Fastest Expected Time to Mixing for a Markov Chain on a Directed Graph

Steve Kirkland*
Hamilton Institute
National University of Ireland Maynooth
Ireland
stephen.kirkland@nuim.ie

Abstract

For an irreducible stochastic matrix T, the Kemeny constant $K(T)$ measures the expected time to mixing of the Markov chain corresponding to T. Given a strongly connected directed graph D, we consider the set Σ_{D} of stochastic matrices whose directed graph is subordinate to D, and compute the minimum value of K, taken over the set Σ_{D}. The matrices attaining that minimum are also characterised, thus yielding a description of the transition matrices in Σ_{D} that minimise the expected time to mixing. We prove that $K(T)$ is bounded from above as T ranges over the irreducible members of Σ_{D} if and only if D is an intercyclic directed graph, and in the case that D is intercyclic, we find the maximum value of K on the set Σ_{D}. Throughout, our results are established using a mix of analytic and combinatorial techniques.

Keywords: Stochastic matrix; Directed graph; Kemeny constant.

AMS Classification Numbers: 15A51; 60J10; 15A42.

[^0]
1 Introduction and preliminaries

Let T be an irreducible stochastic matrix of order n, and denote the stationary distribution of T by π^{T}. Fix an index i between 1 and n, and recall that the Kemeny constant for T is given by $K(T)=\sum_{j=1}^{n} m_{i j} \pi_{j}$, where for each $i, j=1, \ldots, n, m_{i j}$ denotes the mean first passage time from state i to state j (here we take the convention that $m_{i i}=0$). It turns out that, remarkably, $K(T)$ is independent of the choice of $i([9])$. Despite its probabilistic formulation, the Kemeny constant can be computed from the eigenvalues of T as follows: denoting the eigenvalues of T by $1 \equiv \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, we have (see [12])

$$
\begin{equation*}
K(T)=\sum_{j=2}^{n} \frac{1}{1-\lambda_{j}} . \tag{1}
\end{equation*}
$$

Indeed, that expression is used (in [8], for example) to show that $K(T) \geq \frac{n-1}{2}$, with equality holding if T happens to be the adjacency matrix of a directed n-cycle. Observe that the right hand side of (1) is well-defined for any stochastic matrix T having 1 as a simple (i.e. algebraically and geometrically simple) eigenvalue. Consequently, we slightly extend the definition of the Kemeny constant to the class of stochastic matrices having 1 as a simple eigenvalue, and take $K(T)$ to be given by (1) for all such matrices.

The Kemeny constant admits several interpretations for the Markov chain associated with an irreducible stochastic matrix. In [8], it is shown that $K(T)+1$ coincides with the expected time to mixing for the chain. Here is the idea: let Y be a random variable with probability distribution given by π^{T}; sample Y, say $Y=j$ (with probability π_{j}), and start the chain $\left\{X_{m}\right\}$ at state $X_{0}=i$; define the time to mixing, M, to be the minimum $k \geq 1$ such that $X_{k}=j$. It then follows that the expected value for M coincides with $K(T)+1$. In a somewhat different direction, using the fact that $K(T)=\sum_{i=1}^{n} \pi_{i} \sum_{j=1}^{n} m_{i j} \pi_{j}$, the Kemeny constant is interpreted in [12] as the mean first passage time from an unknown initial state to an unknown destination state.

It is also noteworthy that the Kemeny constant provides a measure of the conditioning of the stationary distribution under perturbation of the underlying transition matrix. Specifically, if T and $T+E$ are two irreducible stochastic matrices of order n with stationary distributions π^{T} and $\tilde{\pi}^{T}$ respectively, then as shown in [8], we have

$$
\begin{equation*}
\left\|\pi^{T}-\tilde{\pi}^{T}\right\|_{1} \leq K(T)\|E\|_{\infty} . \tag{2}
\end{equation*}
$$

For any stochastic matrix T of order n, the directed graph associated with $T, \mathcal{D}(T)$, is the directed graph on vertices labeled $1, \ldots, n$, such that for each $i, j=1, \ldots, n, i \rightarrow j$ is an arc in $\mathcal{D}(T)$ if and only if $t_{i j}>0$. Note that $\mathcal{D}(T)$ carries qualitative information about the Markov chain associated with T, since the arcs of $\mathcal{D}(T)$ correspond to the transitions that are possible in a single step of the Markov chain. (We refer the reader to [2] for background on the interplay between square matrices and their directed graphs.) In this paper, we consider the effect of the combinatorial structure of $\mathcal{D}(T)$ on the value of $K(T)$. Specifically, for a strongly connected directed graph D on n vertices, we define the set Σ_{D} as follows:

$$
\begin{array}{r}
\Sigma_{D}=\{T \mid T \text { is stochastic and } n \times n \text { and for each } i, j=1, \ldots, n, \\
i \rightarrow j \text { is an arc in } \mathcal{D}(T) \text { only if } i \rightarrow j \text { is an arc in } D\} .
\end{array}
$$

Observe that Σ_{D} is a compact, convex set of matrices, whose irreducible members are dense in Σ_{D}. One of our main results, Theorem 2.6, provides a formula for $\min \left\{K(T) \mid T \in \Sigma_{D}\right\}$, while Theorem 2.13 characterises the matrices yielding that minimum value, thus identifying those transition matrices in Σ_{D} that minimise the expected time to mixing. The following example illustrates the scenario that we address in this paper.

Figure 1: Directed graph D for Example 1.1

Example 1.1 Consider the directed graph D shown in Figure 1. A typical irreducible matrix $T \in \Sigma_{D}$ has the form $T=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ x & 0 & 1-x & 0 \\ 0 & 1-y & 0 & y \\ 0 & 0 & 1 & 0\end{array}\right]$, where $x, y \in(0,1)$.

It is straightforward to determine that the eigenvalues of such a T are given by $1,-1, \sqrt{x y}$, and $-\sqrt{x y}$. Consequently we find that $K(T)=\frac{1}{2}+\frac{2}{1-x y}$. In particular we have $K(T)>\frac{5}{2}$ for any irreducible $T \in \Sigma_{D}$; note also that $K(T)$ is unbounded from above as T ranges over the irreducible members of Σ_{D}.

One of the key techniques employed in this paper involves the group inverse of $I-T$, which we now briefly outline. For a stochastic matrix T having 1 as a simple eigenvalue, the singular matrix $I-T$ is known to have a group inverse, $(I-T)^{\#}$, that can be characterised as the unique matrix such that $(I-T)(I-T)^{\#}=(I-T)^{\#}(I-T),(I-T)(I-T)^{\#}(I-T)=(I-T)$, and $(I-T)^{\#}(I-T)(I-T)^{\#}=(I-T)^{\#}$. If the eigenvalues of T are given by $1, \lambda_{2}, \ldots, \lambda_{n}$, then the eigenvalues of $(I-T)^{\#}$ are given by $0, \frac{1}{1-\lambda_{2}}, \ldots, \frac{1}{1-\lambda_{n}}$. In particular, we find that $K(T)=\operatorname{trace}\left((I-T)^{\#}\right)$. If T is a stochastic matrix with 1 as a simple eigenvalue, it follows from Lemma 3.3 of [11] that there is a neighbourhood of T such that $(I-\tilde{T})^{\#}$ is a well-defined continuous function for any stochastic matrix \tilde{T} in that neighbourhood. In particular we see that K is continuous in some neighbourhood of T. We refer the interested reader to [3] for further information on generalised inverses.

Throughout the paper, we make use of standard facts on stochastic matrices. The reader may refer to [14] for the necessary background. Background material on directed graphs may be found in [5].

We close this section with a remark on the title of this paper. There is an existing body of work on the so-called fastest mixing Markov chain on a graph (see [1]). Results in that area focus on reversible Markov chains having a specified undirected graph, and on the subdominant eigenvalue of the corresponding transition matrix - i.e. the eigenvalue of second largest modulus after 1 . The object is then to identify the reversible Markov chain respecting that graph which minimizes the modulus of the subdominant eigenvalue of the corresponding transition matrix. Our results in Section 2 bear a philosophical resemblance to those on fastest mixing Markov chains, for we consider an underlying combinatorial structure (a directed graph), and a measure of how quickly a Markov chain mixes $(K(T)+1$ in our case); we then identify those transition matrices that simultaneously respect the combinatorial structure and minimise our measure of mixing time.

2 The minimum Kemeny constant on a directed graph

Throughout this section, we take D to be a strongly connected directed graph on n vertices, and we let k denote the length of a longest cycle in D. Let $\mu(D)=\inf \left\{K(T) \mid T \in \Sigma_{D}\right.$ and T has 1 as a simple eigenvalue $\}$. We begin with a useful result that leads to an upper bound on $\mu(D)$.

Lemma 2.1 Suppose that $T \in \Sigma_{D}$ has the form

$$
T=\left[\begin{array}{c|c}
C & 0 \tag{3}\\
\hline X & N
\end{array}\right]
$$

where N is nilpotent, and C is the adjacency matrix of a directed cycle of length ℓ. Then $K(T)=\frac{2 n-\ell-1}{2}$.

Proof. It is straightforward to determine that

$$
(I-T)^{\#}=\left[\begin{array}{c|c}
(I-C)^{\#} & 0 \\
\hline(I-N)^{-1} X(I-C)^{\#}-\frac{1}{\ell}(I-N)^{-1} \mathbf{1 1}^{T} & (I-N)^{-1}
\end{array}\right]
$$

where we use 1 to denote an all ones vector of the appropriate order. Hence $K(T)=K(C)+n-\ell$. From Theorem 3 of [10], we find that each diagonal entry of $(I-C)^{\#}$ is equal to $\frac{\ell-1}{2 \ell}$, so that $K(C)=\frac{\ell-1}{2}$; the conclusion now follows.

Corollary 2.2 We have $\mu(D) \leq \frac{2 n-k-1}{2}$.
Proof. Note that there is a spanning subgraph of D such that each vertex has outdegree 1 , and which contains exactly one directed cycle, of length k. Indeed, such a subgraph \tilde{D} can be constructed as follows. Begin by identifying a k-cycle in D, let V_{0} denote the subset consisting of the vertices on that cycle, and let A_{0} denote the collection of arcs on that cycle. Then, for each $l \geq 0$ such that $\left|\cup_{p=0}^{l} V_{p}\right|<n$, let V_{l+1} denote the set of all vertices in D from which there is an out-arc to some vertex in V_{l}; for each $i \in V_{l+1}$, select a single vertex $j_{i} \in V_{l}$ such that $i \rightarrow j_{i}$ is an arc in D, and let A_{l+1} denote a collection of arcs $i \rightarrow j_{i}, i \in V_{l+1}$. For some smallest index m we have $\left|\cup_{p=0}^{m} V_{p}\right|=n$, and now we let \tilde{D} be the (spanning) subgraph of D whose arc set is $\cup_{p=0}^{m} A_{p}$.

Let A be the adjacency matrix of such a subgraph \tilde{D}, and note then that $A \in \Sigma_{D}$. Observe that A can be written in the form (3), with C as the adjacency
matrix of the directed k-cycle. From Lemma 2.1, we have $K(A)=\frac{2 n-k-1}{2}$, from which the conclusion follows.

Our next result shows that if T is a stochastic matrix such that $K(T)$ is not too large, then the non-Perron eigenvalues of T are bounded away from 1 .

Lemma 2.3 Suppose that A is a stochastic matrix of order n having 1 as a simple eigenvalue, and let $\lambda \neq 1$ be an eigenvalue of A. If $K(A) \leq n$, then $|1-\lambda| \geq \frac{1-\cos \left(\frac{2 \pi}{n}\right)}{n}$.

Proof. Suppose first that $\lambda \in \mathbb{R}$. In that case, we have $\frac{1}{|1-\lambda|}=\frac{1}{1-\lambda} \leq K(A) \leq n$, so that $|1-\lambda| \geq \frac{1}{n}$, and the desired inequality follows.

Next we suppose that λ is complex, say with $\lambda=x+i y$. We then have $n \geq K(A) \geq \frac{1}{1-\lambda}+\frac{1}{1-\bar{\lambda}}=\frac{2(1-x)}{(1-x)^{2}+y^{2}}$. From Theorem 2 of $[6]$ we have $|y| \leq(1-$ $x) \frac{\sin \left(\frac{2 \pi}{n}\right)}{1-\cos \left(\frac{2 \pi}{n}\right)}$, so that $y^{2} \leq(1-x)^{2} \frac{\sin ^{2}\left(\frac{2 \pi}{n}\right)}{\left(1-\cos \left(\frac{2 \pi}{n}\right)\right)^{2}}$. It now follows that $\frac{2(1-x)}{(1-x)^{2}+y^{2}} \geq$ $\frac{1-\cos \left(\frac{2 \pi}{n}\right)}{1-x}$. Hence we find that $|1-\lambda| \geq 1-x \geq \frac{1-\cos \left(\frac{2 \pi}{n}\right)}{n}$.

Next, we show that while $\mu(D)$ is defined as an infimum, it is in fact a minimum.

Lemma 2.4 There is a matrix $S \in \Sigma_{D}$ such that S has 1 as a simple eigenvalue, and $K(S)=\mu(D)$.

Proof. From the definition of $\mu(D)$, we find that there is a sequence of matrices $T_{m} \in \Sigma_{D}$, each with 1 as a simple eigenvalue, such that $K\left(T_{m}\right) \rightarrow \mu(D)$ as $m \rightarrow \infty$. As Σ_{D} is compact, there is a subsequence $T_{m_{j}}$ of T_{m} such that $T_{m_{j}}$ converges in Σ_{D} as $j \rightarrow \infty$. Denote $\lim _{j \rightarrow \infty} T_{m_{j}}$ by S.

Since $K\left(T_{m_{j}}\right) \leq n$ for all sufficiently large j, we find from Lemma 2.3 that for all such j, and any eigenvalue $\lambda \neq 1$ of $T_{m_{j}},|1-\lambda| \geq \frac{1-\cos \left(\frac{2 \pi}{n}\right)}{n}$. It now follows that the matrix S has 1 as a simple eigenvalue. Thus, the function K is continuous in a neighbourhood of S, and so we find that $K(S)=\lim _{j \rightarrow \infty} K\left(T_{m_{j}}\right)=$ $\mu(D)$.

Our next technical result shows that there is a matrix with special structure that minimises K.

Lemma 2.5 There is a $(0,1)$ matrix $A \in \Sigma_{D}$ such that 1 is a simple eigenvalue of A and $K(A)=\mu(D)$.

Proof. Appealing to Lemma 2.4, let S be a matrix in Σ_{D} having 1 as a simple eigenvalue, such that $K(S)=\mu(D)$. If S is a $(0,1)$ matrix, there is nothing to show, so suppose that some row of S contains at least two positive entries. For concreteness, we take $s_{i p}, s_{i q}>0$, for indices $i, p, q \in\{1, \ldots, n\}$ with $p \neq q$. We claim that there is another matrix in Σ_{D}, \hat{S} say, such that $K(\hat{S})=\mu(D)$, and in addition such that \hat{S} has fewer nonzero entries than S does. The conclusion will then follow via an iterative argument.

Let $Q=I-S$, and for each $t \in\left[-s_{i p}, s_{i q}\right]$, let $E_{t}=t e_{i}\left(e_{p}-e_{q}\right)^{T}$. Observe that $S+E_{t} \in \Sigma_{D}$ for all such t. Let π^{T} denote the stationary distribution for S. From Lemma 3.3 of [11], we find that for each $t \in\left[-s_{i p}, s_{i q}\right]$ such that $S+E_{t}$ has 1 as a simple eigenvalue, we have

$$
\left(Q-E_{t}\right)^{\#}=Q^{\#}\left(I-E_{t} Q^{\#}\right)^{-1}-\mathbf{1} \pi^{T}\left(I-E_{t} Q^{\#}\right)^{-1} Q^{\#}\left(I-E_{t} Q^{\#}\right)^{-1}
$$

provided that $I-E_{t} Q^{\#}$ is invertible.
From the Sherman-Morrison formula (see [7] for example) we find that for any t such that $1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \neq 0$, we have $\left(I-E_{t} Q^{\#}\right)^{-1}=I+$ $\frac{t}{1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}} e_{i}\left(e_{p}-e_{q}\right)^{T} Q^{\#}$. Observe in particular that $\left(I-E_{t} Q^{\#}\right)^{-1} \mathbf{1}=\mathbf{1}$ for any such t.

Next, we consider $K\left(S+E_{t}\right)$, and note that for all t such that $|t|$ is sufficiently small, we have

$$
\begin{array}{r}
K\left(S+E_{t}\right)=\operatorname{trace}\left(\left(Q-E_{t}\right)^{\#}\right)= \\
\operatorname{trace}\left(Q^{\#}\right)+\frac{t}{1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}} \operatorname{trace}\left(Q^{\#} e_{i}\left(e_{p}-e_{q}\right)^{T} Q^{\#}\right) \\
-\operatorname{trace}\left(\mathbf{1} \pi^{T}\left(I-E_{t} Q^{\#}\right)^{-1} Q^{\#}\left(I-E_{t} Q^{\#}\right)^{-1}\right) .
\end{array}
$$

Recalling that for any square rank one matrix $a b^{T}$, we have $\operatorname{trace}\left(a b^{T}\right)=b^{T} a$, we find that $\operatorname{trace}\left(Q^{\#} e_{i}\left(e_{p}-e_{q}\right)^{T} Q^{\#}\right)=\left(e_{p}-e_{q}\right)^{T} Q^{\#} Q^{\#} e_{i}$. Also, $\operatorname{trace}\left(\mathbf{1} \pi^{T}(I-\right.$ $\left.\left.\left.E_{t} Q^{\#}\right)^{-1} Q^{\#}\left(I-E_{t} Q^{\#}\right)^{-1}\right)=\pi^{T}\left(I-E_{t} Q^{\#}\right)^{-1} Q^{\#}\left(I-E_{t} Q^{\#}\right)^{-1}\right) \mathbf{1}=\pi^{T}(I-$ $\left.E_{t} Q^{\#}\right)^{-1} Q^{\#} \mathbf{1}=0$. Consequently, we have

$$
\begin{array}{r}
K\left(S+E_{t}\right)=\operatorname{trace}\left(Q^{\#}\right)+\frac{t}{1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}} Q^{\#} e_{i} Q^{\#}\left(e_{p}-e_{q}\right)^{T}= \\
K(S)+\frac{t}{1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}}\left(e_{p}-e_{q}\right)^{T} Q^{\#} Q^{\#} e_{i} .
\end{array}
$$

From the fact that S minimises K over Σ_{D}, we deduce that $\left(e_{p}-e_{q}\right)^{T} Q^{\#} Q^{\#} e_{i}$ must be zero, otherwise we could select a small (positive or negative) t so
that $K\left(S+E_{t}\right)<\mu(D)$, a contradiction. Consequently we find that for all $t \in\left[-s_{i p}, s_{i q}\right]$ such that $1-t\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \neq 0, K\left(S+E_{t}\right)=\operatorname{trace}\left(\left(Q-E_{t}\right)^{\#}\right)=$ $\operatorname{trace}\left(Q^{\#}\right)=\mu(D)$. Now select $t_{0}=\left\{\begin{array}{l}s_{i q}, \text { if }\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \leq 0 \\ -s_{i p}, \text { if }\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}>0\end{array}\right.$, so that $1-t_{0}\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \geq 1$. Then $S+E_{t_{0}} \in \Sigma_{D}$, has 1 as a simple eigenvalue, has one more zero entry than S does, and satisfies $K\left(S+E_{t_{0}}\right)=\mu(D)$. The conclusion now follows.

Next, we present one of the main results of this paper.

Theorem 2.6 Let D be a strongly connected directed graph on n vertices; denote the length of a longest cycle in D by k. Then

$$
\begin{equation*}
\mu(D)=\frac{2 n-k-1}{2} \tag{4}
\end{equation*}
$$

Proof. By Lemma 2.5, there is a $(0,1)$ matrix $A \in \Sigma_{D}$ having 1 as a simple eigenvalue, and such that $K(A)=\mu(D)$. Since A is $(0,1)$ with 1 as a simple eigenvalue, it follows that A can be written in the form (3), where C is the adjacency matrix of a directed cycle, say of length ℓ, and where N is nilpotent. By Lemma 2.1, we have $\mu(D)=K(A)=\frac{2 n-\ell-1}{2} \geq \frac{2 n-k-1}{2}$. Applying Corollary 2.2, we also have $\mu(D) \leq \frac{2 n-k-1}{2}$, whence $\ell=k$; formula (4) now follows.

Corollary 2.7 Let $T \in \Sigma_{D}$ be irreducible with stationary distribution π^{T}, and denote the corresponding mean first passage times by $m_{i j}, i, j=1, \ldots, n$. For each index $i=1, \ldots, n$, there is an index $j \neq i$ such that $m_{i j} \geq \frac{2 n-k-1}{2\left(1-\pi_{i}\right)}$.

Proof. From Theorem 2.6, we have $K(T) \geq \frac{2 n-k-1}{2}$. Since $K(T)=\sum_{l \neq i} m_{i l} \pi_{l}$, it follows that $\frac{K(T)}{1-\pi_{i}}$ is a weighted average of the quantities $m_{i l}, l=1, \ldots, n, l \neq i$. The conclusion now follows.

Remark 2.8 Observe that if T is the adjacency matrix of a directed n-cycle, then Corollary 2.7 asserts that for each $i=1, \ldots, n$ there is a $j \neq i$ such that $m_{i j} \geq \frac{n}{2}$. If n happens to be even, then we can always find a $j \neq i$ so that in fact $m_{i j}=\frac{n}{2}$.

Example 2.9 Suppose that T is an irreducible tridiagonal stochastic matrix. From the structure of T, we find that length of a longest cycle in $\mathcal{D}(T)$ is 2 .

Hence, $K(T) \geq \frac{2 n-3}{2}$ by Theorem 2.6. Thus we have a generalisation of the observations made in Example 1.1.

Our next sequence of results is aimed at characterising the matrices $T \in \Sigma_{D}$ such that $K(T)=\mu(D)$. We begin with a continuity result for minimisers of K.

Lemma 2.10 Let T_{j} be a sequence of matrices in Σ_{D} such that $K\left(T_{j}\right)=\mu(D)$ for all $j \in \mathbb{N}$. If the sequence T_{j} converges to S, then $K(S)=\mu(D)$.
in Proof. Since $K\left(T_{j}\right)=\mu(D)$ for each j, we find from Theorem 2.6 and Lemma 2.3 that for any index j and eigenvalue $\lambda \neq 1$ of T_{j}, we have $|1-\lambda| \geq \frac{1-\cos \left(\frac{2 \pi}{n}\right)}{n}$. Since the non-Perron eigenvalues of T_{j} are bounded away from 1 , uniformly in j, it follows that 1 is a simple eigenvalue of S. Hence K is continuous in a neighbourhood of S, from which we conclude that $K(S)=\mu(D)$.

Corollary 2.11 Suppose that $T \in \Sigma_{D}$ and that $K(T)=\mu(D)$. Suppose also that there are indices i, p, q with $p \neq q$ such that $t_{i p}, t_{i q}>0$. Letting $S=$ $T+\left(-t_{i p}\right) e_{i}\left(e_{p}-e_{q}\right)^{T}$, we have that $K(S)=\mu(D)$.

Proof. Here we adopt the approach of Lemma 2.5. Let $Q=I-T$, and for each $s \in\left[-t_{i p}, t_{i q}\right]$, let $A_{s}=T+s e_{i}\left(e_{p}-e_{q}\right)^{T}$. Then for each such s, we have $K\left(A_{s}\right)=\mu(D)+\frac{s\left(e_{p}-e_{q}\right)^{T} Q^{\#} Q^{\#} e_{i}}{1-s\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i}}$, provided that $1-s\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \neq 0$. As in Lemma 2.5, we deduce that $\left(e_{p}-e_{q}\right)^{T} Q^{\#} Q^{\#} e_{i}=0$, so that $K\left(A_{s}\right)=\mu(D)$ for each $s \in\left[-t_{i p}, t_{i q}\right]$ such that $1-s\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \neq 0$.

Next, select a sequence $s_{m} \in\left[-t_{i p}, t_{i q}\right]$ such that $1-s_{m}\left(e_{p}-e_{q}\right)^{T} Q^{\#} e_{i} \neq 0$ for all $m \in \mathbb{N}$, and such that $s_{m} \rightarrow-t_{i p}$ as $m \rightarrow \infty$. Then $A_{s_{m}} \rightarrow S$ as $m \rightarrow \infty$, and $K\left(A_{s_{m}}\right)=\mu(D)$ for all $m \in \mathbb{N}$. The conclusion now follows from Lemma 2.10.

The following proposition establishes the combinatorial structure of matrices that minimise K over Σ_{D}.

Proposition 2.12 Suppose that $A \in \Sigma_{D}$ and that $K(A)=\mu(D)$. Then every cycle in $\mathcal{D}(A)$ has length k, and any pair of cycles in $\mathcal{D}(A)$ must intersect.

Proof. We proceed by induction on the number of arcs in $\mathcal{D}(A)$, and note that if $\mathcal{D}(A)$ has just two arcs, then the result is immediate.

Suppose that the conclusion holds for directed graphs with $m \geq 2$ arcs, and that $\mathcal{D}(A)$ has $m+1$ arcs. If each vertex of $\mathcal{D}(A)$ has outdegree one, then since 1 is necessarily a simple eigenvalue of A, it follows that $\mathcal{D}(A)$ has just one cycle. Since $K(A)=\mu(D)$, it follows that this cycle must have length k, as desired.

Suppose that some vertex of $\mathcal{D}(A)$ has outdegree at least two. Without loss of generality, we assume that $1 \rightarrow i$ and $1 \rightarrow j$ in $\mathcal{D}(A)$. From Corollary 2.11, it follows that we can find $A_{1}, A_{2} \in \Sigma_{D}$ such that $K\left(A_{1}\right)=K\left(A_{2}\right)=\mu(D)$, and such that $\mathcal{D}\left(A_{1}\right)=\mathcal{D}(A) \backslash\{1 \rightarrow i\}$ and $\mathcal{D}\left(A_{2}\right)=\mathcal{D}(A) \backslash\{1 \rightarrow j\}$. Note that every cycle in $\mathcal{D}(A)$ not using the arc $1 \rightarrow i$ is a cycle in $\mathcal{D}\left(A_{1}\right)$, and so by the induction hypothesis, every such cycle has length k. On the other hand, any cycle in $\mathcal{D}(A)$ that uses the arc $1 \rightarrow i$ cannot use the arc $1 \rightarrow j$, and so is a cycle in $\mathcal{D}\left(A_{2}\right)$; again by the induction hypothesis, such a cycle must have length k. Hence, every cycle in $\mathcal{D}(A)$ has length k.

Now select two cycles C_{1} and C_{2} in $\mathcal{D}(A)$. If neither includes the arc $1 \rightarrow i$, then both are in $\mathcal{D}\left(A_{1}\right)$ and hence they must intersect by the induction hypothesis. Evidently if both C_{1} and C_{2} include the arc $1 \rightarrow i$ then they intersect. So, without loss of generality we may assume that C_{1} includes the arc $1 \rightarrow i$, while C_{2} does not. If C_{2} includes the arc $1 \rightarrow j$, then it certainly intersects C_{1}, while if C_{2} does not include the arc $1 \rightarrow j$, then both C_{1} and C_{2} are in $\mathcal{D}\left(A_{2}\right)$. Again the induction hypothesis applies, and we find that C_{1} and C_{2} intersect. That completes the induction step, and the conclusion follows.

Recall that an irreducible stochastic matrix T is periodic with period m if the greatest common divisor of the cycle lengths in $\mathcal{D}(T)$ is equal to m. In that case, the vertices of $\mathcal{D}(T)$ can be partitioned into subsets S_{1}, \ldots, S_{m} such that $i \rightarrow j$ is an arc in $\mathcal{D}(T)$ only if there is an index $\ell=1, \ldots, m$ such that $i \in S_{\ell}$ and $j \in S_{\ell+1}$ (with the convention that $S_{m+1} \equiv S_{1}$). These subsets S_{1}, \ldots, S_{m} are known as the cyclically transferring classes for T.

We are now in a position to characterise the matrices that minimise K over Σ_{D}.

Theorem 2.13 Suppose that $A \in \Sigma_{D}$. We have $K(A)=\mu(D)$ if and only if A can be written in the form

$$
A=\left[\begin{array}{c|c}
A_{0} & 0 \tag{5}\\
\hline X & N
\end{array}\right]
$$

where N is nilpotent (or empty in the case that $k=n$) and where A_{0} is irreducible, and k-cyclic with one of its cyclically transferring classes of cardinality one.

Proof. Suppose that $K(A)=\mu(D)$; then A has 1 as a simple eigenvalue, and it follows that we may write A as

$$
A=\left[\begin{array}{c|c}
A_{0} & 0 \\
\hline X & N
\end{array}\right]
$$

where A_{0} is irreducible and the spectral radius of N is strictly less than 1 . By Proposition 2.12, all cycles of $\mathcal{D}(A)$ have length k, and any two cycles intersect. Hence, all cycles of $\mathcal{D}\left(A_{0}\right)$ have length k, and any two cycles intersect; applying Theorem 6.2 of [4], we thus find that A_{0} must be k-cyclic with one of its cyclically transferring classes having cardinality one.

It is straightforward to see that $K(A)=\operatorname{trace}\left(\left(I-A_{0}\right)^{\#}\right)+\operatorname{trace}\left((I-N)^{-1}\right)$. Suppose for concreteness that A_{0} is $m \times m$; from the structure of A_{0}, we find that its eigenvalues are $e^{\frac{2 \pi i j}{k}}, j=0, \ldots, k-1$, and 0 with algebraic multiplicity $m-k$. Hence $\operatorname{trace}\left(\left(I-A_{0}\right)^{\#}\right)=\frac{k-1}{2}+m-k$. Note also that trace $((I-$ $N)^{-1}$) $\geq n-m$, with equality holding only if N is nilpotent. Thus we have $\frac{2 n-k-1}{2}=\frac{k-1}{2}+m-k+\operatorname{trace}\left((I-N)^{-1}\right) \geq \frac{k-1}{2}+m-k+n-m=\frac{2 n-k-1}{2}$. We thus conclude that N must be nilpotent, as desired.

The converse is readily established.

Remark 2.14 Suppose that T is an irreducible stochastic matrix of order n. From Theorem 2.6, we recover the known result that $K(T) \geq \frac{n-1}{2}$, while from Theorem 2.13, we find that $K(T)=\frac{n-1}{2}$ if and only if T is the adjacency matrix of a directed n-cycle.

Remark 2.15 Let D be a strongly connected directed graph. It is interesting to note that any matrix in Σ_{D} that minimises the Kemeny constant necessarily has a subdominant eigenvalue of modulus 1 . Thus we see that by using $K(T)+1$ as a measure for the time to mixing, we obtain very different results than by using the modulus of the subdominant eigenvalue as a measure of the time to mixing.

3 An upper bound for intercyclic directed graphs

In light of the lower bound on K established in Theorem 2.6, it is natural to wonder about the structure of the directed graphs D such that $K(T)$ is bounded from above as T ranges over Σ_{D}. In this section, we address that question. We begin with a useful observation.

Remark 3.1 It is shown in Lemma 6.1 of [4] that if D contains a pair of vertex-disjoint cycles, then $K(T)$ is not bounded from above as T ranges over the irreducible matrices in Σ_{D}.

Recall that a directed graph is intercyclic if it has the property that any pair of its cycles intersect. A complete characterisation of this class of directed graphs is given in [13]. Observe that by Remark 3.1, if a directed graph D has the property that $K(T)$ is bounded from above as T ranges over the irreducible members of Σ_{D}, then necessarily D must be intercyclic.

The following technical result will be useful in the sequel.
Lemma 3.2 Let D be an intercyclic directed graph. Then for any matrix $T \in$ Σ_{D}, the number 1 is a simple eigenvalue of T.

Proof. Fix $T \in \Sigma_{D}$; for each cycle C in $\mathcal{D}(T)$, let $w(C)$ denote the product of the entries in T corresponding to the arcs of C. Since any pair of cycles in $\mathcal{D}(T)$ intersect, it follows that the characteristic polynomial of T can be written as $\operatorname{det}(\lambda I-T)=\lambda^{n}-\sum_{C \in \mathcal{D}(T)} w(C) \lambda^{n-|C|}$, where the sum is taken over all cycles $C \in \mathcal{D}(T)$, and where $|C|$ denotes the number of vertices on the cycle C. It now follows from Descartes' rule of signs that $\operatorname{det}(\lambda I-T)$ has precisely one positive root, which is necessarily equal to 1 . Hence 1 is a simple eigenvalue of T.

Lemma 3.2 leads to a continuity result for K.
Corollary 3.3 Let D be an intercyclic directed graph. Then K is a continuous function on Σ_{D}; in particular, there is a matrix $A \in \Sigma_{D}$ such that $K(A)=$ $\max \left\{K(T) \mid T \in \Sigma_{D}\right\}$.

Proof. Let T be a stochastic matrix with 1 as a simple eigenvalue. Then $(I-T)^{\#}$ is continuous in a neighbourhood of T, and hence so is $K(T)=\operatorname{trace}\left((I-T)^{\#}\right)$. The other conclusion follows readily.

Here is the main result of this section.
Theorem 3.4 Suppose that D is an intercyclic directed graph, and let g denote the length of a shortest cycle in D. Then $\max \left\{K(T) \mid T \in \Sigma_{D}\right\}=\frac{2 n-g-1}{2}$.

Proof. By Lemma 3.3, K attains its maximum value on Σ_{D}. Arguing as in Lemma 2.5 , it is readily shown that in fact there is a $(0,1)$ matrix A in Σ_{D} for which $K(A)$ is maximum. As A has 1 as a simple eigenvalue and is $(0,1)$, it follows that A can be written in the form (3), where C is the adjacency matrix of a directed cycle of length ℓ, say. It then follows that $K(A)=\frac{2 n-\ell-1}{2} \leq \frac{2 n-g-1}{2}$. On the other hand, we can readily produce a matrix T in Σ_{D} such that $\mathcal{D}(T)$ contains a single cycle of length g, and for which $K(T)=\frac{2 n-g-1}{2}$. Consequently, it must be the case that $\max \left\{K(T) \mid T \in \Sigma_{D}\right\}=\frac{2 n-g-1}{2}$, as desired.

Figure 2: Directed graph D for Example 3.5

Example 3.5 We close the paper with an example that illustrates the results of this section. Consider the directed graph D shown in Figure 2. It is straightforward to see that D is intercyclic (since vertex 7 is on every cycle), and that the shortest and longest cycle lengths are 3 and 4 , respectively.

Suppose that we have a matrix $T \in \Sigma_{D}$. Then there are parameters $x, y, a \in$ $[0,1]$ such that

$$
T=\left[\begin{array}{ccccccc}
0 & 0 & 1-x & 0 & 0 & x & 0 \\
0 & 0 & 0 & 1-y & y & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
a & 1-a & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Let U be the submatrix of $I-T$ consisting of its first six columns, and let V be the 6×7 matrix $V=[I \mid \mathbf{- 1}]$. We find from Theorem 7.8.2 of [3] that $(I-T)^{\#}=U(V U)^{-2} V$, from which it follows that $K(T)=\operatorname{trace}\left(U(V U)^{-2} V\right)=$ $\operatorname{trace}\left((V U)^{-1}\right)$. A direct computation now shows that $K(T)=3+\frac{6}{4-a x-(1-a) y}$. Consequently, we find that $K(T) \geq \frac{9}{2}=\frac{14-4-1}{2}$, with equality holding if and only if $a x+(1-a) y=0$, while $K(T) \leq 5=\frac{14-3-1}{2}$, with equality holding if and only if $a x+(1-a) y=1$.

Acknowledgement: The author is grateful to Robert Shorten and Selim Solmaz for a conversation that prompted the investigation in this paper.

References

[1] S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov chain on a graph, SIAM Rev. 46 (2004) 667-689.
[2] R. Brualdi, H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
[3] S. Campbell, C. Meyer, Generalized Inverses of Linear Transformations, Dover Publications, New York, 1991.
[4] M. Catral, S. Kirkland, M. Neumann, N. Sze, The Kemeny constant for finite homogeneous ergodic Markov chains, J. Sci. Comput., to appear.
[5] G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth edition, Chapman and Hall, Boca Raton, 2005.
[6] N. Dmitriev, E. Dynkin, On the characteristic numbers of a stochastic matrix, C. R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945) 159162.
[7] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[8] J. Hunter, Mixing times with applications to perturbed Markov chains, Lin. Alg. Appl. 417 (2006) 108-123.
[9] J. Kemeny, J. Snell, Finite Markov Chains, Van Nostrand, Princeton, 1960.
[10] S. Kirkland, The group inverse associated with an irreducible periodic nonnegative matrix, SIAM J. Matrix Anal. Appl. 16 (1995) 1127-1134.
[11] S. Kirkland, A combinatorial approach to the conditioning of a single entry in the stationary distribution for a Markov chain, Electronic J. Linear Algebra 11 (2004) 168-179.
[12] M. Levene, and G. Loizou, Kemeny's constant and the random surfer, Amer. Math. Monthly 109 (2002) 741-745.
[13] W. McCuaig, Intercyclic digraphs, in: N. Robertson, P. Seymour (Eds.), Graph Structure Theory, Contemp. Math., 147, Amer. Math. Soc., Providence, 1993, pp. 203-245.
[14] E. Seneta, Non-Negative Matrices and Markov Chains, Springer, New York, 1981.

[^0]: *This material is based upon works supported in part by the Science Foundation Ireland under Grant No. SFI/07/SK/I1216b.

