appears that there is some utility in the
approach to identifying bipartite subgraphs suggested by Theorem 3.1.

4.3. A protein-protein interaction network. In [2], the authors consider
protein-protein interaction networks, and are interested in identifying bipartite (or
nearly bipartite) subgraphs within such networks; for, finding such subgraphs leads
to an enhanced understanding of the function of the corresponding proteins. The
approach to identifying such bipartite subgraphs proposed in [2] is to consider the
network as a graph, and then use eigenvectors of the adjacency matrix correspond-
ing to small eigenvalues in order to identify bipartite subgraphs. For the example
of a protein-protein interaction network on 2617 vertices (corresponding to budding
yeast), it is reported in [2] that six so-called quasi-bipartite subgraphs are identified
by this adjacency matrix eigenvector method.
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In view of the results in section 3, it is natural to conjecture that eigenvec-
tors of the signless Laplacian matrix corresponding to small eigenvalues may also
yield an effective technique for identifying bipartite subgraphs of a protein-protein
interaction network. Below we describe the results of an implementation of this
idea.

We used the dataset describing a protein-protein interaction network for
budding yeast available at http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast
/Yeast.htm. That network has 2361 vertices, and 7182 edges, of which 536 are
loops. We removed the loops to yield a loop-free graph G on 2361 vertices with
6646 edges. The graph G consists of 101 connected components. One hundred
of these connected components are either trees (and so, necessarily bipartite) or
isolated vertices, of orders ranging from one to eight vertices; taken together they
contain 137 vertices and 37 edges. The remaining connected component of G ,
which we denote by Ĝ, is a graph on 2224 vertices, with 6609 edges. Since the
smallest signless Laplacian eigenvalue for Ĝ is positive (approximately 0.0609), Ĝ

is not bipartite. Figure 2 gives a depiction of Ĝ; the source image can be found
at http://www2.research.att.com/ yifanhu/GALLERY/GRAPHS/PDF/Pajek
@yeast.pdf.

We considered unit eigenvectors of the signless Laplacian matrix for Ĝ cor-
responding to its 50 smallest eigenvalues. For each such unit eigenvector v, we
formed the vector xv by rounding the entries of v to the first decimal place. We
then considered the subgraph of Ĝ, say Hv, induced by the nonzero entries of xv.

For a total of 12 such eigenvectors v, the corresponding subgraph Hv was
connected and the vector xv satisfied (6), thus ensuring that Hv was bipartite.
These subgraphs were of small order, between 3 and 8 vertices, and in each case were
joined to the rest of Ĝ by at most 15 edges. For 7 of these Hv’s, there was just one
edge joining Hv to the rest of Ĝ. For a further 15 eigenvectors v, the corresponding
subgraph Hv was connected and bipartite, but (6) was not satisfied by xv. Again
the subgraphs were of orders between 3 and 8, and were joined to the rest of Ĝ

by at most 12 edges. For the remaining 23 eigenvectors under consideration, the
corresponding subgraph was either not connected, or not bipartite, or consisted of
just two vertices.

Based on these results, it seems that the technique of using signless Lapla-
cian eigenvectors for small eigenvalues to identify bipartite subgraphs represents an
improvement on the adjacency eigenvector approach employed in [2].
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