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Abstract. The minimum rank of a simple graph G over a field F is the smallest possible rank

among all real symmetric matrices, over F, whose (i, j)-entry (for i 6= j) is nonzero whenever ij is

an edge in G and is zero otherwise. In this paper, the problem of minimum rank of (strict) powers

of trees is studied.
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1. Introduction. A graph is a pair G = (VG, EG), where VG is the (finite,

nonempty) set of vertices of G and EG is the set of edges, where an edge is an

unordered pair of vertices. A matrix A ∈ F
n×n (F a field) is symmetric if AT = A.

For an n×n symmetric matrix A, the graph of A, denoted G(A), is the graph with

vertices {1, ..., n} and edges {ij : aij 6= 0, 1 ≤ i < j ≤ n}. Note that for symmetric

matrices the diagonal is ignored in determining G(A). Let

SF(G) = {A ∈ F
n×n : AT = A,G(A) = G}

be the set of symmetric matrices over F described by a graph G. The minimum rank

of a graph G over the field F is defined as mrF(G) = min{rank(A) : A ∈ SF(G)}.

Given a graph G and a field F, the minimum rank problem is to compute mrF(G).

The minimum rank problem has received significant attention in the last few years;

motivation, recent results, and an extensive bibliography can be found in the survey

article [6]. Unless explicitly stated otherwise, F = R and we write S(G) and mr(G)

instead of SR(G) and mrR(G), respectively.
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In this paper, we study the problem of determining the minimum rank of (strict)

powers of paths and trees. This problem was initially investigated by the Minimum

Rank Group at the AIM Workshop [1].

In Section 2, we introduce the necessary preliminary results and notation for our

discussion. Most of the graph theoretic definitions appear in [5, 10]. In Section 3

we provide results on minimum rank of powers and strict powers of paths, and in

Section 4 we give our main results on general trees.

2. Notation and terminology. All the graphs in this paper are simple graphs,

that is, all graphs are loop-free and undirected. The order of a graph G, denoted

|G|, is the number of vertices of G. If e = uv ∈ EG, we say that u and v are

endpoints of e; we also say that u and v are adjacent, or that they are neighbors. For

w ∈ VG, we denote by N(w) the set of all neighbors of w. Two graphs G = (V,E) and

G′ = (V ′, E′) are isomorphic, and we write G ∼= G′, whenever there exist bijections

φ : V → V ′ and ψ : E → E′, such that v ∈ V is an endpoint of e ∈ E if and only

if φ(v) is an endpoint of ψ(e). The degree of a vertex v, denoted by deg(v), is the

number of edges with v as endpoint. A vertex v is said to be a pendant vertex if

deg(v) = 1, and the set of pendant vertices in a graph G will be denoted by π(G).

A vertex v is said to be a high-degree vertex whenever deg(v) ≥ 3. A subgraph of a

graph G is a graph H such that VH ⊆ VG and EH ⊆ EG; the graph G − e denotes

the subgraph (VG, EG \ {e}) of G. If W ⊆ VG and E′ = {uv : u, v ∈ W,uv ∈ EG},

the graph (W,E′) is referred to as the subgraph of G induced by W and is denoted

by G[W ]. The subgraph of G induced by VG \ {v} is denoted by G − v. A path

on n vertices is the graph Pn = ({v1, v2, . . . , vn}, {ei : ei = vivi+1, 1 ≤ i ≤ n− 1}). A

graph G, is connected if for every pair u, v ∈ VG, there is a path joining u with v. A

graph T = (V,E) is a tree if it is connected and |V | = n and |E| = n− 1. A walk of

length r in a graph (V,E) is an alternating sequence: vi0 , ei1 , vi1 , ei2 , . . . , vir−1 , eir , vir ,

of vertices, vij ∈ V , and edges eij ∈ E, not necessarily distinct, such that vij−1 and

vij are the endpoints of eij , for j = 1, 2, . . . , r. A complete graph is a graph whose

vertices are pairwise adjacent, a complete graph on n vertices is denoted by Kn. A

clique in a graph G is a complete subgraph G′ of G, that is G′ ∼= K|G′|. A cut-vertex,

in a connected graph G, is a vertex v ∈ VG, such that G−v is disconnected. A block in

a graph is a maximal connected subgraph without a cut-vertex. A block-clique graph

is a graph in which all its blocks are cliques. A graph G is bipartite if VG = X ∪ Y ,

with X ∩ Y = ∅, and such that each edge of G has one endpoint in X and the other

in Y . A complete bipartite graph is a bipartite graph in which each vertex in X is

adjacent to all the vertices in Y ; a complete bipartite graph is denoted by Kn1,n2 ,

where |X | = n1 and |Y | = n2. The complete bipartite graph Kn,1 is a star, usually

denoted Sn, where n is the number of vertices. The union of graphs G1, G2, . . . , Gk,

denoted
⋃k

i=1 Gi, is the graph
(

∪k
i=1 Vi,∪

k
i=1 Ei

)

. The path cover number of a graph
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G, denoted by P (G), is the minimum number of vertex disjoint induced paths in G

that cover all the vertices in VG. An (edge) covering of a graph G is a set of subgraphs

C = {Gi, i = 1, ..., k} such that G is the non-disjoint union G =
⋃k

i=1 Gi. For a given

covering C, we let νC(e) denote the number of subgraphs that have e as an edge. A

clique covering in a graph G is a set of cliques such that each edge of G is contained

in at least one of these cliques. The clique covering number of G, denoted by cc(G), is

the smallest number of cliques in a clique covering of G; the clique covering number

is a well-studied parameter.

The adjacency matrix of a graph G is the matrix A(G) ∈ S(G), whose nonzero

entries are 1’s. The (i, j)-entry of A(G)r is the number of walks of length r between

vertices i and j, and the (i, j)-entry of
∑r

i=1 A(G)i is the number of walks of length

at most r between vertices i and j. The unit matrix, Eij , is an n × n matrix whose

(i, j)-entry is 1, and all other entries are 0.

Definition 2.1. Let r be a positive integer and G = (VG, EG) a graph. The

graph G to the power r is the graph Gr = (VG, EGr), where ij ∈ EGr if and only if

there is a walk in G from vertex i to vertex j of length at most r.

Note that Definition 2.1 is the classical definition of power of a graph (see [5, pp.

281]). In our discussion of minimum rank of powers of graphs, we also consider strict

powers as in the following.

Definition 2.2. Let r be a positive integer and G = (VG, EG) a graph. The

graph G to the strict power r is the graph G(r) = (VG, EG(r)), where ij ∈ EG(r) if and

only if there is a walk in G from vertex i to vertex j of length exactly r.

If G is a graph,
∑r

i=1 A(G)i ∈ S (Gr), while A(G)r ∈ S
(

G(r)
)

, thus the strict

definition parallels the definition of power of the adjacency matrix of a graph. The

following results can be found in [6, Corollary 1.5, Observations 1.2, 1.6, 1.7 and 1.8].

Item 3 is a consequence of the work in [2].

Observation 2.3. Let G be a graph.

1. If G is connected, then mr(G) = |G| − 1 if and only if G = P|G|;

2. If G is connected and |G| ≥ 2, then mr(G) = 1 if and only if G = K|G|;

3. If G = Kn1,n2 , with n1, n2 ≥ 1, n1 + n2 ≥ 3, then mr (G) = 2;

4. If H is an induced subgraph of G, then mr(H) ≤ mr(G);

5. If G has connected components G1, G2, . . . , Gk, then mr(G) =
∑k

i=1 mr (Gi);

6. If G =
⋃k

i=1 Gi, then mr(G) ≤
∑k

i=1 mr (Gi);

7. mr(G) ≤ cc(G).

For a tree T , a graphical parameter (the path cover number) is exploited to
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compute mr(T ).

Theorem 2.4. [9] If T is a tree, then mr(T ) = |T | − P (T ).

The rank-spread, rv(G), at a vertex v ∈ VG is rv(G) = mr(G) − mr(G − v)

(see [3, 8]). The rank spread of a vertex plays a major role in the computation of the

minimum rank of a graph with a cut-vertex. The following result gives a formula for

computing the minimum rank of such a graph.

Theorem 2.5. [3, 8] Suppose that a graph G has a cut-vertex v and G − v

results in k components. For i ∈ {1, 2, . . . , k}, let Wi ⊆ VG be the vertices of the ith

component, and Gi be the subgraph of G induced by {v} ∪Wi. Then

mr(G) =

k
∑

i=1

mr (Gi − v) + min

{

k
∑

i=1

rv (Gi) , 2

}

.

In some cases, optimal matrices over the field R, which realize the minimum rank

of a graph over R, can be used to find optimal matrices over other fields. Since most of

the minimum ranks over R in this paper are realized by nonnegative integer matrices,

these optimal matrices over R are also optimal matrices over some other fields. We

note this fact where necessary.

Proposition 2.6. [7] Over an arbitrary field F, the minimum ranks of Kn,

Kn1,n2 , and Pn are realized by (0, 1)-matrices.

Specifically: mrF (Kn) = rankF (A (Kn) + In), mrF (Kn1,n2) = rankF (A (Kn1,n2)),

and mrF (Pn) =

{

rankF (A (Pn)) , n odd,

rankF (A (Pn) + E11 + Enn) , n even.

The following proposition follows from basic matrix rank inequalities and from

item 6 of Observation 2.3.

Proposition 2.7. [4, Proposition 2.9] Let F be a field and G be a graph. Suppose

C = {Gi : i = 1, 2, . . . , k} is a covering of G, and for each Gi there is a diagonal matrix

Di with entries in F such that rankF (A (Gi) +Di) = mrF (Gi). If char(F) is either 0

or a prime p, and νC(e) 6≡ 0 (mod p) for each edge e ∈ EG, then

mrF(G) ≤
k
∑

i=1

mrF (Gi) .

In particular, if νC(e) = 1 for every edge e ∈ EG and mr(G) =
∑k

i=1 mr (Gi), then

there is an integer diagonal matrix D such that mr(A(G) +D) = rank(A(G) +D).

3. Powers of paths. This section contains results relative to the minimum rank

of powers of paths, and is divided into two parts. In Subsection 3.1, we focus on usual
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powers of a graph in the sense of Definition 2.1 and in Section 3.2, we concentrate on

results based on strict powers of graphs as in Definition 2.2.

3.1. Usual powers of paths. It is clear that Gr is a subgraph of Gr+1 for

all r ≥ 1, thus it is natural to ask if there is a relationship between mr (Gr) and

mr (Gr+s) whenever s ≥ 1. See Figure 3.1 for an example of the graph power.

1 2 3 4 5 6 7 8

Fig. 3.1. The graph P 3
8 .

Observation 3.1. For a positive integer m with 1 ≤ m ≤ n, and

i ∈ {1, 2, . . . , n − m + 1}, the induced subgraph of P r
n on the set of vertices {i, i +

1, . . . , i+m− 1} is isomorphic to P r
m.

Note that mr (P2) = 1, because P2
∼= K2. Thus, for r ≥ 2, mr (P r

2 ) = 1.

Theorem 3.2. For n ≥ 3 and r positive integers,

mr (P r
n) =

{

n− r if 1 ≤ r ≤ n− 2,

1 if r ≥ n− 1.

Furthermore, the minimum rank of P r
n is realized by a nonnegative integer matrix.

Proof. From our definition, the vertices of Pn are numbered 1, 2, . . . , n, sequen-

tially from a pendant vertex. Note that ij ∈ EP r
n
if and only if |i−j| ≤ r. This implies

that mr (P r
n) ≥ n− r for r with 1 ≤ r ≤ n− 1, since the upper right (n− r)× (n− r)

submatrix of any matrix in S (P r
n) is a full-rank matrix. In addition, P r

n
∼= Kn for

r ≥ n− 1, and hence mr (P r
n) = 1 if r ≥ n− 1.

We now prove by induction on n that for 1 ≤ r ≤ n− 2, mr (P r
n) = n− r. First,

if n = 3, then r = 1 and mr (P3) = 2 = n− r.

Suppose that for n = k−1, mr
(

P r
k−1

)

= (k−1)−r, whenever 1 ≤ r ≤ (k−1)−2.

Also note that if r = k−2 = (k−1)−1, then from the case r ≥ n−1, mr
(

P r
k−1

)

= 1.

Let n = k, and let r be an integer such that 1 ≤ r ≤ k − 2. Let H1 be the subgraph

of P r
n , induced by the set of n− 1 vertices {1, 2, . . . , n− 1}, and H2 the subgraph of

P r
n , induced by the set of r + 1 vertices {n− r, n− r + 1, . . . , n}, so that

P r
n
∼= (H1 ∪ {n})

⋃

(H2 ∪ {1, 2, . . . , n− r − 1}) .

By item 6 in Observation 2.3,

mr (P r
n) ≤ mr (H1 ∪ {n}) + mr (H2 ∪ {1, 2, . . . , n− r − 1}) = mr (H1) + mr (H2) .
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By Observation 3.1, H1
∼= P r

n−1, and H2
∼= P r

r+1 with 1 ≤ r ≤ k − 3. By the

induction hypothesis, mr (H1) = mr
(

P r
n−1

)

= n − 1 − r. Since r ≥ (r + 1) − 1,

mr (H2) = mr
(

P r
r+1

)

= 1. It follows that mr (P r
n) ≤ (n − 1 − r) + 1 = n − r, and

consequently, that mr (P r
n) = n− r.

If Gi is the subgraph of P r
n induced by the vertices {i, i + 1, . . . , i + r}, i =

1, 2, . . . , n − r, then Gi
∼= P r

r+1
∼= Kr+1. Also, {Gi : i = 1, 2, . . . , n − r} is an

edge covering of G, with mr(Gi) = rank (A (Kr+1) + Ir+1) = 1. As in the proof of

Proposition 2.7, let Ai = [0i−1] ⊕ [A (Kr+1) + Ir+1] ⊕ [0n−r−i], where 0s is the zero

matrix of order s. The matrix A =
∑n−r

i=1 Ai is a nonnegative integer matrix and

rank(A) = mr(P r
n) = n− r.

Since, for each edge e of P r
n , νC(e) ≤ r, the optimal matrix A over R for The-

orem 3.2 is also an optimal matrix over any field F with char(F) = 0 or p for some

prime p > r.

Corollary 3.3. Let r be a positive integer and p a prime with p > r. If F

is a field with char(F) = 0 or p, then the matrix A =
∑n−r

i=1 Ai, as in the proof of

Theorem 3.2, satisfies rankF(A) = mrF(P r
n) = n− r.

3.2. Strict powers of paths. Although there are similarities between the usual

powers and the strict powers of graphs, there are also some interesting differences.

For example, the graph G(r) is a subgraph of G(r+2), but not necessarily a subgraph

of G(r+1). Note that Gr =
⋃r

k=1G
(r). Recall that from our definition, the vertices of

Pn are numbered 1, 2, . . . , n, sequentially from a pendant vertex, so the following two

observations follow immediately.

Observation 3.4. For a positive integer m with 1 ≤ m ≤ n, and

i ∈ {1, 2, . . . , n−m + 1}, the induced subgraph of P
(r)
n on the set of vertices {i, i+

1, . . . , i+m− 1} is isomorphic to P
(r)
m .

Observation 3.5. An edge ij is in E
P

(r)
n

if and only if |i − j| ∈ {r, r − 2, r −

4, . . . , k}, where k = 2 if r is even and k = 1 if r is odd.

Proposition 3.6. Let n and r be a positive integers.

1. If r is odd, then P
(r)
n is a bipartite graph.

2. If r is even, then P
(r)
n is a disjoint union of two graphs.

Proof. If r is odd, then a vertex i ∈ V
P

(r)
n

is adjacent only to vertices of the

opposite parity within distance r. This means that P
(r)
n is a bipartite graph.

If r is even, then a vertex i ∈ V
P

(r)
n

is adjacent only to vertices of the same parity

within distance r. This means that P
(r)
n is a disjoint union of two graphs.
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Figure 3.2 illustrates the conclusion of Proposition 3.6.

1 2 3 4 5 6 7 8

(a)

1 23 45 67 8

(b)

Fig. 3.2. The graphs P
(3)
8 and P

(4)
8

Remark 3.7. Note that P
(r)
2

∼= P2
∼= K2 if r is odd and P

(r)
2

∼= K1 ∪K1 if r is

even, thus for r ≥ 1, mr
(

P
(r)
2

)

= 1 for r odd and mr
(

P
(r)
2

)

= 0 for r even. Also,

P
(r)
3

∼= P3 if r is odd and P
(r)
3

∼= K2 ∪K1 if r is even, thus for r ≥ 1, mr
(

P
(r)
3

)

= 2

for r odd, and mr
(

P
(r)
3

)

= 1 for r even.

Theorem 3.8. For positive integers r, and n ≥ 4,

mr
(

P (r)
n

)

=

{

n− r if 1 ≤ r ≤ n− 3,

2 if r ≥ n− 2.

Furthermore, mr
(

P
(r)
n

)

is achieved by a nonnegative integer matrix, and for r ≥ n−3,

there is a (0, 1)-matrix which realizes mr
(

P
(r)
n

)

.

Proof. From our definition, the vertices of Pn are numbered 1, 2, . . . , n, sequen-

tially from a pendant vertex. Notice that mr
(

P
(r)
n

)

≥ n− r for 1 ≤ r ≤ n− 1, since

the upper right (n− r) × (n− r) submatrix of any matrix in S
(

P
(r)
n

)

is a full-rank

matrix.

If n = 4, by Theorem 2.4, mr (P4) = 3. For r odd, r ≥ 3, we have P
(r)
4

∼= K2,2,

and for r even P
(r)
4

∼= K2∪K2. In either case, mr
(

P
(r)
4

)

= 2. By Proposition 2.6, the

respective matrices that realize the minimum rank are A (P4) +E11 +E44, A (K2,2),

and A (K2)⊕A (K2) + I4.

When r ≥ n − 2, and r is odd, the graph P
(r)
n is isomorphic to the complete

bipartite graph K⌊n/2⌋,⌈n/2⌉. When r ≥ n − 2, and r is even, the graph P
(r)
n is

isomorphic to the disjoint union, K⌊n/2⌋ ∪K⌈n/2⌉, of two complete graphs. In both

cases, mr
(

P
(r)
n

)

= 2. By Proposition 2.6, the respective matrices that realize the

minimum rank are A
(

K⌊n/2⌋,⌈n/2⌉

)

and
(

A
(

K⌊n/2⌋

)

⊕A
(

K⌈n/2⌉

))

+ In.

Suppose r = n− 3 and ij ∈ E
P

(r)
n

. Then, by Observation 3.5, |i− j| ∈ {n− 3, n−

5, . . . , k}, with k = 1, 2. In either case, this implies that the only edge not in E
P

(r)
n

is e = 1n, and thus P
(r)
n is isomorphic to Kn/2,n/2 − e, when n is even, and P

(r)
n is

isomorphic to
(

K⌊n/2⌋ ∪K⌈n/2⌉

)

− e, when n is odd. In both cases, mr
(

P
(r)
n

)

= 3;
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the matrices A
(

Kn/2,n/2

)

− (E1n + En1)+E11+Enn and A
(

K⌊n/2⌋

)

⊕A
(

K⌈n/2⌉

)

+

In −
(

E⌊n/2⌋+1,⌊n/2⌋+1 + E⌊n/2⌋+1,n + En,⌊n/2⌋+1 + Enn

)

realize the minimum ranks,

respectively.

Let 1 ≤ r < n− 3 and assume that for 4 ≤ k < n− 1, we have mr
(

P
(r)
k

)

= k− r.

Assume further, that for 4 ≤ k ≤ n − 1, there is a nonnegative integer matrix M ∈

S
(

P
(r)
k

)

, with rank (M) = mr
(

P
(r)
k

)

.

For k = n, let H1 be the subgraph of P
(r)
n induced by the set of vertices

{1, 2, . . . , n− 2}, and H2 the subgraph of P
(r)
n induced by the set of vertices {n− r−

1, n− r, . . . , n}, so that

P (r)
n

∼= (H1 ∪ {n− 1, n})
⋃

(H2 ∪ {1, 2, . . . , n− r − 2}) .

By item 6, in Observation 2.3,

mr
(

P (r)
n

)

≤mr (H1∪{n− 1, n})+mr (H2∪{1, 2, . . . , n− r − 2})=mr (H1)+mr (H2) .

By Observation 3.4, H1
∼= P

(r)
n−2, and H2

∼= P
(r)
r+2, by the induction hypothesis

mr (H1) = mr
(

P
(r)
n−2

)

= (n − 2) − r, and from the case r = n − 2, mr (H2) =

mr
(

P
(r)
r+2

)

= 2. It follows that mr
(

P
(r)
n

)

≤ (n−2−r)+2 = n−r, and consequently,

that mr
(

P
(r)
n

)

= n− r.

Also by the induction hypothesis there exist nonnegative integer matrices Mi ∈

S(Hi), with rank (Mi) = mr (Hi) , i = 1, 2. Let

M = [M1 ⊕ 02] + [0n−r−2 ⊕M2] ,

clearly M is a nonnegative integer matrix, and M ∈ S
(

P
(r)
n

)

. Furthermore, n− r ≤

rank(M) ≤ rank (M1) + rank (M2) = n− r.

Corollary 3.9. If F is a field with char(F) = 0 or char(F) = p, with p > r, then

the matrixM as in the proof of Theorem 3.8, satisfies rankF(M) = mrF(P
(r)
n ) = n−r.

4. Strict powers of trees. The next section features results on strict powers

of trees, in particular, we relate mr
(

T (2)
)

to other graph parameters.

Observation 4.1.

1. S2
n = Kn, so mr(Sn) = 2, and mr(Sr

n) = 1, r > 1;

2. S
(r)
n = Kn−1 ∪K1, if r is even, and S

(r)
n = Sn, if r is odd, so mr

(

S
(r)
n

)

= 1

if r is even, and mr
(

S
(r)
n

)

= 2 if r is odd.
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We have already noted that P
(2)
n is the disjoint union of two graphs. The following

lemma generalizes this notion to trees. Recall that π(T ) denotes the number of

pendant vertices in T .

Lemma 4.2. If T is a tree on n ≥ 4 vertices, with T 6= Sn, then T (2) is the

disjoint union of two block-clique graphs consisting of a total of n− π(T ) blocks.

Proof. Observe that for a pair of vertices z1 and z2 in T , there is a path from z1
to z2 in T (2) if and only if there is a (unique) path of even length from z1 and z2 in

T . Let w be a non-pendant vertex in T . For u, v ∈ N(w), there is the unique path

(of length 2) from u to v through w. The graph Qw = (N(w), {uv : u, v ∈ N(w)}),

is a maximal clique in T (2). Thus, T (2) consists of the disjoint union of two graphs,

one contains Qw and all the vertices at odd distance from w, and the other contains

w and all the vertices at even distance from w.

If none of the vertices in N(w) have neighbors in T (2), outside those in N(w),

then the clique Qw is a component in T (2). Let vi ∈ N(w) and u /∈ N(w) be adjacent

in T (2), and assume that vi is not a cut-vertex in T (2). Then there is a path in T (2)−vi
from u to vj ∈ N(w). But this implies there is a path of even length from u to vj
in T , which is a contradiction, as this path, together with the edges vjw and wvi,

creates a cycle in T . Thus, Qw forms a block in T (2).

Observe that an edge in T (2) is an edge in at least one Qw for some nonpendant

w. If an edge xy in T (2) is in Qw and Qz, z 6= w, then wxzyw is a cycle in T , which

is a contradiction. Thus, every edge in T (2) is in exactly one Qw and the intersection

of any two Qw-cliques is a vertex. We have shown that T (2) is the disjoint union of

two block-clique graphs.

To count the number of blocks in T (2) we proceed by induction on n. For n = 4,

the only non-star tree is P4, and satisfies P
(2)
4 = K2 ∪K2, which is a disjoint union

of two block-clique graphs consisting of a total of 4− 2 = 2 blocks.

Assume that for |T | = k ≤ n − 1, T (2) is the disjoint union of two block-clique

graphs consisting of a total of n− 1− π(T ) blocks. Now suppose |T | = n, let w be a

next-to-pendant vertex in T and U the set of all pendant neighbors of w. The graph

T − U is a tree with |T − U | ≤ n − 1, thus, by induction (T − U)(2) is the disjoint

union of two block-clique graphs consisting of n − |U | − π(T − U) blocks. We now

have two cases:

Case I: w has only one non-pendant neighbor v. In this case, w is a pendant

vertex in T − U , so the number of blocks in (T − U)
(2)

is n − |U | − π(T − U) =

n − |U | − (π(T )− |U |+ 1) = n − π(T ) − 1. Furthermore, the pendant neighbors of

w together with v form an additional clique in T (2), so the total number of blocks in

T (2) is n− π(T ).
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Case II: w has more than one non-pendant neighbor. In this case, w is a non-

pendant vertex in T−U , so the number of blocks in (T − U)(2) is n−|U |−π(T−U) =

n − |U | − (π(T )− |U |) = n − π(T ), where the neighbors of w, in T − U , form one

such block. In T (2), the pendant neighbors of w are adjacent to each other and to

the non-pendant neighbors of w. Therefore, no new clique is formed in T (2), only a

larger clique, so the total number of blocks in T (2) is n− π(T ).

The following lemma provides special cases for paths and stars (note that the

second statement is also valid for usual powers) and serve as base cases for induction

steps.

Lemma 4.3. If T is a path Pn, or a star Sn, where n ≥ 3, then the following

hold.

1. π(T )− P (T ) = 1, and

2. mr
(

T (2)
)

= n− π(T ) = mr(T )− 1.

Proof.

1. For T = Pn, π(T ) = 2, and P (T ) = 1. For T = Sn, π(T ) = n − 1, and

P (T ) = n− 2. In both cases P (T ) = π(T )− 1.

2. If T = Pn, then by Remark 3.7 and Theorem 3.8, mr
(

T (2)
)

= n − 2 =

n− π(T ). If T = Sn, then by Observation 4.1, mr
(

T (2)
)

= 1 = n− (n− 1) =

n− π(T ).

Theorem 4.4. If T is a tree on n ≥ 3 vertices, then P (T ) ≤ π(T ) − 1. Fur-

thermore, the equality holds if and only if there are no pairs of adjacent high-degree

vertices in T .

Proof. From Lemma 4.3, the statement is true for paths and stars, thus we may

assume T 6= Pn, T 6= Sn and proceed by induction on n.

If T has a pendant vertex v that is adjacent to a vertex of degree 2, and T̂ = T−v,

then π(T ) = π(T̂ ), and it is straightforward to see that P (T ) = P (T̂ ). Hence,

π(T )−P (T ) = π(T̂ )−P (T̂ ) ≥ 1, where the inequality follows from an induction step.

If every pendant vertex of T is adjacent to a vertex of degree at least 3, and

T̂ = T −v, where v is a pendant vertex, then π(T ) = π(T̂ )+1, and P (T ) ≤ P (T̂ )+1;

we find readily that π(T ) − P (T ) ≥ π(T̂ ) − P (T̂ ) ≥ 1, the inequality following from

an induction step.

For the second part of the proof, we may assume that |T | = n ≥ 6, since for

|T | = 2, 3, 4, and 5 all trees are either paths or stars. We proceed by induction on n.

Suppose that T has two high-degree vertices that are joined by an edge e. Let

T̂ = T − e, and note that T̂ is the union of two trees, T1 and T2, each on at least
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three vertices. Further, π(T ) = π(T1) + π(T2), and P (T ) ≤ P (T1) + P (T2). Hence,

π(T )− P (T ) ≥ π(T1)− P (T1) + π(T2)− P (T2) ≥ 2.

Now suppose that T has no adjacent pairs of high-degree vertices. Let u be a

vertex of high degree, and let C be a path cover of T of minimum cardinality. Note

that some edge e incident with u is not contained in any of the paths in C. If e joins

u to a pendant vertex v, let T̃ = T − v. Then π(T ) = π(T̃ ) + 1, P (T ) = P (T̃ ) + 1,

and note that the induction hypothesis applies to T̃ . Hence, we have π(T )− P (T ) =

π(T̃ )− P (T̃ ) = 1.

On the other hand, if e joins u to a vertex of degree two, then consider T = T −e.

Note that T is the union of two trees, T1 and T2, each on at least two vertices, and

that the induction hypothesis applies to each of T1 and T2. Without loss of generality,

u ∈ T1. Note that π(T ) = π(T1)+π(T2)−1, since there is exactly one pendant vertex

in T2 that is a non-pendant vertex in T , while all pendant vertices in T1 are also

pendant vertices in T . Also, P (T ) = P (T1) + P (T2), since e is not contained in any

of the paths in the cover C. Hence, we have π(T ) − P (T ) = π(T1) + π(T2) − 1 −

(P (T1) + P (T2)) = π(T1) − P (T1) + π(T2) − P (T2) − 1 = 1, the equality following

from the induction hypothesis.

Theorem 4.5. If T is a tree on n ≥ 3 vertices, then mr
(

T (2)
)

≤ n − π(T ) ≤

mr(T ) − 1. Furthermore, mr
(

T (2)
)

= mr(T ) − 1 if and only if the following two

conditions hold:

1. T has no pair of adjacent high-degree vertices; and

2. each high-degree vertex of T is adjacent to at most two vertices of degree 2.

Proof. By Lemma 4.3, the statement is true for T a path or a star, otherwise,

by Lemma 4.2 there is a clique covering of T (2) of cardinality n − π(T ) so, from

Proposition 2.7, it follows that mr
(

T (2)
)

≤ n− π(T ).

From above and Theorem 2.4, mr
(

T (2)
)

≤ n−π(T ) ≤ n−P (T )−1 = mr(T )−1.

If there is a pair of high-degree vertices that are adjacent in T , then from Theorem 4.4,

we find that n− π(T ) < n− P (T )− 1, so that mr
(

T (2)
)

< mr(T )− 1.

Suppose now v0 is a high-degree vertex of T that is adjacent to k ≥ 3 vertices of

degree 2, say ui, i = 1, . . . , k, and for each i = 1, . . . , k let vi be the vertex, distinct

from v0, that is adjacent to ui. For each non-pendant vertex w of T , let Qw be the

clique in T (2) induced by the vertices (of T ) in N(w). Let W denote the collection of

all non-pendant vertices of T .

Consider the following union of graphs:
⋃

w∈W,w 6=ui,1≤i≤k Qw ∪S, where S is the

star in T (2) on the vertices v0, v1, . . . , vk, with v0 as the center vertex. Observe that

this union covers all of the edges of T (2). It now follows from item 6 in Observation 2.3
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that mr
(

T (2)
)

≤
∑

w∈W,w 6=ui,1≤i≤k mr (Qw)+mr(S) = n−π(T )−k+2 < n−π(T ) ≤

n− P (T )− 1 = mr(T )− 1.

Suppose now that T is a tree for which both conditions in the statement hold. We

claim by induction on n that mr
(

T (2)
)

= n− π(T ) = mr(T )− 1. By Lemma 4.3 the

claim holds when T is a path or a star on n ≥ 3 vertices. Suppose that the conclusion

holds for trees on at most n vertices, that T is on n+1 vertices, and that T is neither

a path nor a star.

Let u be a high-degree vertex of T that is adjacent to at least one vertex of degree

2, let v0 be a pendant vertex of T that is adjacent to u, and let T̃ = T − v0. We claim

that T̃ satisfies conditions 1 and 2. Certainly condition 1 holds for T̃ , and if it were

the case that some vertex w of T̃ is adjacent to at least three vertices of degree 2, then

necessarily w would have to be adjacent to u (otherwise T would violate condition 2).

But then T would violate condition 1, a contradiction. Hence, T̃ satisfies 1 and 2.

Note that T̃ (2) is an induced subgraph of T (2), and so mr
(

T (2)
)

≥ mr
(

T̃ (2)
)

.

By the induction hypothesis, we have mr
(

T̃ (2)
)

= n − π(T̃ ) = n + 1 − π(T ), so

that mr
(

T (2)
)

≥ n + 1 − π(T ). Also, from the first part of the proof, we have

mr
(

T (2)
)

≤ n + 1 − π(T ), and hence mr
(

T (2)
)

= n + 1 − π(T ). It remains only to

show that mr(T ) = mr
(

T̃
)

, from which we will deduce that mr
(

T (2)
)

= mr
(

T̃ (2)
)

=

mr(T̃ )− 1 = mr(T )− 1.

Letm ≥ 3 denote the degree of the vertex u in T , and for i ∈ {1, . . . ,m}, let Ti be

the branches of T at u, having |T1| ≥ · · · ≥ |Tm| and Tm = v0. For each i = 1, . . . ,m,

let Ri be the subgraph of T induced by Ti ∪ {u}. Evidently, if Ti is a pendant vertex

then the rank spread ru(Ri) = mr(Ri)−mr(Ti) = 1. Further, if Ri contains a vertex,

say wi of degree 2 adjacent to u, then any path cover of Ti can be extended to a path

cover of Ri by including the edge wiu, and hence ru(Ri) = 1 for such an Ri.

By Theorem 2.5, we have mr(T ) =
∑m

i=1 mr(Ti)+min{
∑m

i=1 ru(Ri), 2}, and since

mr(Ti) = 0 for i = 3, . . . ,m, it follows that mr(T ) = mr(T1) +mr(T2) +min{m, 2} =

mr(T1)+mr(T2)+2. Similarly, we find that mr(T̃ ) = mr(T1)+mr(T2)+min{m−1, 2} =

mr(T1) + mr(T2) + 2. Hence, mr(T ) = mr(T̃ ), as desired.

We close the paper with a brief discussion of issues arising from the results above.

In view of Theorem 4.5 and the inequality rank(Ak) ≤ rank(Ak−1), one might

suspect that in general mr(G(r)) ≤ mr(G(r−1)). However, that is not the case for

the star on n vertices, Sn, for instance. It may be interesting to investigate the

monotonicity, or lack thereof, of the sequence mr(T (k)) when T 6= Sn is a tree.

We saw in both Corollaries 3.3 and 3.9 that certain nonnegative integer matrices
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attained mrF(P r
n) and mrF(P

(r)
n ) when F is a field of characteristic p > r. It may be

interesting to determine whether these same matrices realize the minimum rank over

fields of characteristic 0 < p ≤ r. There may also be some interest in determining

whether the minimum ranks (over the reals) of P r
n or P

(r)
n can be realized by (0, 1)

matrices.
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