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Abstract

For a square (0, 1,−1) sign pattern matrix S, denote the qualitative class of

S by Q(S). In this paper, we investigate the relationship between sign patterns

and matrices that diagonalise an irreducible nonnegative matrix. We explicitly

describe the sign patterns S such that every matrix in Q(S) diagonalises some

irreducible nonnegative matrix. Further, we characterise the sign patterns S

such that some member of Q(S) diagonalises an irreducible nonnegative matrix.

Finally, we provide necessary and sufficient conditions for a multiset of real

numbers to be realised as the spectrum of an irreducible nonnegative matrix

M that is diagonalised by a matrix in the qualitative class of some S2NS sign

pattern.
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1 Introduction

Suppose that M is an irreducible n× n nonnegative matrix. The celebrated Perron-
Frobenius theorem [7] asserts that the spectral radius of M is an algebraically simple
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eigenvalue, known as the Perron value of M . A good deal is also known about the
non-Perron eigenvalues of nonnegative matrices. For example, results of Dmitriev and
Dynkin [4] and Karpelevich [6] identify, for each n ≥ 2, the region in the complex
plane {λ|λ is an eigenvalue of an n × n nonnegative matrix with Perron value 1}. In
a similar vein, there has been a great deal of interest in the so-called inverse eigenvalue
problem for nonnegative matrices - that is, the problem of determining necessary and
sufficient conditions for a multiset of n complex numbers to be the spectrum of a
nonnegative matrix of order n. We refer the interested reader to [1] and [5] for
overviews of the progress on this problem.

The Perron-Frobenius theorem also gives information about the eigenvectors as-
sociated with the Perron value of an irreducible nonnegative matrix M . Specifically,
there is a eigenvector v, known as a Perron vector, corresponding to the Perron value
of M such that v has all positive entries; further, if w is an eigenvector of M such
that all nonzero entries in w have the same complex argument, then necessarily w is
a scalar multiple of v. Thus we have fairly complete information regarding the sign
structure of vectors in the eigenspace associated with the Perron value.

What can be said about the structure of the non-Perron eigenvectors of an ir-
reducible nonnegative matrix? In order to investigate that question, we make the
following definition: we say that an n×n matrix A is a Perron eigenmatrix if there is
an irreducible nonnegative matrix of order n that is diagonalised by A. In this paper,
we consider sign patterns associated with Perron eigenmatrices. It is clear that a
Perron eigenmatrix will, in general, contain complex entries; while we will provide
some results on the complex case, our principal focus in this paper is on the case that
the matrix in question has real entries.

Recall that an m×n sign pattern matrix S is a (0, 1,−1) matrix, and the associated
qualitative class Q(S) is given by

Q(S) = {A ∈ Rm×n|sgn(Aij) = sgn(Sij), i = 1, . . . ,m, j = 1, . . . , n}.

We say that two m × n matrices A and B have the same sign pattern if both are in
Q(S) for some sign pattern matrix S. The book [3] contains a wealth of information
on sign pattern matrices and their various properties.

For n × n sign pattern matrices, we consider the following ‘require’ and ‘allow’
problems:
• characterise the n× n sign pattern matrices S such that every matrix in Q(S) is a
Perron eigenmatrix;
• characterise the n× n sign pattern matrices S such that there is an A ∈ Q(S) that
is a Perron eigenmatrix.
In Section 3, both of these problems are solved. In Section 4 we consider the so-called
strong sign nonsingular matrices, or S2NS matrices, and determine the multisets of
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real numbers that are realised as the spectrum of an irreducible nonnegative matrix
that is diagonalised by a matrix A in the qualitative class of some S2NS sign pattern.
Taken together, the results in Sections 2, 3 and 4 can be thought of as addressing an
inverse eigenvector problem for nonnegative matrices.

Throughout the paper, we make use of basic notions from nonnegative matrix
theory, and from combinatorial matrix theory. We refer the reader to [7] and [2],
respectively, for the necessary background material.

2 Preliminaries

In this section we develop some basic results that will be useful in the subsequent
sections. We begin with a characterisation of Perron eigenmatrices.

Theorem 2.1 Let A be an n×n matrix with entries in C. For each i = 1, . . . , n, let
ei denote the i-th standard unit basis vector. Then A is a Perron eigenmatrix if and
only if both of the following conditions hold:
i) A is invertible;
ii) there is an invertible diagonal matrix D and a permutation matrix P such that for
the matrix B = ADP, both Be1 and eT

1 B−1 have all positive entries.

Proof: Suppose first that A is a Perron eigenmatrix and that M is an irreducible
nonnegative matrix diagonalised by A. Evidently, A must be invertible. Further,
from Perron-Frobenius theory, M has a right eigenvector v with all positive entries,
and the only eigenvectors of M having all nonzero entries with the same argument are
scalar multiples of v. Recall also that if Aei is a right eigenvector of M corresponding
to eigenvalue λ, then eT

i A−1 is a left eigenvector of M corresponding to λ. Again
using Perron-Frobenius theory, it follows that if Aei has all entries with the same
argument, then so does eT

i A−1. Condition ii) now follows readily.

Next suppose that conditions i) and ii) hold. Observe that for any n × n matrix
M , the matrix A diagonalises M if and only if the matrix B does. Thus, it suffices
to produce an irreducible nonnegative matrix that is diagonalised by B. Consider
the matrix M = Be1e

T
1 B−1. As both Be1 and eT

1 B−1 are positive vectors, M is a
positive matrix. Further, MB = Be1e

T
1 , and as e1e

T
1 is diagonal, we see that M is

diagonlised by B, and hence by A. �

Remark 2.2 Observe that Theorem 2.1 focuses on diagonalisation of irreducible non-
negative matrices. Inspecting the proof of that result, it is not difficult to determine
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that conditions i) and ii) are necessary and sufficient for A to have the property that
for some irreducible nonnegative matrix M,A−1MA is in Jordan canonical form. For
ease of exposition in the remainder of the paper, we continue to focus on diagonalisa-
tion, but we remain mindful of the fact that many of our results also apply to more
complicated Jordan structures.

Recall that a square matrix M is said to be partly decomposable if there are per-

mutation matrices P and Q such that PMQ can be written as PMQ =

[
A 0
B C

]
,

where the blocks A and C are square and nonempty. On the other hand if no such P

and Q exist, then M is said to be fully indecomposable. A vector with all real entries
is said to be balanced if it is either the zero vector, or has both positive and negative
entries; a real vector is unisigned if it not balanced – i.e. it is not the zero vector, and
all of its nonzero entries have the same sign.

Proposition 2.3 Suppose that A is an n × n matrix with entries in C. If A is a
Perron eigenmatrix, then the following conditions hold:
i) A is fully indecomposable;
ii) there is an index j between 1 and n, a positive vector x, and scalars α, β not both
0, such that Re(Aej) = αx and Im(Aej) = βx;
iii) for each index l 6= j, both Re(Ael) and Im(Ael) are balanced.

Proof: i) Suppose to the contrary that A is partly decomposable and diagonalises the
irreducible nonnegative matrix M . Then there are permutation matrices P and Q

such that B = PAQ has the form B =

[
B1 0
B3 B2

]
, where the blocks B1 and B2 are

square, say with B1 of order k, with 1 ≤ k ≤ n − 1. Note that B is an eigenmatrix
for the irreducible nonnegative matrix PMPT .

From Perron-Frobenius theory, there is an index p such that Bep has no zero
entries, and eT

p B−1 contains no zero entries. From the former, it must be the case
that 1 ≤ p ≤ k, while from the latter we find that k + 1 ≤ p ≤ n, a contradiction. We
conclude that S is fully indecomposable.

ii) From Perron-Frobenius theory, there is a unique index j such that all entries
of Aej are nonzero and have the same complex argument, say θ ∈ [0, 2π). Hence
Aej = cos(θ)x+i sin(θ)x for some positive vector x. Setting α = cos(θ) and β = sin(θ)
yields the conclusion.

iii) Let yT be a positive left Perron vector for M . Then for each index l 6= j, yT Ael = 0;
the conclusions now follow. �
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While the focus of this paper is on sign pattern matrices, a Perron eigenmatrix can,
in general, contain complex entries. In order to provide a framework for discussing
patterns for Perron eigenmatrices with complex entries, we introduce the following
terminology.

Given two n × n (0, 1,−1) sign pattern matrices S and T , the complex quadrant
pattern class for the pair (S, T ), which we denote by Q(S, T ), is the set of all complex
matrices of the form A1 ◦ S + iA2 ◦ T, where A1 and A2 are real matrices with all
positive entries, and ◦ denotes the Hadamard product. Observe that for each pair
of indices k, j = 1, . . . , n, and every A ∈ Q(S, T ), Ak,j lies in the same quadrant of
the complex plane as Sk,j + iTk,j ; further, if one or both of Sk,j and Tk,j is 0, then
Ak,j lies on the positive real axis, negative real axis, positive imaginary axis, negative
imaginary axis, or at the origin, according as Sk,j + iTk,j does.

3 Require and Allow Results

In this section we consider the interplay between real Perron eigenmatrices and their
corresponding sign patterns. Let S be an n × n (0, 1,−1) sign pattern matrix such
that every matrix in Q(S) is a Perron eigenmatrix. Then in particular, every matrix
in Q(S) is nonsingular, so that S is, by definition, a sign nonsingular matrix (see [3]).
It follows from sign nonsingularity, and from the fact that some column of S has all
entries of one sign, that there is a permutation matrix P , and a diagonal matrix D

with entries 1 or −1 on the diagonal, such that
• SPD has all diagonal entries equal to −1, and
• the first column of SDP is equal to −1, where 1 denotes the all ones vector.
We refer to this as the standard form for S.

Given an n × n matrix M with real entries, we let D(M) denote its directed
graph - i.e. the directed graph on vertices labeled 1, . . . , n, such that for each i, j =
1, . . . , n, D(M) contains the arc i → j if and only if Mij 6= 0. In the case that i → j

in D(M), we refer to Mij as the weight of the arc i → j. Given a path (respectively,
cycle) in D(M), its sign is the sign of the product of the weights of the arcs on that
path (respectively, cycle). From Theorem 3.2.1 of [3], we find that for a (0, 1,−1) sign
pattern matrix S with all main diagonal entries negative, S is sign nonsingular if and
only if the weight of every cycle in D(S) is negative.

The following special subclass of sign nonsingular matrices will play a key role in
the first result of this section. An n×n (0, 1,−1) sign pattern matrix S is an SNS∗-
matrix if it is fully indecomposable, sign nonsingular, and has a row each of whose
entries is nonzero. Such matrices are discussed in detail in Section 4.2 of [3], where
a recursive algorithm is given for determining whether or not a given sign pattern
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matrix is an SNS∗-matrix.

Our next result addresses the ‘require’ problem mentioned in Section 1.

Theorem 3.1 Let S be a (0, 1,−1) sign pattern matrix in standard form. Every
matrix in Q(S) is a Perron eigenmatrix if and only if ST is an SNS∗-matrix.

Proof: Suppose first that every A ∈ Q(S) is a Perron eigenmatrix. Then certainly
each such A is invertible, so that S is sign nonsingular. Further, by Proposition 2.3,
any A ∈ Q(S) is fully indecomposable, and hence so is S. By hypothesis, the first
column of S has no zero entries. It now follows that ST is an SNS∗-matrix.

Conversely, suppose that ST is an SNS∗-matrix. It then follows that S is both
fully indecomposable and sign nonsingular. Since Sj1 = −1 for each j = 2, . . . , n we
find from Theorem 3.2.5 of [3] that for each A ∈ Q(S), the (1, j) entry of A−1 is
negative. From the fact that S is sign nonsingular with negative diagonal it follows
that for each A ∈ Q(S), the (1, 1) entry of A−1 is also negative. From Proposition
2.1 we find that each A ∈ Q(S) is a Perron eigenmatrix. �

Example 3.2 Consider the following (0, 1,−1) sign pattern matrix:

S =



−1 1 1 1 0 0
−1 −1 1 0 0 0
−1 0 −1 0 0 0
−1 0 0 −1 1 1
−1 0 0 −1 −1 1
−1 0 0 −1 0 −1


.

The directed graph for S is depicted in Figure 1. It is readily verified that D(S) is
strongly connected, and since S has negative main diagonal, it follows from Theorem
4.2.2 of [2] that S is fully indecomposable. Analysing D(S) we find that every cycle
contains precisely one arc of negative weight, from which we find that S is sign
nonsingular. Consequently, ST is an SNS∗-matrix, and so by Theorem 3.1, every
matrix in Q(S) is a Perron eigenmatrix.

Alternatively, one can apply the algorithm for recognising an SNS∗-matrix given
in Section 4.2 of [3] in order to determine that ST is an SNS∗-matrix, and hence that
every matrix in Q(S) is a Perron eigenmatrix.
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Figure 1: Digraph for Example 3.2 with loops not shown; arcs oriented from left to
right have positive signs, while arcs oriented from right to left have negative signs.

Our next result addresses the question of determining which quadrant pattern
classes require each matrix in the class to be a Perron eigenmatrix. It turns out that
this question can be discussed in terms of the corresponding question for sign pattern
classes.

Proposition 3.3 Suppose that S and T are n×n (0, 1,−1) sign pattern matrices, and
consider the corresponding quadrant pattern class Q(S, T ). Every matrix in Q(S, T )
is a Perron eigenmatrix if and only if the following two conditions hold:
i) for each j = 1, . . . , n, one of Sej and Tej is the zero vector; and
ii) every matrix in the sign pattern class Q(S + T ) is a Perron eigenmatrix.

Proof: We begin by remarking that if i) holds, then the sign pattern matrix S + T is
unambiguously defined, since for each j = 1, . . . , n, (S + T )ej coincides with one of
Sej and Tej .

Suppose first that i) and ii) hold. From i) it follows that there is a diagonal
matrix D with entries 1 or −i on the diagonal such that for each A ∈ Q(S, T ), the
matrix AD is has all real entries; further, it is readily seen that AD ∈ Q(S + T ).
Applying condition ii), we find that for any A ∈ Q(S, T ), the matrix AD is a Perron
eigenmatrix. Hence A is also a Perron eigenmatrix.

Next, we suppose that each matrix in Q(S, T ) is a Perron eigenmatrix. Fix an
A ∈ Q(S, T ), and note that there is a unique index j and a parameter θ ∈ [0, 2π) such
that for some pair of positive vectors x, y we have Aej = eiθx and eT

j A−1 = e−iθyT .

Fix an index l 6= j, and suppose that there are indices k, m (not necessarily distinct)
such that Tk,l 6= 0 and Sm,l 6= 0.

Since Tk,l 6= 0, we see that for all t ∈ R of sufficiently small absolute value,
A + itekeT

l ∈ Q(S, T ), and (A + itekeT
l )−1 = A−1 − it

1+iteT
l A−1ek

A−1ekeT
l A−1. Hence,

A+itekeT
l is a Perron eigenmatrix for all sufficiently small t, and since (A+itekeT

l )ej =
eiθx, we deduce that for all such t, all entries of eT

j (A+ itekeT
l )−1 have complex argu-

ment −θ. Thus, for each real t of sufficiently small absolute value, there is a positive
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vector z (whose entries depend on t) such that eT
j (A−1− it

1+iteT
l A−1ek

A−1ekeT
l A−1) =

e−iθzT . This last is equivalent to yT − ityk

1+iteT
l A−1ek

eT
l A−1 = zT . Note that zk =

yk

1+iteT
l A−1ek

, and since zk > 0, we see that yk

1+iteT
l A−1ek

is a positive real number for

all sufficiently small t; it now follows that eT
l A−1ek = ir for some r ∈ R. Consequently,

we find that yT − ityk

1−tr eT
l A−1 is a positive vector for all sufficiently small t. Thus, it

must be the case that every nonzero entry of eT
l A−1 is purely imaginary.

Next, we apply the condition that Sm,l 6= 0. As above, for all real t of suffi-
ciently small absolute value, A + temeT

l ∈ Q(S, T ) and (A + temeT
l )−1 = A−1 −

t
1+teT

l A−1em
A−1emeT

l A−1. An argument analogous to the one above reveals that
ym

1+teT
l A−1em

is a positive real number for all sufficiently small t, so that necessarily

eT
l A−1em ∈ R. We then conclude that each entry of eT

l A−1 must be real, a contra-
diction to our earlier conclusion that the entries of eT

l A−1 are purely imaginary. We
thus conclude that for each index l 6= j, it must be the case that either Tel is the zero
vector, or Sel is the zero vector.

Lastly, suppose that there are indices m, k such that Tk,j 6= 0 and Sm,j 6= 0, and
consider the matrices A + itekeT

j and A + temeT
j , both of which are in Q(S, T ) for

all sufficiently small t ∈ R. For each index p 6= j we have (A + itekeT
j )ep = Aep =

(A+temeT
j ); as each such Aep contains entries of differing complex arguments, it must

be the case that for all sufficiently small t, all entries of (A + itekeT
j )ej = Aej + itek

are nonzero, and have the same complex argument. It now follows that all entries of
Aej must be purely imaginary. Applying an analogous argument to (A + temeT

j ) =
Aej + tem, we find that all entries of Aej are real, a contradiction. We conclude that
one of Sej and Tej must be the zero vector. This establishes condition i) (and so, as
noted above, S + T is a well-defined sign pattern matrix).

Now suppose that B ∈ Q(S + T ). From condition i), we find that there is a
diagonal matrix D with entries 1 or i on the diagonal such that BD ∈ Q(S, T ).
Thus BD is a Perron eigenmatrix, from which it follows that B itself is a Perron
eigenmatrix. Hence condition ii) holds.

�

The following is immediate from Theorem 3.1 and Proposition 3.3.

Corollary 3.4 Let S and T be n× n (0, 1,−1) sign pattern matrices. Every matrix
in Q(S, T ) is a Perron eigenmatrix if and only if the following conditions hold:
i) for each j = 1, . . . , n, one of Sej and Tej is the zero vector;
ii) some column of S + T is either 1 or −1; and
iii) (S + T )T is an SNS∗ matrix.
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We now address the ‘allow’ problem raised in Section 1.

Theorem 3.5 Let S be a (0, 1,−1) sign pattern. There is an element of Q(S) that
is a Perron eigenmatrix if and only if:
a) S is fully indecomposable; and
b) S contains a unique unisigned column, which necessarily contains no zero entries.

Proof: Suppose that there is an A ∈ Q(S) that diagonalises an irreducible nonnegative
matrix. By Proposition 2.3 A is fully indecomposable, and hence so is S. Condition
b) follows immediately from Perron-Frobenius theory.

Next, we suppose that a) and b) hold; without loss of generality, we assume that
Se1 = −1. First we claim that there is a subpattern S̃ of S (i.e. a sign pattern formed
by setting some of the nonzero entries in S to zero) such that S̃e1 = −1, and the
submatrix of S̃ consisting of its last n − 1 columns is the oriented incidence matrix
of a tree on n vertices (see Section 2.3 of [2] for the definition and basics on oriented
incidence matrices). In order to establish the claim, we proceed by induction on n,
and note that the case n = 2 is immediate. Let S be a sign pattern of order n ≥ 3
satisfying conditions a) and b). Without loss of generality, we take Se1 = −1. From
Corollary 4.2.4 of [3], S is irreducible, and its zero-nonzero pattern dominates the
pattern of at least one permutation matrix of order n; we take Sii = −1, i = 1, . . . , n,

again without loss of generality. Suppose that in D(S), vertex n is at maximum
distance from vertex 1. It then follows that for each j = 2, . . . , n − 1, there is a
shortest path from 1 to j that does not pass through n. Hence the subgraph of D(S)
induced by vertices 1, . . . , n−1 is irreducible, and since S has all nonzero entries on the
diagonal, we find that the principal submatrix of S on rows and columns 1, . . . , n− 1
is fully indecomposable.

Write S in partitioned form as

S =

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 −1

 ,

where the last diagonal block is 1 × 1, where

[
Σ12

Σ22

]
consists of only unisigned

columns (each entry of which is necessarily nonpositive), and where in

[
Σ11

Σ21

]
, all

columns after the first have both positive and negative entries. (Here we admit the
possibility that the second part of the partitioning may be empty; by a slight abuse
of notation, we denote that possibility by Σ22 = ∅.) Note that from condition b),
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we necessarily have that

[
Σ13

Σ23

]
contains at least one 1, say in position i; further if

Σ22 6= ∅, we must also have Σ32 = 1T .

First suppose that Σ22 = ∅. Then Σ11 satisfies the induction hypothesis, so it has
a subpattern Σ̃11 whose last n − 2 columns form the oriented incidence matrix of a
tree, and whose first column is −1. It now follows readily that the subpattern of S

given by S̃ =

[
Σ̃11 ei

−eT
1 −1

]
has the desired properties. (Observe that the last n− 1

columns of S̃ comprise the oriented incidence matrix of a tree formed as follows: take
the oriented tree associated with Σ̃11 and add a directed arc from vertex i to vertex
n.)

Now we suppose that Σ22 6= ∅. Observe that each column of
[

Σ12

Σ22

]
contains at

least two −1s, one of which lies on the diagonal of S (as we have already noted above),
and the other off the diagonal of S (otherwise S fails to be fully indecomposable).

Consider the pattern Ŝ =

[
Σ11 Σ̂12

Σ21 Σ̂22

]
, where

[
Σ̂12

Σ̂22

]
is formed from

[
Σ12

Σ22

]
by

setting its ith row equal to 1T . It follows that Ŝ satisfies the induction hypothesis,
and so there is a subpattern S0 of Ŝ whose first column is −1 and whose last n − 2
columns form the oriented incidence matrix of a tree on n − 1 vertices. Write eT

i S0

as eT
i S0 =

[
vT
1 vT

2

]
, where the partitioning is conformal with Ŝ. Next, write

vT
2 = uT −wT , where both uT and wT are (0, 1) vectors such that uT w = 0; thus the

nonzero entries of uT and wT correspond to 1s and −1s in eT
i S0, respectively. Next,

we form S1 from S0 by replacing its ith row by
[

vT
1 −wT

]
. Finally, we construct

the subpattern S̃ of S given by S̃ =

[
S1 ei

zT −1

]
, where zT , partitioned conformally

with Ŝ, is given by zT =
[
−eT

1 uT
]
.

Observe that the last n−1 columns of S̃ comprise the oriented incidence matrix of
a tree formed as follows: take the oriented tree associated with S0, add the directed
arc i → n, and for each vertex l in the second subset of the partition of S0 such that
i → l, replace the directed arc i → l by the directed arc n → l. It now follows that S̃

has the desired properties, completing the proof of the claim.

Now we consider a subpattern S̃ of S whose first columns is −1 and whose sub-
matrix on the last n− 1 columns is the oriented incidence matrix of a tree. Let M be
the (0, 1,−1) matrix in Q(S̃), considered as a matrix with real entries, not as a sign

pattern matrix. Note that M can be written as M =

[
−1 −1T A

−1 A

]
, where A has



11

rank n−1. Let J denote an all ones matrix. Observe that det(M) = −det(A+JA) =
−det(I + J) det(A) = −n det(A). As A has rank n− 1, we deduce that M is nonsin-
gular. Further, − 1

n1T M = eT
1 , from which we conclude that eT

1 M−1 = − 1
n1T . It now

follows that we may perturb M slightly to produce an invertible matrix M̂ ∈ Q(S)
such that eT

1 M̂−1 < 0T . Thus, Q(S) contains a Perron eigenmatrix by Proposition
2.1. �

Example 3.6 Consider the (0, 1,−1) sign pattern S given by

S =


−1 −1 0 0
−1 −1 −1 1
−1 1 −1 −1
−1 0 1 −1

 .

Evidently S satisfies conditions i) and ii) of Theorem 3.5, so that there is some matrix
in Q(S) that is a Perron eigenmatrix. As an example of such a matrix, consider

M =


−1 −1 0 0
−1 −1 −1 1
−1 3 −1 −1
−1 0 3 −1

 , which is in Q(S). We have

M−1 =
1
10


−2 −4 −2 −2
−8 4 2 2
−6 3 −1 4
−16 13 −1 4

 ,

so that by Theorem 2.1, M is a Perron eigenmatrix.

Given a (0, 1,−1) sign pattern matrix S, we let |S| denote the (0, 1) sign pat-
tern formed from S by replacing each entry by its absolute value. The following is
immediate from Proposition 2.3.

Proposition 3.7 Suppose that S and T are n × n (0, 1,−1) sign pattern matrices,
and consider the corresponding quadrant pattern class Q(S, T ). If Q(S, T ) contains a
Perron eigenmatrix, then the following conditions hold:
i) |S|+ |T | is fully indecomposable;
ii) there is an index j between 1 and n and numbers a, b ∈ {1, 0,−1} not both zero
such that Sej = a1 and Tej = b1;
iii) for each index l 6= j, both Sel and Tel are balanced.

In the special case that T = 0, so that Q(S, T ) = Q(S), we find from Theorem
3.5 that conditions i)-iii) of Proposition 3.7 are also sufficient for Q(S, T ) to contain
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a Perron eigenmatrix. However, if T 6= 0, the following example shows that those
conditions are not sufficient for Q(S, T ) to contain a Perron eigenmatrix.

Example 3.8 Consider the sign pattern matrices

S =


1 −1 0 0
1 1 0 0
1 0 1 −1
1 0 −1 1

 , T =


0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0

 .

Observe that |S| + |T | is fully indecomposable, since it has positive diagonal and
is irreducible. Note also that for each j = 2, 3, 4, each Sej and Tej is balanced.
Evidently Se1 = 1 while Te1 is the zero vector.

We claim that Q(S, T ) does not contain any Perron eigenmatrices. To see the
claim, suppose that A ∈ Q(S, T ) and that there is a positive vector yT such that
yT A = eT

1 . (Observe that were A to be a Perron eigenmatrix, such a yT would
necessarily exist.) Using the fact that yT Aej = 0, j = 2, 3, 4, it now follows that there
are positive scalars α, β, γ, δ such that A has the form

A =


A11 −αy2 iβy2 0
A21 αy1 −iβy1 0
A31 0 γy4 −δy4

A41 0 −γy3 δy3

 .

Observe then that A is singular, since


0

βδi

αδ

γα

 is a null vector for A.

We conclude that if A ∈ Q(S, T ) is an invertible matrix, then eT
1 A−1 cannot have

all positive entries, and hence that A cannot be a Perron eigenmatrix.

Open Problem 3.9 Find necessary and sufficient conditions for a quadrant pattern
class Q(S, T ) to contain a Perron eigenmatrix.

4 The S2NS Case

In this section, we focus on a special class of sign patterns, the S2NS sign patterns: a
square (0, 1,−1) sign pattern S is said to be S2NS provided that for every A ∈ Q(S),
A is invertible, and in addition, each matrix in {A−1|A ∈ Q(S)} has the same sign
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pattern. See [3] for background and results on that class of sign patterns. It follows
from Theorem 2.1 that if S is an S2NS sign pattern, then Q(S) contains a Perron
eigenmatrix if and only if every matrix in Q(S) is a Perron eigenmatrix.

The following definition will be helpful in the sequel. An arborescence with root
vertex v is an oriented tree with the property that there is a distinguished vertex v

such that for each vertex u, there is a directed path from v to u.

We begin with a characterisation of S2NS sign pattern classes that allow a Perron
eigenmatrix.

Lemma 4.1 Let S be an S2NS sign pattern of order n whose first column is −1,

and whose diagonal entries are all −1. Then eT
1 A−1 < 0T for all A ∈ Q(S) if and

only if there is an oriented tree T on vertices 1, . . . , n such that:
i) for each vertex j = 2, . . . , n, there is a directed path in T from 1 to j;
ii) for each j = 2, . . . , n and i = 1, . . . , n, Sij = 1 if and only if i → j in T ;
iii) the only negative entries of S are in the first column and on the diagonal.

Proof: From Theorem 7.1.7 of [3], it follows that S is an S2NS matrix with a full first
column if and only the submatrix of S on columns 2, . . . , n is the oriented incidence
matrix of a tree. Further, in that case, by Theorem 3.2.5 of [3], for each A ∈ Q(S),
and any pair of index j = 2, . . . , n, the sign of A−1

1j is minus the sign of any path from
1 to j in D(S). The conclusions now follow readily. �

In the context of Lemma 4.1, we refer to T as the arborescence associated with S.
The next result provides a convenient normalisation for the sign patterns described
in Lemma 4.1.

Lemma 4.2 Let S be an S2NS sign pattern of order n whose first column is negative,
and whose diagonal is negative. Then for each A ∈ Q(S) there are positive diagonal
matrices D1, D2 such that D1AD2 has first column equal to −1 and each diagonal
entry equal to −1.

Proof: Fix A ∈ Q(S), let

D1 =


1

|A11|
. . .

1
|Ann|

 , and D2 =


1

|A21|
|A22|

. . .
|An1|
|Ann|

 .

A computation now suffices to yield the conclusion. �
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Suppose that S is an S2NS sign pattern of order n, and that conditions i)-iii)
of Lemma 4.1 hold. Suppose further that we have a matrix A ∈ Q(S) whose first
column and diagonal consist entirely of −1s. Then we will say that such a matrix
A is in S2NS normalised form. When A ∈ Q(S) is in S2NS normalised form, for
each j = 2, . . . , n, we let aj denote the single positive entry of A in its j-th column.
Evidently Aij = aj if and only if i → j in the arborescence associated with S, and we
refer to aj as the weight of the arc i → j in D(A). It is straightforward to show that
if A ∈ Q(S) is in S2NS normalised form, then eT

1 A−1 is a negative scalar multiple of
the vector wT =

[
1 p12 . . . p1n

]
, where for each j = 2, . . . , n, p1j is the product

of the weights of the arcs on the path from 1 to j in D(A); by convention, we take
p11 = 1. Evidently if M is an irreducible nonnegative matrix that is diagonalised by
A, then wT is a left Perron vector for M .

The next result describes the structure of a nonnegative matrix with real spectrum
that is diagonalised by a matrix in S2NS normalised form. We note here that unlike
many of our earlier results, the hypothesis that our nonnegative matrix can be brought
to diagonal form - as opposed to a more complicated Jordan form - by a matrix in
S2NS normalised form, is a key component in establishing (1) below.

Proposition 4.3 Let S be an S2NS sign pattern of order n such that Se1 = −1 and
Sii = −1, i = 1, . . . , n. Suppose that eT

1 A−1 < 0T for each A ∈ Q(S), and denote the
arborescence associated with S by T . Fix A ∈ Q(S) and suppose that A is in S2NS

normalised form, with arc weights a2, . . . , an. For each pair of vertices i, j = 1, . . . , n,

define pij to be the product of the weights of the arcs on the directed path in T from
i to j if such a path exists (which we take to be 1 if i = j) and define pij to be 0
if no such directed path exists. Let M be an n × n matrix that is diagonalised by A,
with real eigenvalues 1, λ2, . . . , λn and corresponding eigenvectors Ae1, Ae2, . . . , Aen,

respectively. Set m = Me1. Then we may write M as

M = m
[

1 p12 . . . p1n

]
+

n∑
j=2

λjEj , (1)

where for each j = 2, . . . , n, with ij → j in T , we have

Ej = (−ajeij + ej)
[

pj1 pj2 . . . pjn

]
.

Proof: We prove (1) by considering both sides of the equation, column by column.
For each j = 1, . . . , n, let d(1, j) denote the distance from vertex 1 to vertex j in T .
Fix an index k = 1, . . . , n, with d(1, k) = d in T . We claim by induction on d that
Mek = p1km+

∑n
j=2 λjEjek. Note that if d = 0, then k = 1, p11 = 1, and pj1 = 0 for

j = 2, . . . , n, so that Ejek = 0 for each such j. Hence, the first column on the right
side of (1) is m.
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Suppose now that the claim holds for some d ≥ 0, and that d(1, k) = d+1, say with
l → k in T . From the fact that −akel+ek is an eigenvector for M corresponding to λk,

we find that Mek = akMel+λk(−akel+ek). Since d(1, l) = d, we may apply the induc-
tion hypothesis to Mel, and it now follows that Mek = akp1lm+ak

∑n
j=2 λj(−ajeij +

ej)pjl + λk(−akel + ek) = p1km +
∑

j=2,...,n,j↪→l λj(−ajeij + ej)pjk + λk(−akel + ek),
where, if there is a path from j to l in T , we use the notation j ↪→ l. Noting that
the term j = k does not appear in the sum above, since there is no path from k to l

in T, and that pkk = 1, it now follows that Mek = p1km +
∑n

j=2 λj(−ajeij + ej)pjk,

completing the proof of the induction step. �

Observe that, using the notation of Proposition 4.3, since[
1 p12 . . . p1n

]
(−ajeij + ej) = 0

for each j = 2, . . . , n, we find that
[

1 p12 . . . p1n

]
m = 1. If we have a matrix

M satisfying (1), for each j = 2, . . . , n, we say that λj is the eigenvalue associated
with vertex j of T .

We now apply Proposition 4.3 to discuss the relationships between the various
parameters in (1) and the arborescence T associated with S.

Proposition 4.4 Let S be an S2NS sign pattern of order n such that Se1 = −1 and
Sii = −1, i = 1, . . . , n. Suppose that eT

1 A−1 < 0T for each A ∈ Q(S), and denote
the arborescence associated with S by T . Fix A ∈ Q(S) and suppose that A is in

S2NS normalised form, with arc weights a2, . . . , an. Let D =


1

λ2

. . .
λn


for some collection of real numbers λ2, . . . , λn, and suppose that M is a nonnegative
matrix such that MA = AD. Then the following conditions hold:
i) for each index l = 2, . . . , n such that 1 → l in T , m1 ≥ λl;
ii) for each j = 2, . . . , n, mjp1j + λj ≥ 0;
iii) for each j = 2, . . . , n and each k such that j → k in T, mjp1j + λj − λk ≥ 0.

Proof: Since M is a nonnegative matrix, in particular, eT
1 M ≥ 0T . Referring to (1),

we then find that for each l such that 1 → l in T , we must have m1p1l − λlalpll ≥ 0.

Since p1l = al and pll = 1, condition i) follows.

Next, consider an index j between 2 and n. From (1) we have that Mjj = mjp1j +
eT
j

∑n
l=2 λl(−aleil

+ el)plj . Note that if j = il for some l, then il → j in T , and it
follows that plj = 0 then. Hence we find that Mjj = mjp1j + λj ≥ 0, so condition ii)
follows.
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Finally suppose that j = 2, . . . , n and that j → k for some index k. Referring
to (1), we have Mjk = mjp1k + eT

j

∑n
l=2 λl(−aleil

+ el)plk. Note that if j → l for
some l 6= k, then plk = 0, so it follows that Mjk = mjp1k + λjpjk − λkakpkk =
ak(mjp1j + λj − λk). Condition iii) now follows. �

Remark 4.5 Suppose that M is an n × n matrix having the form given in (1). An
analysis similar to that in the proof of Proposition 4.4 yields the following conclusions:
a) for an index 2 ≤ k ≤ n, M1k > 0 if and only if m1 > λl, where the path from 1 to
k in T includes the arc 1 → l;
b) for distinct indices i, k with 2 ≤ i, k ≤ n, we have Mik > 0 if and only if either
• there is no path from i to k in T and mi > 0, or
• there is a path from i to k in T, it includes the arc i → j, and mip1i + λi − λj > 0;
c) for an index 2 ≤ i ≤ n, Mii > 0 if and only if mip1i + λi > 0.

Here is one of the main results of this section.

Theorem 4.6 Let S be an S2NS sign pattern as in Proposition 4.3 with underlying
arborescence T . Let Λ = {λ2, . . . , λn} be a multiset of real numbers. There is an
A ∈ Q(S), and a positive matrix M that is diagonalised by A and has spectrum
Λ ∪ {1} if and only if max{0, λ2, . . . , λn}+

∑
λj<0 |λj | < 1.

Proof: Suppose first that there is an A ∈ Q(S), and a positive matrix M such that

MA = AD, where D =


1

λ2

. . .
λn

; without loss of generality we take A

to be in S2NS normalised form. Adopting the notation of Proposition 4.3, it follows
from Remark 4.5 that mi > 0, i = 1, . . . , n, mip1i + λi > 0 for each i = 2, . . . , n, and
for any arc i → j in T,mip1i + λi − λj > 0.

If λj ≤ 0 for each j = 2, . . . , n, then note that 1 = m1 +
∑n

j=2 mjp1j >∑
λj<0 mjp1j ≥

∑
λj<0 |λj |, as desired. Next, we consider the case that λj0 ≡

max{0, λ2, . . . , λn} > 0. We label the path from 1 to j0 in T as 1 → i1 → i2 → . . . →
ik−1 → ik ≡ j0. If λil

≥ 0 for l = 1, . . . k − 1, then from the fact that m1 > λi1 , and
mil

p1il
+ λil

− λil+1 > 0, for l = 1, . . . k − 1, we find that m1 +
∑k−1

l=1 mil
p1il

> λj0 .

Also, for each j such that λj < 0, we have mjp1j > |λj |. Consequently, we have
1 = m1 +

∑n
j=2 mjp1j ≥ m1 +

∑k−1
l=1 mil

p1il
+

∑
λj<0 mjp1j > λj0 +

∑
λj<0 |λj |. Fi-

nally, if some λil
< 0, then take r as the index between 2 and k−1 such that λir < 0,

but λis ≥ 0 for s = r + 1, . . . , k− 1. As above, we have
∑k−1

s=r misp1is + λir − λj0 > 0.
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An argument analogous to the above now shows that 1 = m1 +
∑n

j=2 mjp1j >∑k−1
s=r mil

p1il
+

∑
λj<0,j 6=ir

mjp1j > λj0 +
∑

λj<0 |λj |. Thus the desired inequality
holds.

We now consider the converse, so suppose that max{0, λ2, . . . , λn}+
∑

λj<0 |λj | <
1. For each vertex j = 2, . . . , n, we associate a corresponding element of Λ as follows:
for the vertices l such that 1 → l, say l1, . . . , ld, we associate the d largest elements
of Λ; thereafter, we associate the remaining elements of Λ to vertices in T in such a
way that if j → k in T , then λj ≥ λk.

Select a matrix A ∈ Q(S). We first construct the column vector m̃ as follows:
for each j = 2, . . . , n, such that λj ≥ 0, set m̃j = 0; and for each j = 2, . . . , n, such
that λj < 0, we let m̃j = |λj |

p1j
. Now set m̃1 equal to 1 −

∑n
j=2 m̃jp1j , and note

that m̃1 =
∑

λj<0 |λj | > max{0, λ2, . . . , λn}. Since this last inequality is strict, it
now follows that we can find a column vector m such that mj > 0 for each j such
that λj ≥ 0, mj >

|λj |
p1j

for each j such that λj < 0, and m1 = 1 −
∑n

j=2 mjp1j >

max{0, λ2, . . . , λn}. With this choice of the column vector m, and this association
between the elements of Λ and the vertices 2, . . . , n of T , we let M be given by (1).
Referring to Remark 4.5, and recalling that if i → j in T , then λi ≥ λj , it now follows
that M is a positive matrix.

From (1) we find readily that
[

1 p12 . . . p1n

]
is a positive left eigenvector

for M corresponding to the eigenvalue 1. Hence 1 is the Perron value for M . Fix an
index j = 2, . . . , n. For each index l 6= j between 1 and n, we have[

pl1 pl2 . . . pln

]
(−ajeij + ej) = −ajplij + plj = 0,

while [
pj1 pj2 . . . pjn

]
(−ajeij + ej) = −ajpjij + pjjej = 0 + 1 = 1.

It now follows that for each j = 2, . . . , n,−ajeij + ej is an eigenvector of M corre-
sponding to eigenvalue λj . Thus the spectrum of M is given by Λ ∪ {1}.

Finally, we let Ã be formed from A by replacing its first column by an all negative
eigenvector of M corresponding to its Perron value 1, we see that Ã ∈ Q(S) and
diagonalises M .

�

Remark 4.7 A minor modification of the argument in Theorem 4.6 shows that
given an S2NS sign pattern S as in Proposition 4.3, and a multiset of real numbers
Λ = {λ2, . . . , λn}, there is an A ∈ Q(S), and a nonnegative matrix M such that A di-
agonalises M and M has spectrum Λ∪{1} only if max{0, λ2, . . . , λn}+

∑
λj<0 |λj | ≤ 1.
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In the next sequence of results, we consider a multiset of real numbers Λ =
{λ2, . . . , λn} such that max{0, λ2, . . . , λn}+

∑
λj<0 |λj | = 1. Observe that if Λ ∪ {1}

is the spectrum of an irreducible nonnegative matrix of order n, then necessarily Λ
must contain at least one negative element. We begin our analysis with the case that
Λ contains no positive elements.

Proposition 4.8 Suppose that we have a multiset of real numbers Λ = {λ2, . . . , λn},
such that λj ≤ 0, j = 2, . . . , n, and such that

∑
λj<0 |λj | = 1. Denote the number of

negative λjs by ν. There is an S2NS sign pattern matrix S, a matrix A ∈ Q(S), and
an irreducible nonnegative matrix M with spectrum {1} ∪Λ that is diagonalised by A

if and only if ν ≥ n
2 .

Proof: Suppose that there is an irreducible nonnegative matrix M with the desired
properties. Take M to be in the form (1), and for each j = 2, . . . , n, let λj be
associated with vertex j in the arborescence T associated with S. From Proposition
4.4 and the hypotheses on Λ, we have 1 = m1 +

∑n
j=2 mjp1j ≥ m1 +

∑
λj<0 |λj | +∑

λj=0 mjp1j ≥
∑

λj<0 |λj | = 1. We deduce that m1 = 0, and that mj = 0 for any j

such that λj = 0. From Remark 4.5 we find that for each j such that λj = 0, there is
an index l such that j → l in T and λl < 0; similarly, there is an index l such that
1 → l in T and λl < 0. Since vertices 2, . . . , n of T all have indegree 1, we find that
|{λj |λj < 0}| ≥ 1 + |{λj |λj = 0}|, or equivalently, ν ≥ 1 + n− 1− ν. Hence ν ≥ n

2 .

Conversely, suppose that ν ≥ n
2 , so that ν ≥ 1 + n− 1− ν. First we consider the

case that λj < 0, j = 2, . . . , n and
∑n

j=2 |λj | = 1. Let M be given by

M =


0 |λ2| |λ3| . . . |λn|
|λ2| 0 |λ2| . . . |λ2|
|λ3| |λ3| 0 . . . |λ3|
...

. . .
...

|λn| |λn| . . . |λn| 0

 .

Observe that M is nonnegative and irreducible, and that each column sum of M

is 1; hence the Perron value of M is 1. Further, for each j = 2, . . . , n, we have
M(e1 − ej) = λj(e1 − ej). It now follows readily that the spectrum of M is {1} ∪ Λ,
and that M is diagonalised by the matrix A whose first column is a right Perron
vector of M (scaled to have all negative entries), and whose remaining columns are
e1 − ej , j = 2, . . . , n. It is straightforward to determine that there is an S2NS sign
pattern matrix S such that A ∈ Q(S).

Next, we consider the case that some of the λjs are equal to zero. For concrete-
ness we assume that λ2 = . . . = λn−ν = 0, and that λj < 0, for j = n− ν + 1, . . . , n.

Consider the arborescence T on vertices 1, . . . , n with the following arcs: 1 → j, j =
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2, . . . , n−ν+1; i → i+n−ν, i = 2, . . . , n−ν; and n−ν+1 → j, j = 2n−2ν+1, . . . , n.

Next, we set aj = 1, j = 2, . . . , n, set mj = 0, j = 1, . . . , n− ν, and set mj = |λj |, j =
n−ν +1, . . . , n. Now we let M be given by (1). Appealing to Remark 4.5, we see that
rows n − ν + 2, . . . , n of M have all positive entries off the diagonal, that M1n > 0,

and that for each j = 2, . . . , n − ν + 1,Mj,j+n−ν > 0. It now follows that M is irre-
ducible and nonnegative. Let S be the S2NS sign pattern associated with T , (where
the entries in the first column and diagonal of S all −1), and let A be the (0, 1,−1)
matrix in Q(S). As in the proof of Theorem 4.6, we find from (1) we find that for
each j = 2, . . . , n, Aej is an eigenvector for M corresponding to eigenvalue λj , and
that the Perron value for M is 1. Hence M has spectrum {1} ∪Λ and it follows that
M is diagonalised by a matrix in Q(S). �

The following technical result will be useful in the sequel.

Lemma 4.9 Suppose that we have disjoint sets S1, . . . , Sk+1, of cardinalities µ1, . . . ,

µk+1, respectively. For each j = 1, . . . , k + 1, and each element s ∈ Sj , we define
v(s) = j. We have µk+1 ≥ max{µ1, . . . , µk} if and only if there is a directed graph D

whose vertices are indexed by the elements of ∪k+1
i=1 Si, such that each vertex in ∪k+1

i=2 Si

has indegree 1, and for any vertex j ∈ ∪k
i=1Si, there is a vertex l such that j → l and

v(j) > v(l).

Proof: Suppose that such a directed graph D exists. We claim by induction on i that
µk+1 ≥ µk−i+1. For i = 1, we note that for each vertex s ∈ Sk, there is a vertex
t ∈ Sk+1 such that s → t. Since each vertex in Sk+1 has indegree 1, it now follows
that µk ≤ µk+1. Next we suppose that the claim holds for i = k − l, and consider
the vertices in D indexed by the elements of ∪k+1

i=l Si. For each l ≤ p, q ≤ k + 1 with
p < q, let γp,q be the number of vertices in Sp with outarcs out to vertices in Sq.
Then µp =

∑k+1
q=p+1 γp,q. Note also that

µk+1 ≥
k∑

p=l

γp,k+1. (2)

From (2), we find that µk+1 ≥
∑k+1

p=l (µp −
∑k

q=p+1 γp,q) + µk = µl +
∑k

j=l+1(µj −∑j−1
p=l γp,j) ≥ µl. Hence µk+1 ≥ µl, which completes the proof of the induction step.

We conclude that µk+1 ≥ max{µ1, . . . , µk}.

To prove the converse, we proceed by induction on µk+1. If µk+1 = 1, then nec-
essarily µj = 1 for j = 1, . . . , k + 1. For each j = 1, . . . , k + 1, let sj denote the single
element in Sj ; the directed graph s1 → s2 → . . . → sk+1 has the desired properties.
Suppose that the conclusion holds for some p ≥ 1, and that µk+1 = p + 1. For each
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j = 1, . . . , k+1, select an element sj ∈ Sj , and construct the directed path P given by
s1 → s2 → . . . → sk+1. Next, we consider the sets Sj \{sj}, j = 1, . . . , k+1, and note
that their cardinalities are µj − 1, j = 1, . . . , k + 1. Thus, the induction hypothesis
applies, so there is a directed graph D̃ with such that each vertex in ∪k+1

i=2 (Si \ si) has
indegree 1, and for any vertex j ∈ ∪k

i=1(Si \ si), there is a vertex l such that j → l

and v(j) > v(l). The directed graph D = P ∪ D̃ now has the desired properties. �

Our next result provides a necessary condition in order that Λ is realised as the
spectrum of an irreducible nonnegative matrix that is diagonalised by an A ∈ Q(S)
when S is an S2NS sign pattern.

Proposition 4.10 Suppose that we have a multiset of real numbers Λ = {λ2, . . . , λn},
with max{λ2, . . . , λn} > 0. Partition Λ as ∪k+1

j=1Sj so that all negative elements of Λ
are in Sk+1, and so that for each j = 1, . . . , k, all elements of Sj are equal, and for
any i, j = 1, . . . , n, if s ∈ Si, t ∈ Sj and i < j, then s > t. For each j = 1, . . . , k + 1,

denote the cardinality of Sj by µj .

Suppose that max{λ2, . . . , λn} +
∑

λj<0 |λj | = 1, and that there is an S2NS sign
pattern S, a matrix A ∈ Q(S), and an irreducible nonnegative matrix M that is
diagonalised by A and has spectrum Λ∪{1}. Then µk+1 ≥ max{µ1, µ2−1, . . . , µk−1−
1, µk}.

Proof: We begin by noting that if the distinct nonnegative elements of Λ are λm1 >

. . . > λmk
, then they have multiplicities µ1, . . . , µk, respectively; further, for each

j = 1, . . . , k, Sj = {λ(µj)
mj }, while Sk+1 is the multiset consisting of the negative

elements of Λ.

Let T be the arborescence associated with S, assume without loss of generality
that A is in S2NS normalised form, and let the arc weights be aj , j = 2, . . . , n. We
take M to be in the form (1). Let λ̂ = max{λ2, . . . , λn}. Suppose that T contains
the path 1 → i1 → . . . → iq where λiq = λ̂. As in the proof of Theorem 4.6, there are
two cases to consider. Either
a) λil

≥ 0 for each l = 1, . . . , q; or
b) there is some index r such that λir < 0 and λis ≥ 0, s = r + 1, . . . , q.

Suppose that a) holds. We have

1 = m1 +
q−1∑
l=1

mil
p1il

+
∑
λj<0

mjp1j +
∑

λj≥0,j 6=i1,...,iq−1

mjp1j ≥

λ̂ +
∑
λj<0

|λj |+
∑

λj≥0,j 6=i1,...,iq−1

mjp1j ≥ 1. (3)
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Necessarily, it must be the case that mjp1j = |λj | if λj < 0,mj = 0 if λj ≥ 0 and
j 6= i1, . . . , iq−1,m1 = λi1 , and mil

p1il
= λil+1 −λil

, l = 1, . . . , q− 1. In particular, we
find that for each j ≥ 2 such that λj ≥ 0 and j 6= i1, . . . , iq−1 we have mj = 0, and for
each l such that λil+1 = λil

≥ 0, we have mil
= 0. Now, for each j = 2, . . . , k + 1, let

µ̃j = µj − 1 if, for some 1 ≤ l ≤ q − 1, λil
∈ Sj and λil+1 > λil

≥ 0, and set µ̃j = µj

otherwise. Suppose that in T we have 1 → l for some l such that λl < 0. In that
case, we consider the directed subgraph of T induced by the vertices j ≥ 2 such that
mj = 0, as well as the vertices i 6= l such that λi < 0. That subgraph is partitioned
as in Lemma 4.9 into subsets of cardinalities µ1, µ̃2, . . . , µ̃k, µk+1 − 1. By Lemma 4.9
we thus find that µk+1 − 1 ≥ max{µ1, µ̃2, . . . , µ̃k} ≥ max{µ1µ2 − 1, . . . , µk − 1}; the
desired inequality now follows. On the other hand, if 1 → p only for λp ≥ 0, then
since M is irreducible, it follows from Remark 4.5 that λi1 /∈ Sk, so that µ̃k = µk.

Again consider the directed subgraph of T induced by the vertices j ≥ 2 such that
mj = 0, as well as the vertices i 6= l such that λi < 0. In this case, the subgraph is
partitioned into subsets of cardinalities µ1, µ̃2, . . . , µ̃k, µk+1, and from Lemma 4.9 we
find that µk+1 ≥ max{µ1, µ̃2, . . . , µ̃k} ≥ max{µ1, µ2−1, . . . , µk−1−1, µk}, as desired.

Next we suppose that b) holds. We then have 1 = m1+
∑q−1

l=r m1il
p1il

+
∑

λj<0 p1j+∑
λj≥0,j 6=ir,...,iq−1

mjp1j ≥ m1 + λ̂ +
∑

λj<0 |λj | +
∑

λj≥0,j 6=ir,...,iq−1
mjp1j ≥ 1. We

deduce that m1 = 0,mil
p1il

= λil+1 − λil
, l = r + 1, . . . , q − 1,mjp1j = |λj | whenever

λj < 0, and mj = 0 for any j such that λj ≥ 0 and j 6= ir+1, . . . , iq−1. Since m1 = 0,

there is an index l such that 1 → l and λl < 0. Arguing as in case a), it now follows
that µk+1 − 1 ≥ max{µ1, µ2 − 1, . . . , µk − 1}. �

The lemma below will be useful in establishing one of the main results of this
section.

Lemma 4.11 Suppose that we have an n × n S2NS sign pattern S with associ-
ated arborescence T , a matrix A ∈ Q(S) in S2NS normalised form, a multiset
Λ = {λ2, . . . , λn}, and a nonnegative matrix M satisfying (1). Suppose further that
i) m1 > λl for some index l such that 1 → l in T , and
ii) for each j = 2, . . . , n, if mj = 0, then there is an index l such that λj > λl and
j → l in T .
Then M is irreducible.

Proof: We begin by noting that from ii), we find that if k is a pendant vertex of T ,
then necessarily mk > 0; referring to Remark 4.5 we see that there is an arc from k

to any other vertex of D(M). From i), we see that in D(M), 1 → k for some vertex
k corresponding to a pendant vertex of T , and similarly, for any index j such that
mj = 0, there is a vertex k that is pendant in T and such that j → k in D(M).
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Finally, for any j such that mj > 0, we have the arc j → 1 in D(M). It now follows
readily that M is irreducible. �

The next result provides a converse to Proposition 4.10 in the case that k ≥ 2.

Theorem 4.12 Suppose that we have a multiset of real numbers Λ = {λ2, . . . , λn},
with max{λ2, . . . , λn} > 0. Partition Λ as ∪k+1

j=1Sj so that all negative elements of Λ
are in Sk+1, and so that for each j = 1, . . . , k, all elements of Sj are equal, and for
any i, j = 1, . . . , n, if s ∈ Si, t ∈ Sj and i < j, then s > t. For each j = 1, . . . , k + 1,

denote the cardinality of Sj by µj . Assume that k ≥ 2.

Suppose that max{λ2, . . . , λn} +
∑

λj<0 |λj | = 1, and that µk+1 ≥ max{µ1, µ2 −
1, . . . , µk−1 − 1, µk}. Then there is an S2NS sign pattern S, a matrix A ∈ Q(S),
and an irreducible nonnegative matrix M that is diagonalised by A and has spectrum
{1} ∪ Λ.

Proof: For each j = 1, . . . , k, let xj denote the common value of the elements in Sj .
We now construct an arborescence T as follows. Begin with the arcs 1 → 2 and
1 → 3, as well as i → i + 1, i = 3, . . . , k + 1. For each such i = 2, . . . , k + 1, associate
the vertex i with the value xk−i+2. Now, using Lemma 4.9 and the hypothesis that
µk+1 ≥ max{µ1, µ2 − 1, . . . , µk−1 − 1, µk}, we may complete this collection of arcs
to an arborescence T such that there is a directed path from 1 to any vertex of T ,
each vertex i = 2, . . . , n is associated with an element of Λ, every pendant vertex is
associated with an element in Sk+1 and conversely, 2 → l for some l such that λl < 0,

and for any i ≥ k +1, there is an index l such that i → l and λi > λl. Set m1 = xk−1,

mi = xk−i+1 − xk−i+2, i = 3, . . . , k, mj = |λj | for each j such that λj < 0, and all
remaining mjs equal to 0.

Set aj = 1, j = 2, . . . , n, let S denote the (0, 1,−1) S2NS sign pattern with
associated arborescence T and negative first column, and suppose that A ∈ Q(S) is
in S2NS normalised form. Let M be given by (1). From Remark 4.5 and Lemma 4.11,
we find that M is irreducible and nonnegative; as in the proof of Theorem 4.6, we find
that M has spectrum Λ∪ {1}. Further, the vectors Aei, i = 2, . . . , n, are eigenvectors
for M . Letting v denote a negative Perron vector for M , we find that the matrix Ã

formed from A by replacing its first column by v is in Q(S) and diagonalises M .

�

Remark 4.13 A mild modification of the arguments in Proposition 4.10 and Theo-
rem 4.12 shows the following:
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Suppose that we have a multiset of real numbers Λ = {λ2, . . . , λn}, with max{λ2, . . . , λn}
> 0, such that

max{λ2, . . . , λn}+
∑
λj<0

|λj | = 1.

Suppose further that Λ has just one distinct positive element, of multiplicity µ1, and
µ2 ≡ n− 1− µ1 negative elements. Then there is an S2NS sign pattern S, a matrix
A ∈ Q(S), and an irreducible nonnegative matrix M that is diagonalised by A and
has spectrum {1} ∪ Λ if and only if µ2 ≥ µ1 + 1.

Remark 4.14 Let Λ = {λ2, . . . , λn} be a multiset of real numbers such that

max{λ2, . . . , λn}+
∑
λj<0

|λj | = 1.

Taken together, Propositions 4.8 and 4.10, Theorem 4.12 and Remark 4.13 provide
necessary and sufficient conditions in order that there is an S2NS sign pattern S,
a matrix A ∈ Q(S), and an irreducible nonnegative matrix M that is diagonalised
by A and has spectrum {1} ∪ Λ. Proposition 4.8 covers the case that Λ contains
only negative elements, while Proposition 4.8 and Remark 4.13 cover the case that
Λ contains just one nonnegative element (which may have multiplicity greater than
1). Finally, Proposition 4.10 and Theorem 4.12 cover the case that Λ contains two or
more distinct nonnegative elements.

Acknowledgment: The author thanks Annalisa Zappavigna for a conversation which
initiated this investigation. The author is very grateful to the referee, whose insightful
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