Spin systems dynamics and faults detection in threshold networks
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We consider an agent on a fixed but arbitrary node of a known threshold network, with the
task of detecting an unknown missing link/node. We obtain analytic formulas for the probability of
success, when the agent’s tool is the free evolution of a single excitation on an X X spin system paired
with the network. We completely characterize the parameters allowing for an advantageous solution.
From the results emerges an optimal (deterministic) algorithm for quantum search, therefore gaining
a quadratic speed-up with respect to the optimal classical analogue, and in line with well-known
results in quantum computation. When attempting to detect a faulty node, the chosen setting
appears to be very fragile and the probability of success too small to be of any direct use.

I. INTRODUCTION

Searching and traversing graphs with the use of a quan-
tum dynamics (discrete or continuous) is a topic of wide
study. The main findings on the algorithmic side exhibit
a quadratic gain (producing then a class of Grover-like
results), when used to search marked vertices in hyper-
cubes, lattices, and more general objects [11], and an
exponential one when transferring information to a dis-
tant site by free evolution [9]. With essentially the same
formalism, the dynamics of spin systems forms the basis
of concrete proposals for implementing communication
buses in a variety of nanotechnology devices [2]. The
central point is always a unitary operator reflecting the
topology of a graph whose vertices are encoded in pure
states or a (time-independent) Hamiltonian describing
the interactions of particles in the actual physical net-
work, and thus representing a noiseless quantum channel.

Considering these two contexts together, we take a par-
simonious agent located on a specific node of a known
threshold network, attempting to detect an unknown
missing link/node. We obtain analytic formulas for the
probability of success, when the missing link/node is
searched by letting evolve a single excitation from the
given vertex. For specific parameters, we have an op-
timal algorithm for quantum search in a deterministic
fashion. Our working ground is an XX (or, equivalently,
isotropic XY') system with homogeneous couplings and
site dependent magnetic fields [3] (a proposed setting for
distributed implementation consists of cavities connected
by optical fibers (8]).

Threshold graphs are applied to the synchronization of
parallel processes, set packing, scheduling, and to define
the Guttman scale in the area of statistical surveys [10].
Formally, a threshold graph can be constructed from the
one-vertex graph by repeatedly adding a single vertex
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of two possible types: an isolated vertex, i.e. a vertex
without edges; a dominating vertezr, i.e. a vertex con-
nected to all other vertices. The creation sequence of a
threshold graph G on n vertices is a word = (G) € {0,1}"
recursively defined as follows: x (G) = x (G — i) y, where
y = 0 if ¢ is isolated and y = 1 if ¢ is dominating. A
threshold graph is then characterized by its creation se-
quence, a property with important consequences. In fact,
the information required to store a threshold graph on
n vertices is at most n bits, two threshold graphs are
isomorphic if and only if they have the same degree se-
quence, and the recognition can be done in linear time.
Even if the above definition is somehow restrictive, it is
valuable that one can construct arbitrarily large thresh-
old networks with approximately any prescribed degree
distribution, including the scale-free one [6].

The dynamics of the first excitation sector in the XX
model is governed by the (combinatorial) Laplacian [3].
The Laplacian of a graph G = (V, E) is the matrix L with
entries [L]; ; =d (i) ifi =4, [L];; = —1if {¢,j} € E and
L)y = 01 {i,5} ¢ B; here d(i) = |{j : (3.} € B
is the degree of i € V. Let \y > Ao > - > A\, =0
be the eigenvalues of L arranged in the nonincreasing
order. A graph is a threshold graph if and only if
Aj o= {i:d (i) > g}, with j = 1,...,n [5]. In other
words, the degree sequence and the nonzero eigenvalues
of a threshold graph G are (Ferrer’s) conjugate partitions
of 2|E|. For example, let us consider the word 0011011.
The graph G has degree sequence {2,4,4,5,5,6,6} and
eigenvalues {7,7,6,6,4,2,0}.

Let |1:) = Uglwo), where Uy = exp(—ilLt), for t € R,
and |tg) is an element of an n dimensional Hilbert space,
with standard basis {[i) : i € V}. Let pg(4,7,t) =
|(j|U4|3)|* be the probability that a single excitation trav-
els from node ¢ to node j after a free evolution of duration
t (this is also called fidelity); we say that there is perfect
state transfer when pg (i, j,t) = 1, for ¢ # j. Since the
Laplacian spectrum of a threshold graph is integral, it
follows that the dynamics governed by L is always peri-
odic [2, 4], i.e., there is ¢ such that pg (i,4,t) = 1, for
every i.



Firstly, we propose in Theorem 2 a complete character-
ization of the class of threshold graphs allowing for per-
fect state transfer. Secondly, with a direct application of
this result, we describe how the evolution can be used to
detect a missing link. The procedure gives a straightfor-
ward algorithm for (optimal) quantum search in certain
threshold networks. Indeed, as a special case, we have
a deterministic version of Grover’s search [1]. Theorem
6 shows that the result can not be extended to a large
subfamily of threshold graphs. As expected, the graphs
for which the result holds can be associated to modulated
chains of length 3, where the couplings are determined by
the number of edges connecting vertices from certain sub-
sets (namely, an equitable partition). This is a common
situation when studying perfect state transfer [2]. Inter-
ference effects drive the evolution in a way that does not
seem to be exploitable for searching (by using out tech-
nique), unless the missing links belong to the subsets.

II. FAULTY LINKS

For any p € N, let K, denote the complete graph on p
vertices, and let O, denote the empty graph on p vertices.
Let 0, and 1, denote the zero vector and all ones vector,
respectively, both of order p. For p,q € N, we use J,»4 to
denote the p X ¢ all ones matrix; often the subscript will
be suppressed when the order is evident from the context.
We need two operations: the union and the joint. The
union, denoted by U, consists of taking two graphs and
looking at them as a single one whose connected compo-
nents are exactly the graphs. The join, denoted by V, is
the graph obtained by taking the union of two graphs,
plus edges connecting all their respective vertices. The
following lemma can be deduced from the basic proper-
ties of threshold graphs and it does not require a proof
(see, e.g., [5]). It is our main technical tool.

Lemma 1 Let G be a connected graph on at least two
vertices. Then G is a threshold graph if and only if one
of the following two conditions is satisfied:

(i) there are indices my,...,mox € N with my; > 2
such that G = ((((Om, V Ky ) UOma )V K, ) ..V

Km2k = P(mla v 7m2k‘);

(i) there are indices my,...,maog+1 € N with m; > 2
such that G = (((Kmy UOm,)V Ky )UOp,) ...V
K"l2k+1 = F(m17 v 7m2k+1)~

The vertices 1., ..,my correspond to the first subset,
mi+1,...,mi+mo correspond to the second subset,
etc.

The next theorem is the central result of this section.
It gives a complete characterization of threshold graphs
with perfect state transfer. As it is usually done when
studying this topic, we write explicitly the eigensystem of
the Laplacian. The parameterization is the one described
in Lemma 1.

Theorem 2 Let G be a threshold graph. When
G = I(my,...,ma) (resp. G = I'(ma,...,mapq1)),
pa (1,7,t) = Lif and only if (4, 7) = (1,2) and in addition:
t=3;mp =2; my =2mod4; and m; = Omod4,j =
3,...,2k (resp. j=3,...,2k+1).

Proof. Suppose that we have mq,...,mor € N with
my > 2, and consider the Laplacian matrix L of
T(myq,...,max). For each 1 <1 <2k, let 07 = 22:1 M.
Fix an odd index j between 1 and 2k, and note that if
m; > 2, then for any vector u € R™J such that u L 1,,,,

the vector [0, |u|04,, —o, ] " is an eigenvector for L cor-
responding to the eigenvalue Ao(j) = mjy1+mjps+...+

moy. Letting iy, ..., um, 1 be an orthonormal basis of
(1mj)J-7 we find that Z?i]fl wul = I—%ij xm,- Note

also that if j is odd and 2 < j < 2k, then the vector

(ﬂ;)m 1,,

N () Ty 1
0= | (20, )
Oo'gk—o']‘

is also an eigenvector for L corresponding to Ag(j) that
has length one and is orthogonal to the eigenvectors con-
structed above. Similarly, if j is an even index between
2 and 2k, and wy,...,Up,—1 is an orthonormal basis

of (1m,)*, then the vectors [0g,_, |ul|002k,gj]T, with
Il =1,...m; — 1, are eigenvectors for L corresponding
to the eigenvalue A1 (j) = 0 +mjpo +mjpa + ...+ mop.
Note further that the vector in Eq. (1) is an eigenvector
for L corresponding to A1 (7).

Finally, we observe that 1,,, /\/02x is a null vector for
L. Tt now follows that for each index j between 2 and
2k, the matrix

0f 0 |o
PA()) = | O|I—-J|0
o o |o
+ o) | TS 1E | R, | 0T, |
o, ixay - 0
= _alj I—%ijij 0 )
0 0 0

with z = 0, 1, is an orthogonal idempotent (i.e., a projec-
tor) for L corresponding to the eigenvalue Ag(j) or A1 (j)
according as j is odd or even, respectively. Here the (1,1)
block is of order o;_1, the (2, 2) block is of order m;, and
0 denotes a zero block whose order is determined from
the context. It now follows that for any real ¢ > 0, we



can use the orthogonal idempotents to write
U, = e~V [ L= T xm, 0] (2)

0 [0
DY

e 1200 P[xo ()]

7235, 0dd
.y 1
+ Y e MUPNG) +—
2 [Xi(5)] p—
22,7, even

(We note that an equivalent expression for Uy appears in
Theorem 3.1 of [7].)

Now we consider an off-diagonal entry z of Uy; for con-
creteness, we take z to be in the upper triangle of the
matrix, and we suppose that z is in a column that lies
in the jo-th subset of the partitioning that is induced by
the indices my, ..., mo,. (We observe in passing that all
such offdiagonal entries are equal.) From Eq. (2), we
find that

1 2k m 1
—ithy. (o), — ith (i ;
el pm(Jo)( )+ } : o~ Ap; (9) iy
[ 0;_10; 092k
Jo j:jo-i-l J 1 J 2k

?

where for each index j, p; is 0 or 1 according as j is odd
or even, respectively. Consequently,

1 2k
z| < — +
| | T Oy Z
Jj=jo+1

m 1

0j—105  O2

Note that moy /(0o _109k) +1/02r = 1/09i—1. Thus, the
summation giving |z| telescopes, so that

2k

m; 1 1
> +—=—
j=jor1 737195 T2k o

Hence, |z| < 2/0j,. In particular, since m; > 2, we see
that |z| < 1if jo > 2.

Suppose now that |z|] = 1. Then necessarily jo = 1,
and, since 1 < 2/my, we find that m; = 2. Indeed,
it must also be the case that z is the (1,2) entry of Us.
From the consideration of the equality case in the triangle
inequality, we find that |z| = 1 if and only if, in addition
to m; = 2 we have:

(i) e oM = -1 while

(ii) e~#*2() =1, for all odd j > 3 and

(iif) e~*M0U) = 1, for all even j.
FromA( i) we have e~ = —1, while from (3i) it follows
that e~®™2t = 1 for each | = 2,...,k. Applying these
conditions, in conjunction with (ii), it then follows that

e”m2 — _1 while e #2241 =1 forl =1,...,k— 1.
Hence there are integers p1,...,por such that

372p1+172p2+17%
T 2 T me 7mj

)

for 5 = 3,...,2k. We thus find that me =
(4ps+2) /(2p1 +1) while m; = 4p;/(2py +1), j =
3,...,2k. We now deduce that me = 2mod4, and
m; = 0mod4 for j =3,...,2k.

Next, we consider the values of ¢ € [0, 2] for which the
(1,2) entry of U; has modulus one, and note that since
L has integer eigenvalues, an offdiagonal entry of U; has
modulus one if and only if the corresponding entry in
exp(—i(t + 2¢gm)L) has modulus one for any integer q.
From the foregoing we find that the only possible values
of t € [0, 2] for which the (1,2) entry of U; has modulus
one are t = w/2 and t = 37/2. Since my = 2mod4
and m; = 0mod4, for j = 3,...,2k, we find readily that
conditions i)-iii) hold when ¢t = 7/2 or t = 37/2, so that
the (1, 2) entries of exp(—inL/2) and exp(—i3wL/2) have
modulus one. The second part of the theorem follows
along the same lines. =

Corollary 3 Let G be a threshold graph on n = 4m ver-
tices with my = 2 and mg = 4m—2. The pair {i,j}, with
i and j in the set of size m1, can be found with certainty
by the use of O(n — 1) evolutions induced by L, each one
of time /2.

Proof. Consider K,,, the complete graph on n vertices.
A special case of Theorem 2 is K, := K,, — {3,j}, for
two distinct arbitrary vertices ¢ and j. When n = 4m
(m > 1)7 Pg- (i,j,ﬂ'/Q) =1 and Py~ (k,l,ﬂ'/Q) = 0,
for every pair {k,l}, with k,l # ¢,j. Since |E(K,)| —
n? for n — oo, n — 1 applications of U, /2 implement a
deterministic and optimal version of Grover’s search [1].
|

In practice, we are given a network modeled by a com-
plete K, that is missing a single unknown link {7, j}. By
starting the dynamics on each possible vertex (or, equiv-
alently, particle) of K, , we can determine the missing
edge by letting the entire system evolve for a time /2
and then perform a projective measurement at the same
vertex. The dynamics governs the behaviour of a walker
on the network. If the walker has moved, then the new
position is vertex j and the link {7, j} is missing.

The same reasoning may be applied to find a miss-
ing matching. Recall that a matching is a set of vertex-
disjoint edges. A matching is perfect if it includes all
vertices.

Corollary 4 Let K,, be a graph on n = 4m vertices. A
deleted matching from K, of size k < 2m can be found
with certainty by the use of exactly n/2 — 1 evolutions
induced by L, each one of time /2.

It is just matter of running the dynamics from an ar-
bitrary vertex ¢ and detecting the missing edge {7,j} in
the matching. Then, we pass to a vertex k # 4, 7, and so
on and so forth. A deterministic search requires at most
S oaqi = n2/4 — 1 steps. For threshold graphs, The-
orem 2 specifies completely the detectable links. From
the perspective of a direct application to network search



based on the described method (free-evolution on a spin
system), the theorem shows that the complete graph is
the only threshold graph in which every deleted link can
be actually found. For all other threshold graphs there
are some undetectable links. Even if the same proce-
dure can be certainly generalized to any graph, since
the search is performed in cliques (i.e., complete sub-
graphs), a complete knowledge of cliques is necessary and
a mechanism to induce evolution only in desired cliques
is needed. Still, it is useful to remark that implementing
such a mechanism (which would turn on and off the in-
teractions between different cliques) permits to transfer
an excitation to any desired vertex.

III. FAULTY NODES

Here we consider the problem of the previous section
but for vertices. Given a threshold graph G, let G =
G —j, for some vertex j € V, and let Uy = exp(—iL(G)t).
We ask whether it is plausible that if G has perfect state
transfer, we are then able to detect the missing vertex.
The idea is based on taking advantage of the graph struc-
ture, apart from the edge between the two vertices in the
set of size my. After a technical lemma, we will prove that
the offdiagonal entries of U, while bounded away from 1
in modulus, can have relatively large magnitude, some-
thing which does not help to give specific information
about the deleted vertex. As a consequence, we do not
obtain sufficient information about j. The negative re-
sult highlights an important role for special symmetries.
We shall give a proof for G = I'(my, ma, ..., mog). The
theorem for the case I'(m1, ma, ..., mag+1) has a parallel
statement.

Lemma 5 Let a € N be odd. Then
(1) max{min{— cos 2¢, — cos at, cos(a — 2)t}|¢t € [0, 27|}
= cos(m/a);
(11) max{min{— cos 2t, cos at, — cos(a — 2)t}|t € [0, 27|}
= cos(m/a).
Proof. Set a =2m + 1. If

m m+1 3m—+2

fe g 3m+1
= s s T s
2m+1"2m+1 om—+1""2m+1 |’

then —cos2t < cos(m/a). On the other hand, if ¢t ¢ S
then |cos(a — 2)t| < cos (7/a). Thus, we find that

min{— cos 2t, — cos at, cos(a — 2)t},

min{— cos 2t, cos at, — cos(a — 2)t} < cos E,
a

forallt € [0,27]. Let b= (m+1)/(2m+1) and ¢ =
m/ (2m + 1). Next we show that for each of the functions

above, the value cos(m/a) is attainable for some t. If m
is odd/even then

cos(m/a) ={—cos2(cm), — cosa(cm), cos(a — 2)(cm)},
{—cos 2(br), — cos a(br), cos(a — 2)(bm)}
respectively; in a similar way, if m is even/odd
cos(m/a) ={—cos2(cr), cos a(er), — cos(a — 2)(cm)},
{=cos2(br), cos a(br), — cos(a — 2)(br)} .

Theorem 6 Let mq,...,mox € N such that m; = 2,
me = 2mod 4, and m; = 0mod4, forl =3,...,2k. Let
2

i;éjandg:(%Jr%Jri) .

02k

(i) If G = T(my — 1,ma,...,mag) then |[Ut]i7_j| <
2/ (m2 + 1)7

(ii) If 1 is even and G =
1,my41,...,mog) then

F(mlv ceeyMp—1, M —

~ m
Uizl <lg — (1 — cos o )
+ Zi:Z: euenm’i

ms T/Q 1 me 1

010202k

(iii) If 1 > 3 is odd and G = T(my,...,my_1,m; —
1,my41,...,map) then

~ ™
[Ut)i i1 <lg — (1 — o8 —3 )
Dict: oqa™i — 1

1/2
momjy1 :| 1 mo

ml+1 4)
0107+1

01020101+1

Proof. Let z be an offdiagonal entry of Ut; As in the
proof of Theorem 2, we find that if z # [Ui12,[Utl21
then |z| < 2/03 < 2/3. Thus, for the remainder of the
proof, we assume wlog that z is in the (1,2) position.
Recall that oy = Z;Zl mp.

(i) Note that I'(m; — 1,me,...,mar) = I'(me +
1,mg, ..., ma). From the proof of Theorem 2, it follows
that |z| <2/ (mg+1).

(ii) Suppose that [ is even and that G =
T(ma,...,my—1,my — L,myy1,...,mog). Set a = 1+
ms + my4 + ... + mog. Suppose that we have posi-
tive parameters a3,y such that a > 3,7, and note
that |—ae=ite=2) 4 gemite L |* — o2 4 B2 4 42 —
2ary cos(a — 2)t + 20y cosat — 2af cos2t. From Lemma
5, for each ¢, one of —cos2t, cosat and —cos(a — 2)t
is bounded above by cos(7/a). It now follows that
|—ae™02) 4 femita 4y < (0% + B2 + 97 + 20y +
2By cos T +2aB)1? = ((a+B+7)? — (1 —cos ) By) /2.



Taking a« = 1/01 = 1/2, 8 = ma/(0102), and v = 1/,
applying the triangle inequality as in the proof of Theo-
rem 2, we have

2k
-1 _; me m;j
o < e—zt(a—Z) e~ ita J
| |_' 2 + 0109 + 02k + Zaj_laj
Jj=3
< lefit(a72)+ﬂefita+_ 41
2 0102 o2k

which implies Eq. (3).

(i) Suppose that [ > 3 is odd, and that G =
l"(ml,...,ml,l,ml — 1,ml+1,...,m2k). Set a =
mi; + msg + ... + my — 1. As in the proof of
(i), we consider positive parameters o > f[3,v, and
note that |—ae ") 4 ge=itM(2) 4 ye—ith(+1)|
|—a+ Be 2" +ye~|.  As in (ii), we deduce from
Lemma 5 that |—a+ Be 2" +ye™| < ((a + 8 +
7)? — (1 — cosZ)By)Y/2. Taking o = 1/oy = 1/2,
B = ma/(o102), and v = my41/(o10141), Eq. (4) fol-
lows. m

Notice that in the context of Theorems 6, the (1,2)
entry of U; can have large modulus. For example,

it is straightforward to show that if m; = 2, my =
2mod4, and m; = Omod4, for I = 3,...,2k and
G = F(ml,mg,...,mgk,l,mgk — 1), then |[U%]1,2| =

(1 =2 ((o2r — 1)/0%,)) ">, Similarly, if my = 2, my =
2mod4, and m; = Omod4, for [ = 3,...,2k + 1 and
P(ml,mz,...,mgk,m2k+1 — 1), then |[U%]1,2| =

G =
(1 =2 ((o2r41 — 1)/U§k+1))1/2'

IV. CONCLUSIONS

We have shown that the dynamics on a network gov-
erned by the Laplacian, seen as the Hamiltonian re-
stricted to the single excitation sector of an XX spin
system, can detect and find a faulty link in the complete
graph with a quadratic gain with respect to a determin-
istic method, and we have extended the observation to
matchings. The result gives a way to perform optimal
quantum search (on the complete graph), and a new in-
sight into the related algorithms. Essentially we have a
reinterpretation of a fact discovered in [3]. Our contri-
bution is to have put the statement in a more general

mathematical context, by giving a complete character-
ized of threshold graphs with perfect state transfer with
respect to the XX model. Dealing with deleted nodes,
we have shown that our method does not give any clear
advantage. The basic idea of the paper is to use a free
quantum evolution to search a missing item on a net-
work. The method is different from the ones studies in
[11] substantially because the algorithm does not require
any control. After the set-up of the network, the system
evolves without intermediate operations. The process is
distributed because the nodes of the network are identi-
fied with spin particles. The measurements are local in
the sense that they are concerned with the single sites,
independently. That is why we can locate autonomous
agents on the sites.

We have considered threshold graphs only, since these
have integer Laplacian spectrum, and so possess periodic
dynamics, i.e., a necessary condition for perfect state
transfer (see [2]). The vertices involved in the phenom-
enon are special. The symmetry with respect to these
vertices can be exploited to create a “reference point” in-
side the graph. Looking ahead, one direction for further
exploration is to determine what information about the
topology of a spin system (paired with a network) can
be obtained by a free evolution and final local measure-
ments. Here, more than designing search algorithms, it
is a matter to determine what kind of graphs have some
sort of searching capability embedded in their structure.
The method of the paper can be generalized to search-
ing a missing link (or, equivalently, a marked link) in
any network, with steps involving one clique at a time.
The method works for vertices if we employ the notion of
the line graph. However, we have shown that the direct
detection of a missing vertex is not a natural task for
the studied dynamics, at least on threshold graphs. It
is an open question to determine whether the dynamics
can help to find marked nodes, when taking a different
initial probability distribution, and if we can obtain the
quadratic speed-up in this case.
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