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Abstract

For an irreducible stochastic matrix T , the Kemeny constant K(T )

measures the expected time to mixing of the Markov chain corresponding

to T . Given a strongly connected directed graph D, we consider the set

ΣD of stochastic matrices whose directed graph is subordinate to D, and

compute the minimum value of K, taken over the set ΣD. The matrices

attaining that minimum are also characterised, thus yielding a descrip-

tion of the transition matrices in ΣD that minimise the expected time to

mixing. We prove that K(T ) is bounded from above as T ranges over

the irreducible members of ΣD if and only if D is an intercyclic directed

graph, and in the case that D is intercyclic, we find the maximum value

of K on the set ΣD. Throughout, our results are established using a mix

of analytic and combinatorial techniques.
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1 Introduction and preliminaries

Let T be an irreducible stochastic matrix of order n, and denote the stationary

distribution of T by πT . Fix an index i between 1 and n, and recall that

the Kemeny constant for T is given by K(T ) =
∑n

j=1 mijπj , where for each

i, j = 1, . . . , n, mij denotes the mean first passage time from state i to state j

(here we take the convention that mii = 0). It turns out that, remarkably, K(T )

is independent of the choice of i ([9]). Despite its probabilistic formulation,

the Kemeny constant can be computed from the eigenvalues of T as follows:

denoting the eigenvalues of T by 1 ≡ λ1, λ2, . . . , λn, we have (see [12])

K(T ) =
n∑

j=2

1
1− λj

. (1)

Indeed, that expression is used (in [8], for example) to show that K(T ) ≥ n−1
2 ,

with equality holding if T happens to be the adjacency matrix of a directed

n-cycle. Observe that the right hand side of (1) is well-defined for any stochas-

tic matrix T having 1 as a simple (i.e. algebraically and geometrically simple)

eigenvalue. Consequently, we slightly extend the definition of the Kemeny con-

stant to the class of stochastic matrices having 1 as a simple eigenvalue, and

take K(T ) to be given by (1) for all such matrices.

The Kemeny constant admits several interpretations for the Markov chain

associated with an irreducible stochastic matrix. In [8], it is shown that K(T )+1

coincides with the expected time to mixing for the chain. Here is the idea: let

Y be a random variable with probability distribution given by πT ; sample Y ,

say Y = j (with probability πj), and start the chain {Xm} at state X0 = i;

define the time to mixing, M , to be the minimum k ≥ 1 such that Xk = j.

It then follows that the expected value for M coincides with K(T ) + 1. In a

somewhat different direction, using the fact that K(T ) =
∑n

i=1 πi

∑n
j=1 mijπj ,

the Kemeny constant is interpreted in [12] as the mean first passage time from

an unknown initial state to an unknown destination state.

It is also noteworthy that the Kemeny constant provides a measure of the

conditioning of the stationary distribution under perturbation of the underlying

transition matrix. Specifically, if T and T + E are two irreducible stochastic

matrices of order n with stationary distributions πT and π̃T respectively, then

as shown in [8], we have

||πT − π̃T ||1 ≤ K(T )||E||∞. (2)
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For any stochastic matrix T of order n, the directed graph associated with

T,D(T ), is the directed graph on vertices labeled 1, . . . , n, such that for each

i, j = 1, . . . , n, i → j is an arc in D(T ) if and only if tij > 0. Note that D(T )

carries qualitative information about the Markov chain associated with T , since

the arcs of D(T ) correspond to the transitions that are possible in a single

step of the Markov chain. (We refer the reader to [2] for background on the

interplay between square matrices and their directed graphs.) In this paper, we

consider the effect of the combinatorial structure of D(T ) on the value of K(T ).

Specifically, for a strongly connected directed graph D on n vertices, we define

the set ΣD as follows:

ΣD = {T |T is stochastic and n× n and for each i, j = 1, . . . , n,

i → j is an arc in D(T ) only if i → j is an arc in D}.

Observe that ΣD is a compact, convex set of matrices, whose irreducible mem-

bers are dense in ΣD. One of our main results, Theorem 2.6, provides a formula

for min{K(T )|T ∈ ΣD}, while Theorem 2.13 characterises the matrices yield-

ing that minimum value, thus identifying those transition matrices in ΣD that

minimise the expected time to mixing. The following example illustrates the

scenario that we address in this paper.
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Figure 1: Directed graph D for Example 1.1

Example 1.1 Consider the directed graph D shown in Figure 1. A typical

irreducible matrix T ∈ ΣD has the form T =


0 1 0 0

x 0 1− x 0

0 1− y 0 y

0 0 1 0

 , where

x, y ∈ (0, 1).
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It is straightforward to determine that the eigenvalues of such a T are given

by 1,−1,
√

xy, and −√xy. Consequently we find that K(T ) = 1
2 + 2

1−xy . In

particular we have K(T ) > 5
2 for any irreducible T ∈ ΣD; note also that K(T )

is unbounded from above as T ranges over the irreducible members of ΣD.

One of the key techniques employed in this paper involves the group inverse

of I − T , which we now briefly outline. For a stochastic matrix T having 1

as a simple eigenvalue, the singular matrix I − T is known to have a group

inverse, (I − T )#, that can be characterised as the unique matrix such that

(I − T )(I − T )# = (I − T )#(I − T ), (I − T )(I − T )#(I − T ) = (I − T ), and

(I − T )#(I − T )(I − T )# = (I − T )#. If the eigenvalues of T are given by

1, λ2, . . . , λn, then the eigenvalues of (I − T )# are given by 0, 1
1−λ2

, . . . , 1
1−λn

.

In particular, we find that K(T ) = trace((I − T )#). If T is a stochastic matrix

with 1 as a simple eigenvalue, it follows from Lemma 3.3 of [11] that there is

a neighbourhood of T such that (I − T̃ )# is a well-defined continuous function

for any stochastic matrix T̃ in that neighbourhood. In particular we see that

K is continuous in some neighbourhood of T . We refer the interested reader to

[3] for further information on generalised inverses.

Throughout the paper, we make use of standard facts on stochastic matrices.

The reader may refer to [14] for the necessary background. Background material

on directed graphs may be found in [5].

We close this section with a remark on the title of this paper. There is

an existing body of work on the so-called fastest mixing Markov chain on a

graph (see [1]). Results in that area focus on reversible Markov chains having

a specified undirected graph, and on the subdominant eigenvalue of the cor-

responding transition matrix – i.e. the eigenvalue of second largest modulus

after 1. The object is then to identify the reversible Markov chain respecting

that graph which minimizes the modulus of the subdominant eigenvalue of the

corresponding transition matrix. Our results in Section 2 bear a philosophical

resemblance to those on fastest mixing Markov chains, for we consider an under-

lying combinatorial structure (a directed graph), and a measure of how quickly

a Markov chain mixes (K(T ) + 1 in our case); we then identify those transition

matrices that simultaneously respect the combinatorial structure and minimise

our measure of mixing time.
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2 The minimum Kemeny constant on a directed

graph

Throughout this section, we take D to be a strongly connected directed graph

on n vertices, and we let k denote the length of a longest cycle in D. Let

µ(D) = inf{K(T )|T ∈ ΣD and T has 1 as a simple eigenvalue}. We begin with

a useful result that leads to an upper bound on µ(D).

Lemma 2.1 Suppose that T ∈ ΣD has the form

T =

[
C 0

X N

]
, (3)

where N is nilpotent, and C is the adjacency matrix of a directed cycle of length

`. Then K(T ) = 2n−`−1
2 .

Proof. It is straightforward to determine that

(I − T )# =

[
(I − C)# 0

(I −N)−1X(I − C)# − 1
` (I −N)−111T (I −N)−1

]
,

where we use 1 to denote an all ones vector of the appropriate order. Hence

K(T ) = K(C)+n−`. From Theorem 3 of [10], we find that each diagonal entry

of (I −C)# is equal to `−1
2` , so that K(C) = `−1

2 ; the conclusion now follows. 2

Corollary 2.2 We have µ(D) ≤ 2n−k−1
2 .

Proof. Note that there is a spanning subgraph of D such that each vertex has

outdegree 1, and which contains exactly one directed cycle, of length k. Indeed,

such a subgraph D̃ can be constructed as follows. Begin by identifying a k-cycle

in D, let V0 denote the subset consisting of the vertices on that cycle, and let

A0 denote the collection of arcs on that cycle. Then, for each l ≥ 0 such that

| ∪l
p=0 Vp| < n, let Vl+1 denote the set of all vertices in D from which there

is an out-arc to some vertex in Vl; for each i ∈ Vl+1, select a single vertex

ji ∈ Vl such that i → ji is an arc in D, and let Al+1 denote a collection of arcs

i → ji, i ∈ Vl+1. For some smallest index m we have | ∪m
p=0 Vp| = n, and now

we let D̃ be the (spanning) subgraph of D whose arc set is ∪m
p=0Ap.

Let A be the adjacency matrix of such a subgraph D̃, and note then that

A ∈ ΣD. Observe that A can be written in the form (3), with C as the adjacency
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matrix of the directed k-cycle. From Lemma 2.1, we have K(A) = 2n−k−1
2 , from

which the conclusion follows. 2

Our next result shows that if T is a stochastic matrix such that K(T ) is not

too large, then the non-Perron eigenvalues of T are bounded away from 1.

Lemma 2.3 Suppose that A is a stochastic matrix of order n having 1 as a

simple eigenvalue, and let λ 6= 1 be an eigenvalue of A. If K(A) ≤ n, then

|1− λ| ≥ 1−cos( 2π
n )

n .

Proof. Suppose first that λ ∈ R. In that case, we have 1
|1−λ| = 1

1−λ ≤ K(A) ≤ n,

so that |1− λ| ≥ 1
n , and the desired inequality follows.

Next we suppose that λ is complex, say with λ = x + iy. We then have

n ≥ K(A) ≥ 1
1−λ + 1

1−λ
= 2(1−x)

(1−x)2+y2 . From Theorem 2 of [6] we have |y| ≤ (1−

x)
sin( 2π

n )
1−cos( 2π

n ) , so that y2 ≤ (1− x)2
sin2( 2π

n )
(1−cos( 2π

n ))2 . It now follows that 2(1−x)
(1−x)2+y2 ≥

1−cos( 2π
n )

1−x . Hence we find that |1− λ| ≥ 1− x ≥ 1−cos( 2π
n )

n . 2

Next, we show that while µ(D) is defined as an infimum, it is in fact a

minimum.

Lemma 2.4 There is a matrix S ∈ ΣD such that S has 1 as a simple eigenvalue,

and K(S) = µ(D).

Proof. From the definition of µ(D), we find that there is a sequence of matrices

Tm ∈ ΣD, each with 1 as a simple eigenvalue, such that K(Tm) → µ(D) as

m → ∞. As ΣD is compact, there is a subsequence Tmj of Tm such that Tmj

converges in ΣD as j →∞. Denote limj→∞ Tmj by S.

Since K(Tmj ) ≤ n for all sufficiently large j, we find from Lemma 2.3 that for

all such j, and any eigenvalue λ 6= 1 of Tmj , |1− λ| ≥ 1−cos( 2π
n )

n . It now follows

that the matrix S has 1 as a simple eigenvalue. Thus, the function K is contin-

uous in a neighbourhood of S, and so we find that K(S) = limj→∞K(Tmj ) =

µ(D). 2

Our next technical result shows that there is a matrix with special structure

that minimises K.

Lemma 2.5 There is a (0, 1) matrix A ∈ ΣD such that 1 is a simple eigenvalue

of A and K(A) = µ(D).
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Proof. Appealing to Lemma 2.4, let S be a matrix in ΣD having 1 as a simple

eigenvalue, such that K(S) = µ(D). If S is a (0, 1) matrix, there is nothing to

show, so suppose that some row of S contains at least two positive entries. For

concreteness, we take sip, siq > 0, for indices i, p, q ∈ {1, . . . , n} with p 6= q. We

claim that there is another matrix in ΣD, Ŝ say, such that K(Ŝ) = µ(D), and

in addition such that Ŝ has fewer nonzero entries than S does. The conclusion

will then follow via an iterative argument.

Let Q = I − S, and for each t ∈ [−sip, siq], let Et = tei(ep − eq)T . Observe

that S +Et ∈ ΣD for all such t. Let πT denote the stationary distribution for S.

From Lemma 3.3 of [11], we find that for each t ∈ [−sip, siq] such that S + Et

has 1 as a simple eigenvalue, we have

(Q− Et)# = Q#(I − EtQ
#)−1 − 1πT (I − EtQ

#)−1Q#(I − EtQ
#)−1,

provided that I − EtQ
# is invertible.

From the Sherman-Morrison formula (see [7] for example) we find that for

any t such that 1 − t(ep − eq)T Q#ei 6= 0, we have (I − EtQ
#)−1 = I +

t
1−t(ep−eq)T Q#ei

ei(ep − eq)T Q#. Observe in particular that (I −EtQ
#)−11 = 1

for any such t.

Next, we consider K(S+Et), and note that for all t such that |t| is sufficiently

small, we have

K(S + Et) = trace((Q− Et)#) =

trace(Q#) +
t

1− t(ep − eq)T Q#ei
trace(Q#ei(ep − eq)T Q#)

−trace(1πT (I − EtQ
#)−1Q#(I − EtQ

#)−1).

Recalling that for any square rank one matrix abT , we have trace(abT ) = bT a, we

find that trace(Q#ei(ep − eq)T Q#) = (ep − eq)T Q#Q#ei. Also, trace(1πT (I −
EtQ

#)−1Q#(I − EtQ
#)−1) = πT (I − EtQ

#)−1Q#(I − EtQ
#)−1)1 = πT (I −

EtQ
#)−1Q#1 = 0. Consequently, we have

K(S + Et) = trace(Q#) +
t

1− t(ep − eq)T Q#ei
Q#eiQ

#(ep − eq)T =

K(S) +
t

1− t(ep − eq)T Q#ei
(ep − eq)T Q#Q#ei.

From the fact that S minimises K over ΣD, we deduce that (ep−eq)T Q#Q#ei

must be zero, otherwise we could select a small (positive or negative) t so

7



that K(S + Et) < µ(D), a contradiction. Consequently we find that for all

t ∈ [−sip, siq] such that 1−t(ep−eq)T Q#ei 6= 0,K(S+Et) = trace((Q−Et)#) =

trace(Q#) = µ(D). Now select t0 =

siq, if (ep − eq)T Q#ei ≤ 0

−sip, if (ep − eq)T Q#ei > 0
, so that

1 − t0(ep − eq)T Q#ei ≥ 1. Then S + Et0 ∈ ΣD, has 1 as a simple eigenvalue,

has one more zero entry than S does, and satisfies K(S + Et0) = µ(D). The

conclusion now follows. 2

Next, we present one of the main results of this paper.

Theorem 2.6 Let D be a strongly connected directed graph on n vertices; de-

note the length of a longest cycle in D by k. Then

µ(D) =
2n− k − 1

2
. (4)

Proof. By Lemma 2.5, there is a (0, 1) matrix A ∈ ΣD having 1 as a simple

eigenvalue, and such that K(A) = µ(D). Since A is (0, 1) with 1 as a simple

eigenvalue, it follows that A can be written in the form (3), where C is the

adjacency matrix of a directed cycle, say of length `, and where N is nilpotent.

By Lemma 2.1, we have µ(D) = K(A) = 2n−`−1
2 ≥ 2n−k−1

2 . Applying Corollary

2.2, we also have µ(D) ≤ 2n−k−1
2 , whence ` = k; formula (4) now follows. 2

Corollary 2.7 Let T ∈ ΣD be irreducible with stationary distribution πT , and

denote the corresponding mean first passage times by mij , i, j = 1, . . . , n. For

each index i = 1, . . . , n, there is an index j 6= i such that mij ≥ 2n−k−1
2(1−πi)

.

Proof. From Theorem 2.6, we have K(T ) ≥ 2n−k−1
2 . Since K(T ) =

∑
l 6=i milπl,

it follows that K(T )
1−πi

is a weighted average of the quantities mil, l = 1, . . . , n, l 6= i.

The conclusion now follows. 2

Remark 2.8 Observe that if T is the adjacency matrix of a directed n-cycle,

then Corollary 2.7 asserts that for each i = 1, . . . , n there is a j 6= i such that

mij ≥ n
2 . If n happens to be even, then we can always find a j 6= i so that in

fact mij = n
2 .

Example 2.9 Suppose that T is an irreducible tridiagonal stochastic matrix.

From the structure of T , we find that length of a longest cycle in D(T ) is 2.
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Hence, K(T ) ≥ 2n−3
2 by Theorem 2.6. Thus we have a generalisation of the

observations made in Example 1.1.

Our next sequence of results is aimed at characterising the matrices T ∈ ΣD

such that K(T ) = µ(D). We begin with a continuity result for minimisers of K.

Lemma 2.10 Let Tj be a sequence of matrices in ΣD such that K(Tj) = µ(D)

for all j ∈ N. If the sequence Tj converges to S, then K(S) = µ(D).

in Proof. Since K(Tj) = µ(D) for each j, we find from Theorem 2.6 and Lemma

2.3 that for any index j and eigenvalue λ 6= 1 of Tj , we have |1−λ| ≥ 1−cos( 2π
n )

n .

Since the non-Perron eigenvalues of Tj are bounded away from 1, uniformly in

j, it follows that 1 is a simple eigenvalue of S. Hence K is continuous in a

neighbourhood of S, from which we conclude that K(S) = µ(D). 2

Corollary 2.11 Suppose that T ∈ ΣD and that K(T ) = µ(D). Suppose also

that there are indices i, p, q with p 6= q such that tip, tiq > 0. Letting S =

T + (−tip)ei(ep − eq)T , we have that K(S) = µ(D).

Proof. Here we adopt the approach of Lemma 2.5. Let Q = I − T, and for

each s ∈ [−tip, tiq], let As = T + sei(ep − eq)T . Then for each such s, we have

K(As) = µ(D) + s(ep−eq)T Q#Q#ei

1−s(ep−eq)T Q#ei
, provided that 1− s(ep − eq)T Q#ei 6= 0. As

in Lemma 2.5, we deduce that (ep − eq)T Q#Q#ei = 0, so that K(As) = µ(D)

for each s ∈ [−tip, tiq] such that 1− s(ep − eq)T Q#ei 6= 0.

Next, select a sequence sm ∈ [−tip, tiq] such that 1− sm(ep − eq)T Q#ei 6= 0

for all m ∈ N, and such that sm → −tip as m →∞. Then Asm → S as m →∞,

and K(Asm) = µ(D) for all m ∈ N. The conclusion now follows from Lemma

2.10. 2

The following proposition establishes the combinatorial structure of matrices

that minimise K over ΣD.

Proposition 2.12 Suppose that A ∈ ΣD and that K(A) = µ(D). Then every

cycle in D(A) has length k, and any pair of cycles in D(A) must intersect.

Proof. We proceed by induction on the number of arcs in D(A), and note that

if D(A) has just two arcs, then the result is immediate.
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Suppose that the conclusion holds for directed graphs with m ≥ 2 arcs, and

that D(A) has m + 1 arcs. If each vertex of D(A) has outdegree one, then since

1 is necessarily a simple eigenvalue of A, it follows that D(A) has just one cycle.

Since K(A) = µ(D), it follows that this cycle must have length k, as desired.

Suppose that some vertex of D(A) has outdegree at least two. Without loss

of generality, we assume that 1 → i and 1 → j in D(A). From Corollary 2.11, it

follows that we can find A1, A2 ∈ ΣD such that K(A1) = K(A2) = µ(D), and

such that D(A1) = D(A) \ {1 → i} and D(A2) = D(A) \ {1 → j}. Note that

every cycle in D(A) not using the arc 1 → i is a cycle in D(A1), and so by the

induction hypothesis, every such cycle has length k. On the other hand, any

cycle in D(A) that uses the arc 1 → i cannot use the arc 1 → j, and so is a cycle

in D(A2); again by the induction hypothesis, such a cycle must have length k.

Hence, every cycle in D(A) has length k.

Now select two cycles C1 and C2 in D(A). If neither includes the arc 1 → i,

then both are in D(A1) and hence they must intersect by the induction hypoth-

esis. Evidently if both C1 and C2 include the arc 1 → i then they intersect. So,

without loss of generality we may assume that C1 includes the arc 1 → i, while

C2 does not. If C2 includes the arc 1 → j, then it certainly intersects C1, while

if C2 does not include the arc 1 → j, then both C1 and C2 are in D(A2). Again

the induction hypothesis applies, and we find that C1 and C2 intersect. That

completes the induction step, and the conclusion follows. 2

Recall that an irreducible stochastic matrix T is periodic with period m if

the greatest common divisor of the cycle lengths in D(T ) is equal to m. In that

case, the vertices of D(T ) can be partitioned into subsets S1, . . . , Sm such that

i → j is an arc in D(T ) only if there is an index ` = 1, . . . ,m such that i ∈ S`

and j ∈ S`+1 (with the convention that Sm+1 ≡ S1). These subsets S1, . . . , Sm

are known as the cyclically transferring classes for T .

We are now in a position to characterise the matrices that minimise K over

ΣD.

Theorem 2.13 Suppose that A ∈ ΣD. We have K(A) = µ(D) if and only if A

can be written in the form

A =

[
A0 0

X N

]
, (5)
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where N is nilpotent (or empty in the case that k = n) and where A0 is irre-

ducible, and k-cyclic with one of its cyclically transferring classes of cardinality

one.

Proof. Suppose that K(A) = µ(D); then A has 1 as a simple eigenvalue, and it

follows that we may write A as

A =

[
A0 0

X N

]
,

where A0 is irreducible and the spectral radius of N is strictly less than 1. By

Proposition 2.12, all cycles of D(A) have length k, and any two cycles intersect.

Hence, all cycles of D(A0) have length k, and any two cycles intersect; applying

Theorem 6.2 of [4], we thus find that A0 must be k-cyclic with one of its cyclically

transferring classes having cardinality one.

It is straightforward to see that K(A) = trace((I−A0)#)+trace((I−N)−1).

Suppose for concreteness that A0 is m ×m; from the structure of A0, we find

that its eigenvalues are e
2πij

k , j = 0, . . . , k− 1, and 0 with algebraic multiplicity

m − k. Hence trace((I − A0)#) = k−1
2 + m − k. Note also that trace((I −

N)−1) ≥ n − m, with equality holding only if N is nilpotent. Thus we have
2n−k−1

2 = k−1
2 + m− k + trace((I −N)−1) ≥ k−1

2 + m− k + n−m = 2n−k−1
2 .

We thus conclude that N must be nilpotent, as desired.

The converse is readily established. 2

Remark 2.14 Suppose that T is an irreducible stochastic matrix of order n.

From Theorem 2.6, we recover the known result that K(T ) ≥ n−1
2 , while from

Theorem 2.13, we find that K(T ) = n−1
2 if and only if T is the adjacency matrix

of a directed n-cycle.

Remark 2.15 Let D be a strongly connected directed graph. It is interesting

to note that any matrix in ΣD that minimises the Kemeny constant necessarily

has a subdominant eigenvalue of modulus 1. Thus we see that by using K(T )+1

as a measure for the time to mixing, we obtain very different results than by

using the modulus of the subdominant eigenvalue as a measure of the time to

mixing.
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3 An upper bound for intercyclic directed graphs

In light of the lower bound on K established in Theorem 2.6, it is natural to

wonder about the structure of the directed graphs D such that K(T ) is bounded

from above as T ranges over ΣD. In this section, we address that question. We

begin with a useful observation.

Remark 3.1 It is shown in Lemma 6.1 of [4] that if D contains a pair of

vertex-disjoint cycles, then K(T ) is not bounded from above as T ranges over

the irreducible matrices in ΣD.

Recall that a directed graph is intercyclic if it has the property that any

pair of its cycles intersect. A complete characterisation of this class of directed

graphs is given in [13]. Observe that by Remark 3.1, if a directed graph D has

the property that K(T ) is bounded from above as T ranges over the irreducible

members of ΣD, then necessarily D must be intercyclic.

The following technical result will be useful in the sequel.

Lemma 3.2 Let D be an intercyclic directed graph. Then for any matrix T ∈
ΣD, the number 1 is a simple eigenvalue of T .

Proof. Fix T ∈ ΣD; for each cycle C in D(T ), let w(C) denote the product

of the entries in T corresponding to the arcs of C. Since any pair of cycles in

D(T ) intersect, it follows that the characteristic polynomial of T can be written

as det(λI − T ) = λn −
∑

C∈D(T ) w(C)λn−|C|, where the sum is taken over all

cycles C ∈ D(T ), and where |C| denotes the number of vertices on the cycle C.

It now follows from Descartes’ rule of signs that det(λI − T ) has precisely one

positive root, which is necessarily equal to 1. Hence 1 is a simple eigenvalue of

T . 2

Lemma 3.2 leads to a continuity result for K.

Corollary 3.3 Let D be an intercyclic directed graph. Then K is a continuous

function on ΣD; in particular, there is a matrix A ∈ ΣD such that K(A) =

max{K(T )|T ∈ ΣD}.

Proof. Let T be a stochastic matrix with 1 as a simple eigenvalue. Then (I−T )#

is continuous in a neighbourhood of T , and hence so is K(T ) = trace((I−T )#).

The other conclusion follows readily. 2
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Here is the main result of this section.

Theorem 3.4 Suppose that D is an intercyclic directed graph, and let g denote

the length of a shortest cycle in D. Then max{K(T )|T ∈ ΣD} = 2n−g−1
2 .

Proof. By Lemma 3.3, K attains its maximum value on ΣD. Arguing as in

Lemma 2.5, it is readily shown that in fact there is a (0, 1) matrix A in ΣD for

which K(A) is maximum. As A has 1 as a simple eigenvalue and is (0, 1), it

follows that A can be written in the form (3), where C is the adjacency matrix of

a directed cycle of length `, say. It then follows that K(A) = 2n−`−1
2 ≤ 2n−g−1

2 .

On the other hand, we can readily produce a matrix T in ΣD such that D(T )

contains a single cycle of length g, and for which K(T ) = 2n−g−1
2 . Consequently,

it must be the case that max{K(T )|T ∈ ΣD} = 2n−g−1
2 , as desired. 2
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Figure 2: Directed graph D for Example 3.5

Example 3.5 We close the paper with an example that illustrates the results

of this section. Consider the directed graph D shown in Figure 2. It is straight-

forward to see that D is intercyclic (since vertex 7 is on every cycle), and that

the shortest and longest cycle lengths are 3 and 4, respectively.

Suppose that we have a matrix T ∈ ΣD. Then there are parameters x, y, a ∈
[0, 1] such that

T =



0 0 1− x 0 0 x 0

0 0 0 1− y y 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

a 1− a 0 0 0 0 0


.
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Let U be the submatrix of I − T consisting of its first six columns, and let V

be the 6 × 7 matrix V =
[

I −1
]
. We find from Theorem 7.8.2 of [3] that

(I−T )# = U(V U)−2V, from which it follows that K(T ) = trace(U(V U)−2V ) =

trace((V U)−1). A direct computation now shows that K(T ) = 3+ 6
4−ax−(1−a)y .

Consequently, we find that K(T ) ≥ 9
2 = 14−4−1

2 , with equality holding if

and only if ax + (1− a)y = 0, while K(T ) ≤ 5 = 14−3−1
2 , with equality holding

if and only if ax + (1− a)y = 1.

Acknowledgement: The author is grateful to Robert Shorten and Selim Solmaz

for a conversation that prompted the investigation in this paper.
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