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Abstract

Suppose that A = (ai,j) is n × n real matrix with constant row sums

µ. Then the Dobrushin–Deutsch–Zenger (DDZ) bound on the eigenvalues

of A other than µ is given by Z(A) =
1

2
max

1≤s,t≤n

nX
r=1

|as,r − at,r|. When A

a transition matrix of a finite homogeneous Markov chain so that µ = 1,

Z(A) is called the coefficient of ergodicity of the chain as it bounds the

asymptotic rate of convergence, namely, max{|λ| | λ ∈ σ(A) \ {1}}, of the

iteration xT
i = xT

i−1A, to the stationary distribution vector of the chain.

In this paper we study the structure of real matrices for which the

DDZ bound is sharp. We apply our results to the study of the class of
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graphs for which the transition matrix arising from a random walk on the

graph attains the bound. We also characterize the eigenvalues λ of A for

which |λ| = Z(A) for some stochastic matrix A.

Key words: Stochastic Matrices, Coefficient of Ergodicity, Graphs,

Random Walks, Eigenvalues of Stochastic Matrices
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1 Introduction and Preliminaries

Let A = (ai,j) be an n × n real matrix with constant row sums, that is, there

exists a number µ ∈ R, such that

n∑
j=1

ai,j = µ, for all i = 1, . . . , n.

It is easily seen that µ is an eigenvalue of A corresponding to the n–vector of

all ones, 1. Then an upper bound on the largest (in modulus) eigenvalue of A

other than µ is given by

|λ| ≤ Z(A) (1.1)

where

Z(A) :=
1
2

max
1≤s,t≤n

n∑
r=1

|as,r − at,r|.

The bound is due to Eckart Deutsch and Zenger [7]. In Seneta [19, p.62–63] a

self–contained proof is given for this bound. We shall return to elements of this

proof later.

Now let A ∈ Rn,n be a transition matrix for an ergodic homogeneous Markov

chain on n states. Then A is an n × n nonnegative, row-stochastic, and irre-

ducible matrix so that, by the Perron–Frobenius theory, the spectral radius of

A, which is an eigenvalue of A, is 1. In this case the quantity

γ(A) = max
λ∈σ(A)\{1}

|λ|, (1.2)

when it is smaller than 1, determines the asymptotic rate of convergence of the

iteration process zT
i = zT

i−1A to the stationary distribution vector of the chain.

In this context of transition matrices, Dobrushin [10] has shown that

γ(A) ≤ Z(A) (1.3)
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and called Z(A) the coefficient of ergodicity of the chain. In view of the afore-

mentioned history, we shall call Z(A) the Dobrushin–Deutsch–Zenger bound or

the DDZ bound for short.

The main purpose of this paper is to study the properties and structure of

nonnegative, stochastic, and irreducible matrices A for which equality holds in

(1.3) and to apply these results to random walks for which the equality holds

for the underlying transition matrix. We commence our investigation, however,

in Section 2 by assuming only that A ∈ Rn,n is a matrix whose row sums are a

constant which we shall take to be 1. Observe that there is no loss of generality

in that assumption, since we can always add a suitable rank one matrix 1yT to

A to put it in that form. Throughout the paper we shall call an eigenvalue λ of

A subdominant if |λ| = γ(A) and usually denote this fact by writing λ as λsub.

One application in which which there is equality in the DDZ bound is, in

fact, in the Google matrix. Suppose that the web has n pages and that for

each i = 1, . . . , n, page i has di > 0 outgoing links. (The assumption that each

page has at least one outgoing link does not affect the validity of the conclusion

below.) We now construct a stochastic matrix A = (ai,j) ∈ Rn,n as follows. If

di ≥ 1, then each link from page i to page j, we set ai,j = 1/di. If there is

no link from page i to page j, then we set ai,j = 0. Assume now that the web

contains a union of k ≥ 2 disjoint strongly connected components so that A has

the form:

A =



A1,1 0 · · · · · · 0

0 A2,2 · · · · · · 0
...

...
. . .

...
...

...
... · · ·

. . .
...

0 · · · · · · · · · Ak,k

Ak+1,1 Ak+1,2 · · · · · · Ak+1,k+1


,

with A`,` ∈ Rm`,m` , for ` = 1, . . . , k +1, with m1 + . . .mk+1 = n, and with each

A`,` being a stochastic matrix, ` = 1, . . . , k. Let α ∈ (0, 1). Then the Google

matrix is given by

Gα = (1− α)A + αevT ,

where v is a positive vector with ‖v‖1 = 1, that is, v is a probability vector.

Then as shown in Ipsen and Kirkland [11, Corollary 7.2],

γ(Gα) = Z(Gα) = 1− α.
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The DDZ eigenvalue bound in (1.1) has been applied in contexts other than

transition matrices of Markov chains. As an example, let G be an unweighted

undirected graph on n vertices v1, . . . , vn whose degrees are d1, . . . , dn, respec-

tively. Let M be the (0, 1) adjacency matrix of G and D = diag(d1, . . . , dn).

Then L = D − M is the Laplacian matrix associated with G. It is easy to see

that L has zero row sums and hence the DDZ bound is applicable to the eigen-

values of L. We note in passing that L is also a positive semidefinite M–matrix.

We comment that there is much interest in the literature in the eigenvalues of

L and hence in finding good bounds on them. For example, the second smallest

eigenvalue of L is known as the algebraic connectivity of G. In the situation we

describe here, we clearly have that ρ(L), the spectral radius of L, is bounded

above by Z(L) and several recent papers have investigated the structure of

graphs G for which Z(L) = ρ(L), see, for example, Rojo, Soto, and Rojo [17]

and Das [5, 6].

As mentioned above, we shall also seek to use the equality case in the DDZ

bound to determine the structure of certain graphs, but in a different sense

than in the papers [17] and [5, 6]. Let G be an undirected unweighted connected

graph on n vertices and let the matrices D and M be as above. It is easy to see

that the matrix A(G) = D−1M ∈ Rn,n, which is nonnegative and irreducible,

is the transition matrix for a random walk on G. It is also straightforward

to see that A is diagonally similar to the symmetric matrix D− 1
2 MD− 1

2 so

that, in particular, all the eigenvalues of A are real. As an aside, we note

that the so-called normalized Laplacian matrix for G (see [4]) is given by L =

I − D− 1
2 MD− 1

2 , so that eigenvalue bounds for A will generate corresponding

eigenvalue bounds for L.

In Section 2 we develop some preliminary results, while in Section 3 we

characterize the complex numbers that can be attained as an eigenvalue of a

stochastic matrix yielding equality in (1.1). In Section 4 we study random

walks on various families of graphs for which γ(D−1M) = Z(D−1M). Gener-

ally speaking the transition matrices for these random walks exhibit a certain

nonzero–zero block structure.

We close this introductory section by giving two contrasting examples. The

first is a graph G whose Laplacian matrix yields equality in the DDZ eigenvalue

bound, but whose random walk transition matrix yields strict inequality in the

DDZ bound. The second example is a graph for which equality holds for the
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DDZ eigenvalue bound for the transition matrix of the corresponding random

walk, but not for the corresponding Laplacian matrix. For the first example

take:

M =



0 0 1 0 1 1

0 0 1 1 1 1

1 1 0 1 0 1

0 1 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 0


,

in which case D = diag(3, 4, 4, 4, 4, 5). Then for the Laplacian L = D −
M , we find that σ(L) = {0, 3, 4, 5, 6, 6} and Z(L) = 6, while for the associ-

ated transition matrix D−1M of the random walk we find that: σ(D−1M) =

{1, 0.1059, 0,−0.2500,−0.2673,−0.5886} and Z(A) = .75 so that Z(A) > γ(A).

For the second example take the 14× 14 adjacency matrix:

M =



0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 0 0 0 0 0 0

0 1 0 0 1 1 0 1 0 0 0 0 0 0



.

Here

σ(D−1M) = {1, 0.5774, 0.5774, 0.5774, 0, 0, 0, 0, 0, 0, −0.5774, −0.5774, −0.5774, −1}

so that γ(A) = |−1| = 1 = Z(A). A computation now shows that for L = D−A,

ρ(L) = 7, while Z(L) = 8.
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2 The DDZ Bound

Seneta’s proof of the DDZ bound (1.1) rests on the following bound on the inner

product of two vectors, one of which is orthogonal to the ones vector.

Lemma 2.1 (Paz [16, Chp. IIa], Seneta [19, p.63]) Let z = (z1, . . . , zn) be an

arbitrary row vector of complex numbers. Then for any real vector δ 6= 0 with

δT 1 = 0,

|zT δ| ≤ 1
2

max
1≤i,j≤n

|zi − zj |‖δ‖1. (2.4)

To facilitate the study in this paper of the equality case in (1.1) we need the

characterization of the case of equality in (2.4). The following theorem comes

from [13].

Theorem 2.2 (Kirkland, Neumann, and Shader [13, Theorem 2.1]) Let δ ∈ IRn

be a vector such that δT 1 = 0 and let z ∈ Cn. Then equality holds in (2.4), viz.

|zT δ| =
1
2

max
1≤i,j≤n

|zi − zj |‖δ‖1

if and only if z and δ can be reordered simultaneously such that

δ =



δ1
.
.
.

δm

−δm+1
.
.
.

−δm+k

0

.

.

.

0


and z =



a

.

.

.

a

b

.

.

.

b

c1
.
.
.

cn−k−m


, (2.5)

and where

max
1≤i,j≤n

|zi − zj | = |a− b| and δi > 0, i = 1, . . . , k + m. (2.6)

Throughout the remainder of this section A = (ai,j) will always be an n×n

real matrix with row sums 1 and subdominant eigenvalue λsub(A), in which case

we can write that:

Z(A) = max
1≤i,j≤n

{
1
2

∥∥(eT
i − eT

j )A
∥∥

1

}
≥ |λsub(A)|. (2.7)
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We comment that in the case that A is also a nonnegative matrix, it readily

follows from the stochasticity of A and the definition of Z(A) that

Z(A) ≤ 1
2
(2‖A‖1) ≤ 1. (2.8)

In our first lemma on the equality case of the DDZ bound on A we describe

some of the quantitative structure of the entries of A.

Lemma 2.3 Suppose that equality holds in (2.7) and let z be an eigenvector of

A corresponding to λsub. Then for any pair of indices 1 ≤ i, j ≤ n such that

|zi − zj | = max
1≤p,q≤n

{|zp − zq| |},

we have that
1
2

∥∥(eT
i − eT

j )A
∥∥

1
= Z(A).

Further, there are entries a and b of z with |a− b| = |zi − zj | such that for

any k, we have that

i) zk = a whenever ai,k − aj,k > 0,

and

ii) zk = b whenever ai,k − aj,k < 0.

In particular, if for some index k we have zk 6= a, b, then ai,k = aj,k.

Proof: For any vector v ∈ Cn, let f(v) = max1≤p,q,≤n{|vp − vq|}. We then have

that

|λsub(A)|f(z) = |λsub(A)||zi − zj | =
∣∣(eT

i − eT
j )Az

∣∣
≤ 1

2

∥∥(eT
i − eT

j )A
∥∥

1
f(z) ≤ Z(A)f(z) = |λsub(A)|f(z).

Consequently, it must be the case that 1
2

∥∥(eT
i − eT

j )A
∣∣
1

= Z(A). Furthermore,

we must also have that∥∥(eT
i − eT

j )Az
∥∥

1
=

1
2

∥∥(eT
i − eT

j )A
∥∥

1
f(z),

and appealing to Theorem 2.2, we find that conclusions (i) and (ii) follow. 2
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As an example consider the matrix

A =



0.1683 0.2683 0.2183 0.1850 0.1600

0.2683 0.1683 0.2183 0.1850 0.1600

0.2183 0.2183 0.2183 0.1850 0.1600

0.1850 0.1850 0.1850 0.2850 0.1600

0.1600 0.1600 0.1600 0.1600 0.3600


.

Here Z(A) = .2 and the spectrum of A is given by σ(A) = {1, .2, .1, 0,−.1}.
Thus the (only) subdominant eigenvalue of A is λsub = .2 = |λsub(A)| = Z(A)

and the conditions of Lemma 2.7 are applicable. The corresponding eigenvector

to λsub is given by

z =



0.2236

0.2236

0.2236

0.2236

−0.8944


,

in which case we see that a = 0.2336, b = −0.8944, and we observe that the

indices i and j for which

|zi − zj | = max
1≤p,q≤n

{|zp − zq| |},

are given by i = 1, 2, 3, and 4, and j = 5, respectively. Taking, for example, the

difference of rows 2 and 5 of A, we get that it is given by the vector

[0.1083, 0.0083, 0.0583, 0.0250,−0.2000].

Notice that for k = 1, . . . , 4, a2,k − a5,k > 0 and we expect that zk = 0.2336

which we see is true, while for k = 5, a2,5− a5,5 < 0 and, as we expect from the

lemma, z5 = −0.8944.

Based on Lemma 2.3 we can prove a further inequality on the entries of A

when equality holds in (2.7).

Theorem 2.4 Suppose that equality holds in (2.7). Let z be a λsub eigenvector,

and suppose that i and j are indices such that |zi−zj | = max1≤p,q≤n{|zp−zq|}.
Then

(ai,i − aj,i)(ai,j − aj,j) ≤ 0.
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Proof: Suppose to the contrary that (ai,i − aj,i)(ai,j − aj,j) > 0. Without loss

of generality, we may assume that i = 1, j = 2, a1,1 > a2,1, and a1,2 > a2,2

(otherwise we can simultaneously permute the rows and columns of A so that

it has the desired form). We may also assume that the remaining rows and

columns have been ordered so that a1,p > a2,p,, for p = 3, . . . ,m, a1,p < a2,p,

for p = m + 1, . . . ,m + q, and a1,p = a2,p, for p = m + q + 1, . . . , n. It follows

from Lemma 2.3 that we have

eT
1 A =

[
uT

1 vT
1 wT

]
, eT

2 A
[

uT
2 vT

2 wT
]
,

and

z =


a1

b1

c

 ,

where the partitions are conformal and where we have u1 > u2, v1 < v2, and

|a− b| = max1≤p,q≤n{|zp − zq|}.
From the eigenequation Az = λsubz we have λsuba = auT

1 1 + bvT
1 1 + wT c

and λsuba = auT
2 1+ bvT

2 1+wT c, so that a(u1−u2)T 1+ b(v1− v2)T 1 = 0. Now

1 − wT 1 = uT
1 1 + vT

1 1 = uT
2 1 + vT

2 1, so that (u1 − u2)T 1 = (vT
2 − vT

1 )1. We

conclude that (a− b)(u1 − u2)T 1 = 0, and hence that a = b, a contradiction. 2

A refinement of the results in Theorem 2.4 is given in the following lemma:

Lemma 2.5 Suppose that equality holds in (2.7). Let z be a λsub eigenvec-

tor, and suppose that i and j are indices such that i < j and |zi − zj | =

max1≤p,q≤n{|zp − zq|}. Suppose further that (ai,i − aj,i)(ai,j − aj,j) < 0, and

define the following sets of indices:

Σ1 = {k|ai,k > aj,k},

Σ2 = {k|ai,k < aj,k},

and

Σ3 = {k|ai,k = aj,k}.
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Set
σi,1 :=

∑
k∈Σ1

ai,k,

σi,2 :=
∑

k∈Σ2
ai,k,

σj,1 :=
∑

k∈Σ1
aj,k,

and

σj,1 :=
∑

k∈Σ2
aj,k.

Then

a) if ai,i > aj,i and ai,j < aj,j, then λsub = σi,1 − σj,1.

and

b) if ai,i < aj,i and ai,j > aj,j, then λsub = σj,1 − σi,1.

Proof: a) Without loss of generality, we assume that i = 1 and j = 2. Further,

we may simultaneously reorder indices 3, . . . , n so that

eT
1 A =

[
a1,1 a1,2 uT

1 vT
1 wT

]
, eT

2 A =
[

a2,1 a2,2 uT
2 vT

2 wT
]
,

and

z =

 a

b

a1

b1

c

,

where the partitions are conformal and where u1 > u2, v1 < v2, and |a − b| =

max1≤p,q≤n{|zp − zq|}. From the eigenequation Az = λsubz it follows that

λsuba = aσ1,1 + bσ1,2 + wT c

and

λsubb = aσ2,1 + bσ2,2 + wT c.

Subtracting the two equations we find that

λsub(a− b) = a(σ1,1 − σ2,1) + b(σ1,2 − σ2,2).

Now since

1− wT 1 = σ1,1 + σ1,2 = σ2,1 + σ2,2,

we find that

σ1,2 − σ2,2 = −(σ1,1 − σ2,1).
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Hence

λsub(a− b) = (σ1,1 − σ2,1)(a− b),

and conclusion (a) follows. The proof of (b) is analogous. 2

The equality case in (2.7) allows us to prove results about the Jordan block

structure corresponding to the subdominant eigenvalues of A. We begin with

the following lemma:

Lemma 2.6 Suppose that equality holds in (2.7) for the matrix A. Then for

any k ∈ IN, equality also holds in (2.7) for the matrix Ak, with λsub(Ak) =

Z(Ak) = (Z(A))k.

Proof: From the proof of Proposition 1.4 on p.70 of Paz [16] (see also Seneta [19,

Lemma 4.3]) it follows readily that Z(Ak) ≤ (Z(A))k, for each k ∈ IN. But then

for any such k, we have (Z(A))k = |λsub(A)|k = |λsub(Ak)| ≤ Z(Ak) ≤ (Z(A))k.

Whence Z(Ak) = |λsub(Ak)|, for each k ∈ IN. 2

We can now prove:

Theorem 2.7 Suppose that equality holds in (2.7) for the matrix A. Then

for any eigenvalue λ 6= 1 such that |λ| = Z(A), the geometric and algebraic

multiplicities of λ coincide.

Proof: If λ = 0, the result follows readily from the fact that in that case, A must

have rank 1. So, henceforth we take λ to be nonzero.

Suppose to the contrary that the geometric muliplicity of λ is less than the

algebraic multiplicity of λ. Then there are vectors xT and yT such that xT A =

λxT , yT A = λyT +xT , and ||yT ||1 = 1. Observe that necessarily yT 1 = 0 = xT 1.

A straightforward proof by induction shows that

yT Ak = λkyT + kλk−1xT = λk

(
yT +

k

λ
xT

)
.

Note that∥∥∥∥λk

(
yT +

k

λ
xT

)∥∥∥∥
1

≥ |λ|k
(

k

|λ|
λ

∥∥xT
∥∥

1
−

∥∥yT
∥∥

1

)
= (Z(A))k

(
k

|λ|
∥∥xT

∥∥
1
− 1

)
.

In particular, we find that for all sufficiently large k ∈ IN,
∥∥yT Ak

∥∥
1

> (Z(A))k =

Z
(
Ak

)
. This last contradicts Lemma 2.6. We thus conclude that the geometric
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and algebraic multiplicities of λ must be equal. 2

We comment that the converse of Theorem 2.7 does not hold as the following

example shows. Let

A =



0.1183 0.3183 0.2183 0.1850 0.1600

0.3183 0.1183 0.2183 0.1850 0.1600

0.2183 0.2183 0.2183 0.1850 0.1600

0.1850 0.1850 0.1850 0.2850 0.1600

0.1600 0.1600 0.1600 0.1600 0.3600


.

Then the spectrum of A is given by σ(A) = {1, .2, .1, 0,−.2}, so that the geo-

metric and algebraic multiplicities of both subdominant eigenvalues, ±.2 are 1,

yet Z(A) = 0.2417 > .2 = |λsub(A)|.
Until now we have considered the equality case in the DDZ bound for any

real matrix. Let us now assume that A is an n× n nonnegative and irreducible

matrix whose row sum is a constant 1. In this case A is row–stochastic and

can be regarded as a transition matrix of a finite homogeneous ergodic Markov

chain on n states. For such a Markov chain, Meyer [14] has shown that virtually

any important parameter of the chain can be read from the group generalized

inverse1 Q# of the singular and irreducible M–matrix2 Q = I − A. Cleary

Q1 = 0 and it is known that Q#1 = Q1. It is further known that σ(Q#) =

{0} ∪ { 1
1−λ |λ ∈ σ(A) \ {1}. Thus, on applying the DDZ eigenvalue bound we

can write that:

1
|1− λsub|

≤ 1
minλ∈σ(A)\{1} |1− λ|

≤ Z(Q#) ≤ 1
1−Z(A)

, (2.9)

where the rightmost inequality is due to Seneta, see [19].

Suppose now that for A as above, the equality case in the DDZ bound (1.1)

holds. In this case we can write that

1
|1− λsub(A)|

≤ 1
minλ∈σ(A)\{1} |1− λ|

≤ Z(Q#) ≤ 1
1− |λsub(A)|

, (2.10)

for any λsub(A) ∈ σ(A). It is now straight forward to prove the following result:
1For comprehensive accounts on group generalized inverses of matrices, including when

they exist, see Ben–Israel and Greville [1] and Campbell and Meyer [3].
2For a comprehensive account on the Perron–Frobenius theory for nonnegative matrices

and on M–matrices se see Berman and Plemmons [2].
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Theorem 2.8 Suppose that A is an n × n nonnegative, stochastic, and irre-

ducible matrix for which equality holds in (1.3). If γ(A) < 1 and A has an

eigenvalue λsub(A) ∈ R+, then for Q = I −A, we have

Z(Q#) =
1

1− |λsub(A)|
.

Let is give two examples. First take:

A =



0.12 0.52 0.12 0.12 0.12

0.12 0.12 0.52 0.12 0.12

0.12 0.12 0.12 0.52 0.12

0.12 0.12 0.12 0.12 0.52

0.52 0.12 0.12 0.12 0.12


. (2.11)

Then

σ(A) = {1.0000, 0.1236+0.3804i, 0.1236−0.3804i, −0.3236+0.2351i, −0.3236−0.2351i].

Here Z(A) = .4 = |λsub(A)|, but we see that A could not possibly fulfill the

conditions of Theorem 2.8. Indeed we find that for Q = I −A,

Q# =



0.6770 0.07081 −0.1717 −0.2687 −0.3075

−0.3075 0.6770 0.07081 −0.1717 −0.2687

−0.2687 −0.3075 0.6770 0.07081 −0.1717

−0.1717 −0.2687 −0.3075 0.6770 0.07081

0.07081 −0.1717 −0.2687 −0.3075 0.6770


for which

1
maxλ∈σ(A)\{1} |1− λ|

= 1.0467 < Z(Q#) = 1.3240 < 1.6667 =
1

1− .4
=

1
1−Z(A)

.

As a second example consider

A =



0.8750 0.06250 0.0 0.06250 0.0

0.5000 0.0 0.5000 0.0 0.0

0.5000 0.5000 0.0 0.0 0.0

0.5000 0.0 0.0 0.0 0.5000

0.5000 0.0 0.0 0.5000 0.0


.
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Here

σ(A) = [1, 0.375, .5 − 0.5, −.5]

so that |λsub(A)| = .5. Furthermore we find that Z(A) = .5 and hence Z(A) =

|λsub(A)| and so for this A the conditions of Theorem 2.8 are fulfilled. On

computing the group inverse of Q = I −A we obtain that:

Z(Q#) =



0.3200 −0.08444 −0.07556 −0.08444 −0.07556

−1.280 1.116 0.5244 −0.2178 −0.1422

−1.280 0.4489 1.191 −0.2178 −0.1422

−1.280 −0.2178 −0.1422 1.116 0.5244

−1.280 −0.2178 −0.1422 0.4489 1.191


and that Z(Q#) = 2 = 1/(1− 1/2) = 1/(1−Z(A)).

3 The complex eigenvalues yielding equality in

the DDZ inequality for stochastic matrices

Much is known about the eigenvalues of stochastic matrices A. For example,

Dmitriev and Dynkin [8, 9], and Karpelevich [12] determined the region within

the unit circle in which the eigenvalues of an n×n stochastic matrix must lie (see

Minc [15]) for a more accessible acount of the result of Dmitriev and Dynkin).

Romanovsky [18] (see also Varga [21, Corollary, p.39]) showed that if A is an

n× n cyclic matrix of index k ≥ 2, and so A is, in particular imprimitive, then

its characteristic polynomial is given by

φ(t) = λm
[
tk − ρk(A)

] [
tk − δ2ρ(A)k

]
· · · [tk − δrρ

k(A)],

where |δi| < 1, for 1 < i ≤ r, if r > 1.

Observe for example, that Romanovsky’s theorem does not tell us about the

nature of the eigenvalues other than 1 when A is irreducible, but not k–cyclic,

that is, when A is primitive. This is illustrated in the example given in (2.11),

where the four eigenvalues other than 1 of A “continue” to be the four non–real

roots of the equation t5 = .4.
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In this section we show that if A is a stochastic matrix for which the equality

case in the DDZ bound holds, then the subdominant eignvalues of A satisfy

equations of the form tk = α, where k ≤ n, with α ∈ R, |α| ≤ 1, and with

further restrictions on k when α < 0.

We begin with the following construction. Suppose that we have n distinct

complex numbers z1, . . . , zn, and let ρ = max1≤i,j≤n{|zi−zj |}. The correspond-

ing diameter graph for the vector z =
[

z1 z2 . . . zn

]T

is the graph Γ(z)

on vertices 1, . . . , n with i ∼ j in Γ(z) if and only if |zi − zj | = ρ.

We begin with a useful lemma.

Lemma 3.1 Let λ ∈ C and n ∈ IN. Suppose that there is an n × n stochas-

tic matrix A having eigenvalue λ 6= 1 for which Z(A) = |λ|. Then there is a

stochastic matrix M of order at most n and an eigenvector z such that Mz = λz,

Z(M) = |λ|, z has distinct entries, and the diameter graph of z has no isolated

vertices.

Proof: Let x be an eigenvector of A corresponding to λ. Suppose that x does not

have distinct entries; for concreteness we take x1 = x2 without loss of generality.

Write A and x as

A =


a11 a12 rT

1

a21 a22 rT
2

c1 c2 A

 and x =


x1

x2

x

 .

Next, consider the matrix B̂ of order n− 1 and the vector y given as follows:

B̂ =

[
a11 + a12 rT

1

c1 + c2 A

]
and y =

[
x1

x

]
.

Evidently B̂y = λy, and it is readily verified that Z(B̂) ≤ Z(A). Further, since

Z(A) = |λ| ≤ Z(B̂) ≤ Z(A), we see that in fact |λ| = Z(B̂). Now, applying an

induction step on the order of the matrix, it follows that we can find a matrix

B and vector u such that Bu = λu,Z(B) = |λ| and u has distinct entries. If

it happens that the diameter graph of u has no isolated vertices, then we are

done.

So, suppose that the diameter graph of u has some isolated vertices. With-

out loss of generality, we have B =

[
B11 B12

B21 B22

]
, and u =

[
u1

u2

]
, where
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the subvector u2 corresponds to all of the isolated vertices in the diameter

graph of u. It follows from Lemma 2.3 that B12 is rank 1 and of the form

1wT for some nonnegative vector wT . Note also that wT 1 < 1, otherwise we

have B11 = 0, from which it follows that u1 is multiple of 1, a contradiction.

From the eigenequation, we have B11u1 + (wT u2)1 = λu1. Next, consider

the matrix M = B11 + wT 1
1−wT 1

1eT
1 B11. Note that M is stochastic, and that

Z(M) = Z(B11) = Z(A). A straightforward computation reveals that the vec-

tor z = u1+
λwT 1eT

1 u1

(λ−1)(1−wT 1)
1 is an eigenvector for M with corresponding eigenvalue

λ. Further, note that z has distinct entries, and that its diameter graph has no

isolated vertices. 2

The following result will be applied to the diameter graph of a suitable

eigenvector in Theorem 3.3 below.

Lemma 3.2 Suppose that G is a graph on n vertices with no isolated vertices

and maximum degree at least two. Let A be an n × n real matrix such that

Z(A) = 1, A has constant row sums, and all rows of A are distinct. Suppose

that for each pair of indices i, j = 1, . . . , n such that i ∼ j in G, we have

(ei − ej)T A = (ek − el)T , for some k ∼ l in G. Then A can be written as

A = 1yT ± S, where S is a (0, 1,−1) matrix with the properties thatS has a

single zero row, and for some index i and every nonzero row of S is of the form

(ei − ej)T for some suitable j.

Proof: Suppose without loss of generality that vertex 1 of G has maximum

degree, with 1 adjacent to vertices 2, 3, . . . , k. Let S = A − 1eT
1 A, which has

an all zero first row. Then there are indices a, b, c, and d, with a ∼ b, c ∼ d

in G, such that (e2 − e1)T S = (ea − eb)T and (e3 − e1)T S = (ec − ed)T and

hence eT
2 S = (ea − eb)T , eT

3 S = (ec − ed)T . Since Z(S) = Z(A) = 1, we find

that necessarily either a = c or b = d, otherwise Z(S) > 1. Without loss

of generality, we suppose that a = b (in the case that b = d, we consider

−S instead of S). Note that since S has distinct rows, necessarily b 6= d. If

k ≥ 4, we find as above that for each j = 4, . . . , k, there are indices pj and qj

such that eT
j S = (epj − eqj )

T . Furthermore, for each such j, if pj 6= a, then

necessarily qj = b and qj = d, a contradiction. We conclude that pj = a for

each j = 4, . . . , k.

Suppose now that p ∼ q is an edge of G that is not incident with vertex
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1. Let eT
p S = xT so that for some indices i and j with i ∼ j in G, we have

eT
q S = xT +eT

i −eT
j . For concreteness, we will henceforth take rows 2, . . . , k of S

to be eT
1 − eT

2 , . . . , eT
1 − eT

k , respectively, and we will take p = k+ and q = k +2,

all without loss of generality. Thus the first k + 1 rows of S have the following

form:
0 0 0 . . . 0 0 . . . 0

1 −1 0 . . . 0 0 . . . 0

1 0 −1 . . . 0 0 . . . 0
...

. . .
...

1 0 0 . . . −1 0 . . . 0

x1 x2 x3 . . . xk xk+1 . . . xn

,

while the row k + 2 of S has the form

[x1 x2 x3 . . . xk xk+1 . . . xn ] + eT
i − eT

j

for some i and j.

From the fact that Z(S) = 1, it follows that x1 ≥ 0, while xj ≤ 0, j =

2, . . . , k; consequently we set xp = −yp, for p = 2, . . . , k. Further, from the facts

that each row sum of S is zero, eT
1 S = 0T , and Z(S) = 1, it follows that the

sum of the positive elements in each row is bounded above by 1.

Suppose first that i = 1. Since both x1, x1+1 ∈ [0, 1], we find that necessarily

x1 = 0. Also, by considering row k + 2, we see that each of xk+1, . . . , xn must

be nonpositive. It now follows that row k + 1 of S is 0T , a contradiction since

S has distinct rows. Hence i ≥ 2 and a similar argument (reversing the roles of

rows k + 1 and k + 2) yields j ≥ 2.

Next, suppose that 2 ≤ i ≤ k and without loss of generality we take i = 2.

Considering row k + 2, we find that 1 − y2 ≤ 0, which yields x2 = −y2 = −1.

Hence xp = 0 for p = 3, . . . , k, and further, for each p = k + 1, . . . , n, we have

xp ≥ 0. All told we have that

2 ≥ ||(ek+1 − e3)T S||1 = 1− x1 + 1 + 1 + 1− x1,

which yields x1 ≥ 1 and hence x1 = 1. It follows then that eT
k+1S = eT

1 − eT
2 , a

contradiction to the fact that S has distinct rows. A similar argument (again,

reversing the roles of rows k + 1 and k + 2) shows that assuming that 2 ≤ j ≤ k

leads to a contradiction.
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The last case is then n ≥ i, j ≥ k + 1. Without loss of generality we take

i = k + 1 and j = k + 2. Note that necessarily xk+1 ≤ 0 and xk+2 ≥ 0, and we

set yk+1 = −xk+1. Fix an index l between 2 and k. We have that

2 ≥
∥∥(el − ek+2)T S

∥∥
1

= 1− x1 +
∑

p=2,...,k,p 6=l

yp + 1− yl + 1− yk+1 + 1− xk+2

+
∑

p=k+3,...,n |xq| ≥ 4− x1 − yl − yk+1 − xk+2,

from which we find that for each such l, (x1 + xk+2) + (yl + yk+1) = 2. It then

follows that x1 + xk+2 = 1, and that yk+1 + yl = 1, l = 2, . . . , k. The latter

condition, in conjunction with the fact that 1 ≥ y2 + . . .+yk +yk+1 easily yields

that yk+1 = 1 and yp = 0, for p = 2, . . . , k. Next, by considering the fact that

2 ≥ ||(e2 − ek+1)T S||1, it follows that

2 ≥ 1− x1 + 1 + 1 + 1− x1,

from which we deduce that x1 = 1. Hence eT
k+1S = eT

1 − eT
k+1 and eT

k+2S =

eT
1 − eT

k+2, which is of the desired form. We conclude that each nonzero row of

S is of the form eT
1 − eT

p , for some suitable index p. 2

We are now in a position to prove the main result of this section.

Theorem 3.3 Let λ ∈ C and n ∈ IN. Then there is an n× n stochastic matrix

A having eigenvalue λ for which Z(A) = |λ| if and only if one of the following

holds:

i) there is a k ∈ IN with k ≤ n, a k–th root of unity ω, and an r ∈ [0, 1] such

that λ = rω;

ii) there is a smallest odd number k0 ∈ IN , with k0 ≤ n, a k0–th root of −1, α,

and an r ∈ [0, 1
k0−1 ], such that λ = rα.

Proof: Fix k ∈ IN and let Ck be a k × k cyclic permutation matrix. Observe

that for each r ∈ [0, 1], the stochastic matrix

A =
1− r

n
J + r

[
Ck 0

0 In−k

]

satisfies Z(A) = r and has, for each k–th root of unity ω, the complex number

rω as an eigenvalue. Similarly, for each odd k0, with 1 ≤ k0 ≤ n, the stochastic
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matrix

B =
1− r

n
J + r

[
1

k0−1 (J − Ck0) 0
1
k0

J 0

]
satisfies Z(A) = r

k0−1 and has, for each k0–th root of −1, α, the complex

number r
k0−1α as an eigenvalue. Thus we see that each λ ∈ C satisfying i)

or ii) is realized as an eigenvalue of some stochastic matrix with the desired

properties.

Now suppose that there is an n × n stochastic matrix A having eigenvalue

λ such that Z(A) = |λ|. If λ = 1, then certainly λ is of the form described in i).

Henceforth, we suppose that λ 6= 1. Let v be an eigenvector for A corresponding

to λ. Appealing to Lemma 3.1, we assume without loss of generality that v has

distinct entries, that diameter graph of v has no isolated vertices, and that A is

m×m for some m ≤ n.

Consider the diameter graph Γ(v). First, suppose that every vertex of Γ(v)

has degree one. Then m is even, and Γ(v) is a collection of m
2 independent edges.

If i ∼ j in Γ(v), then from Lemma 2.3, there is an edge k ∼ l in Γ(v) such that

(ei−ej)T A = (ek−el)T , from which it follows that λ(vi−vj) = vk−vl. Consider

the directed graph D, whose vertices are ordered pairs (i, j) such that i ∼ j in

Γ(v), with an arc from (i, j) to (k, l) if and only if (ei − ej)T A = (ek − el)T .

Observe that D has m vertices, and that each vertex of D has outdegree 1.

Letting M be the adjacency matrix of D, we find that λ is an eigenvalue of M ,

with an eigenvector whose entry in the position corresponding to (i, j) is vi−vj ,

for each i and j. Since λ is an eigenvalue of the (0, 1) matrix M , each row of

which contains a single one, it follows readily that λ is a k–th root of unity for

some k ≤ m.

Suppose now that Γ(v) has maximum degree at least two. We then find that
1

Z(A)A satisfies the hypotheses of Lemma 4.1. Hence, 1
Z(A)A can be written as

1yT ± S, where S is of the form described in that lemma. Since such an S can

be written as 1eT
i −P , for some index i and permutation matrix P , we see that

for some vector xT , we have either A = 1xT + Z(A)P or A = 1xT − Z(A)P.

In the former case, we find that the eigenvalues of A distinct from 1 are of the

form Z(A)ω where ω is a k–th root of unity for some k ≤ m.

On the other hand, if we have A = 1xT −Z(A)P, then note that each entry

of xT is bounded below by Z(A), and that xT 1 = 1 +Z(A). Since A is m×m,

then necessarily 1 + Z(A) = xT 1 ≥ mZ(A), so that Z(A) ≤ 1
m−1 . Further,
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the eigenvalues of A different from 1 are either of the form Z(A)ω for some

ω satisfying ωk = 1 for some k ≤ m, (if P has an even cycle) or of the form

Z(A)α, where α is a k–th root of −1 and k is odd and at most m (if P has an

odd cycle). This latter case yields eigenvalues of the form described in ii). 2

Corollary 3.4 Let A be an irreducible stochastic matrix of order n, with left

stationary vector πT . We have |λ| = Z(A) for each eigenvalue λ 6= 1 of A if

and only if there is some k ∈ IN such that Ak = (Z(A))kI + (1− (Z(A))k)1πT .

Proof: Suppose that |λ| = Z(A) for each eigenvalue λ 6= 1. From Theorem 3.3

it follows that there is a k ∈ IN such that λk ≥ 0 for each eigenvalue λ 6= 1.

We thus find that λk = (Z(A))k for all such λ. Further, by Theorem 2.7 for

each such eigenvalue λ of A, the algebraic and geometric multiplicities coincide.

It now follows that the matrix Ak has just two distinct eigenvalues: 1 with

algebraic multiplicity one, and (Z(A))k with geometric multiplicity n − 1. It

is now straightforward to determine that Ak = (Z(A))kI + (1 − (Z(A))k)1πT .

Conversely, if Ak = (Z(A))kI +(1− (Z(A))k)1πT for some k ∈ IN, we find that

Ak has two distinct eigenvalues, namely 1, and (Z(A))k of algebraic multiplicity

n − 1. Thus, if λ 6= 1 is an eigenvalue of A, then λk = (Z(A))k, yielding the

desired conclusion. 2

Remark 3.5 By a slight modification of the techniques in this section, the

following result can be established.

Let A be an n × n matrix real with constant row sums µ such that Z(A) = 1,

and equality holds in (2.7) for some eigenvalue λ 6= µ. Then either λ is a k–th

root of unity for some k = 1, . . . , n, or λ is a k–th root of −1 for some odd k

between 1 and n.

4 Random Walk on a Graph

Let G be a connected graph on n vertices, conveniently labeled i = 1, . . . , n, and

let d1, . . . , dn be their corresponding degrees. Let M be the adjacency matrix

of G and let D = diag(d1, . . . , dn). Then, as explained in the introduction, the

matrix A = A(G) = D−1M ∈ Rn,n is the transition matrix for a random walk

on G. In this section we shall study the structure of graphs G whose random
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walk has a transition matrix A which satisfies the equality case in the DDZ

bound, namely, that Z(A) = γ(A).

We begin with the following lemma which can essentially be deduced from

the proof of [17, Theorem 4] and also from work in [5, 6].

Lemma 4.1 Suppose that A ∈ Rn,n is the transition matrix for the random

walk on a graph G. Let 1 ≤ i, j ≤ n be two vertices of G, of degrees di and dj ,

respectively, and suppose that di ≥ dj. Let Ni and Nj denote the neighbourhoods

of vertices i and j, respectively. Then

1
2

∥∥(ei − ej)T A
∥∥

1
=

|Ni \Nj |
di

.

Proof: Note that 1
2 ||(ei − ej)T A||1 is given by the sum of the positive entries

in (ei − ej)T A. Since di ≥ dj , we see that (ei − ej)T A has a positive entry

in position k if and only if i ∼ k but vertices j � k. In that case, necessarily

(ei − ej)T Aek = 1
di

. The result now follows. 2

Corollary 4.2 Let A be as in Lemma 4.1. Then

Z(A) = max
{
|Ni \Nj |

di
|i, j are vertices in G with dj ≥ dj

}
.

Corollary 4.3 Let G be a connected graph with normalized Laplacian matrix

LI − d−1/2AD−1/2. If λ 6= 0 is an eigenvalue of L, then

1−max
{
|Ni \Nj |

di
|i, j are vertices in G with dj ≥ dj

}

≤ λ ≤ 1 + max
{
|Ni \Nj |

di
|i, j are vertices in G with dj ≥ dj

}
.

In the next lemma we obtain a block structure of a transition matrix of a

random walk which satisfies the equality case in the DDZ eigenvalue bound.

Lemma 4.4 Let A be the transition matrix for the random walk on G. Let z

be an eigenvector corresponding to λsub(A) and suppose that equality holds in

(2.7). Let a and b a maximal and a minimal entries in z, respectively. If z

has entries that are strictly between a and b, then A and z can be partitioned
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conformally as

A =


A1,1 A1,2 0 1

dJ

A2,1 A2,2 0 1
dJ

0 0 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

 and z =


b1

a1

c0

c1

 , (4.12)

where the entries of c0 and c1 are strictly between a and b. Further, A3,4 ≥ 1
dJ,

and each of A4,1, A4,2 and A4,3 is positive.

Proof: We begin by writing z as z =


b1

a1

c

 , where b1 < c < a1. Applying

Lemma 2.3 we find that for any pair of indices i and j such that zi = b and

zj = a, and any k such that b < zk < a, we have that ai,k = aj,k. It follows that

for any index p such that zp = b or zp = a, and each k such that b < zk < a,

there is a wk such that ap,k = wk. Since G is connected, wk > 0, for some

1 ≤ k ≤ n, and since every wk is an element in the p–th row, it follows that

there is some d such that each nonzero wk is equal to 1
d .

It follows then that we may write A and z as

A =


A1,1 A1,2 0 1

dJ

A2,1 A2,2 0 1
dJ

0 0 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

 and z =


b1

a1

c0

c1

 ,

respectively, where A4,1 and A4,2 are positive matrices, and the elements of c0

and c1 are strictly between a and b.

Let the subsets in the partitioning of A be S1, . . . , S4, respectively, with

cardinalities m1, . . . ,m4, respectively. Note that S4 6= ∅, since G is connected,

but that S3 may be empty. Suppose that S3 6= ∅. By considering ||(ei−ej)T A||1
for i ∈ S1, j ∈ S3 we find that Z(A) ≥ 1 − m4

d , while by considering ||(ei −
ek)T A||1 for i ∈ S1, k ∈ S2 we have, in light of Lemma 2.3, that Z(A) ≤ 1− m4

d .

Hence Z(A) = 1− m4
d , and again by considering (ei−ej)T A for i ∈ S1, j ∈ S3 it

follows that A3,4 ≥ 1
d . The positivity of A4,3 now follows from the combinatorial

symmetry of A.

2
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Corollary 4.5 Suppose that G is as in Lemma 4.4 and that A and z have been

partitioned as in (4.12). Denote the corresponding subsets of the partitioning

(in order) as S1, . . . , S4, with cardinalities m1, . . . ,m4, respectively. Note that

necessarily S4 6= ∅. Then:

i) Suppose that S3 = ∅. Let Â denote the principal submatrix of A on the rows

and columns corresponding to S1 ∪ S2. Then Â can be written as Â = d−m4
d A,

where A is stochastic and yields equality in (2.7). Further, there is a λsub(A)

eigenvector for A having only two distinct entries, with all entries corresponding

to indices in S1 taking one value and all entries corresponding to indices in S2

taking the other value.

ii) If S3 6= ∅, then Z(A) = 1− m4
d . Further, we have that either

A1,1 = 0,

A2,2 = 0,

A1,21 =
(
1− m4

d

)
1,

A2,11 =
(
1− m4

d

)
1,

λsub = −
(
1− m4

d

)
,

,

or 

A1,2 = 0,

A2,1 = 0,

A1,11 =
(
1− m4

d

)
1,

A2,21 =
(
1− m4

d

)
1,

λsub =
(
1− m4

d

)
.

Proof: i) From (4.12) and Lemma 2.3, it follows that if i ∈ S1 and j ∈ S2, then
1
2 ||(ei − ej)T A||1 = Z(A), from which we find that Z(A) = Z(Â). From the

eigenequation, we have that Â

[
b1

a1

]
+ 1

dJc1 = λsub(A)

[
b1

a1

]
. We claim that,
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in fact, λsub(A) is an eigenvalue of Â. To see this note that if not, then it follows

that

[
b1

a1

]
=

(
λsubI − Â

)−1
1
dJc1, a contradiction since Â has constant row

sums. Thus λsub(A) is an eigenvalue of Â. It now follows that |λsub(Â)| =

Z(Â) = Z(A).

Next let v =

[
b1

a1

]
so that Âv + 1

dJc1 = λsubv. If λsub(Â) 6= d−m4
d , set

x = −1T c1/(dλsub−d+m4). It now follows that v+x1 is a λsub(Â) eigenvector

for Â having two distinct entries, with all entries corresponding to S1 identical

and all entries corresponding to S2 identical. Finally, if λsub(Â) = d−m4
d , it

follows that Â can be written as a direct sum of two nonnegative matrices, both

necessarily with constant row sums d−m4
d , and the eigenvector conclusion now

follows. Setting A = d
d−m4

Â, the desired conclusions are now evident.

ii) As in Lemma 4.4, we have Z(A) = 1− m4
d . Further, from (4.12) it follows

that each of A1,1, A1,2, A2,1, and A2,2 has constant rows sums, and evidently we

have that

A1,11 + A1,21 = (1− m4

d
)1 and A2,11 + A2,21 =

(
1− m4

d

)
1.

Letting x1,1, x1,2, x2,1, and x2,2 be the row sums of A1,1, A1,2, A2,1, and A2,2,

respectively, we find from the eigenequation that λsub = x1,1−x2,1 = x2,2−x2,1.

Thus if λsub = 1 − m4
d , then x1,1 = x2,2 = 1 − m4

d and x1,2 = x2,1 = 0,. while

if λsub = −
(
1− m4

d

)
, then x1,2 = x2,1 = 1 − m4

d and x1,1 = x2,2 = 0. The

conclusions on A1,1, . . . , A2,2 now follow. 2

Remark 4.6 Suppose that A is as in Corollary 4.5 and that S3 = ∅. Set

|S1 ∪ S2| = m and |S4| = k. Let G(S1 ∪ S2) and G(S4) denote the induced sub-

graphs of G on the vertex sets S1 ∪ S2 and S4, respectively. From Lemma 4.4,

it follows that G(S1 ∪ S2) is regular, say of degree r. Let r1, . . . , rk denote the

degree sequence for the induced subgraph G(S4). Evidently d = r + k. In order

that Z(A) = |Ni\Nj |
d for some i ∈ S1 and j ∈ S2, all of the following conditions

must hold:

i) for each p, q ∈ S4 with rp ≥ rq,

|Np \Nq|
rp + m

≤ |Ni \Nj |
r + m
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and

ii) for each q ∈ S4, either r + k −m ≥ rq ≥ k − |Ni \Nj |, or

rq ≥ max
{

r + k −m,
(r + k)(m− r)
|Ni \Nj |

−m

}
.

Remark 4.7 Suppose that A is as in Corollary 4.5 and that S3 6= ∅. Denote the

degrees of the vertices in the subgraph induced by S3 by qi, i = 1, . . . ,m3 and

the degrees of the vertices in the subgraph induced by S4 by rj , j = 1, . . . ,m4.

Set p = d −m4. In order that Z(A) = |Nk\Nl|
d for some k ∈ S1 and l ∈ S2, all

of the following conditions must hold:

i) For each i ∈ S4, either

m4 − p ≤ ri ≤ p + m4 −m1 −m2 −m3,

or

ri ≥ max
{

p + m4 −m1 −m2 −m3,
m4

p
(m1 + m2 + m3)− (p + m4)

}
;

ii) For each i ∈ S3 and j ∈ S4, either qi + m4 ≤ rj + m1 + m2 + m3 and

m1 + m2 + m3 − qi

m1 + m2 + m3 + rj
≤ p

p + m4
,

or

qi + m4 ≥ rj + m1 + m2 + m3

and
m4 − rj

m4 + qi
≤ p

p + m4
;

iii) For each i, j ∈ S3 with qi ≥ qj , we have that

|Ni \Nj |
qi + m4

≤ p

p + m4
;

iv) For each i, j ∈ S4 with ri ≥ rj , we have that

|Ni \Nj |
m1 + m2 + m3 + ri

≤ p

p + m4
.

Our next result gives the block structure of certain nonbipartite graphs which

satisfy the equality case in the DDZ eigenvalue bound.

Theorem 4.8 Suppose that G is a nonbipartite, connected graph for which

equality holds in (2.7). Suppose further that there is a λsub eigenvector z having
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just two distinct entries a and b with a > b. Suppose also that z1 = a, z2 = b,

that 1 ∼ 2, which can be assumed without loss of generality as G is connected,

and that d1 > d2. Then A and z can be taken to have the following form, where

the partitionings are conformal:

A =


0 1

d1
1T 0T 1

d1
1T

1
d2

1 0 1
d2

J 1
d2

J

0 1
d1

J A4,4 A4,5

1
d1

1 1
d1

J A5,4 A5,5

 and z =


b

a1

b1

b1

 . (4.13)

Further, the matrix d1

[
A4,4 A4,5

A5,4 A5,5

]
is the adjacency matrix of a biregular

graph with degrees d1 − |N1 \N2| and d1 − |N1 \N2| − 1.

Proof: We partition the rows and columns of A, as well as z, as follows: S1 =

{1}, S2 = {2}, S3 = (N1 \N2)\{2}, S4 = (N2 \N1)\{1}, S5 = N1∩N2, S6 =

{i|zi = a, i � 1, 2}, and S7 = {i|zi = b, i � 1, 2}. (We note that some subsets in

this partitioning may be empty; however, S5 6= ∅, since Z(A) is assumed to be

less than 1.) With this partitioning it follows that

A =



0 1
d1

1
d1

1T 0T 1
d1

1T 0T 0T

1
d2

0 0T 1
d2

1T 1
d2

1T 0T 0T

A3,1 A3,2 . . . A3,7

...
...

A7,1 A7,2 . . . A7,6 A7,7


and z =



b

a

a1

b1

b1

a1

b1


.

(4.14)

From the eigenequation Az = λsubz it is straightforward to determine that

λsub = − |N1\N2|
d1

and that λsuba = b. In particular, we find from this last

observation that if i ∈ S2 ∪ S3 ∪ S6, then ai,j = 0, for each j ∈ S2 ∪ S3 ∪ S6.

Applying that observation in conjunction with the combinatorial symmetry of
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A, it follows that

A =



0 1
d1

1
d1

1T 0T 1
d1

1T 0T 0T

1
d2

0 0T 1
d2

1T 1
d2

1T 0T 0T

A3,1 0 0 A3,4 A3,5 0 A3,7

0 A4,2 A4,3 A4,4 A4,5 A4,6 A4,7

A5,1 A5,2 A5,3 A5,4 A5,5 A5,6 A5,7

0 0 0 A6,4 A6,5 0 A6,7

0 0 A7,3 A7,4 A7,5 A7,6 A7,7


.

Further, since

λsubb = a
|N1 \N2|

d1
+ b

(
1− |N1 \N2|

d1

)
,

it follows that

A5,21 + A5,31 + A5,61 =
|N1 \N2|

d1
.

But then from the combinatorial symmetry of A, we see that A5,1 > 0, so that

if i ∈ S5 and j ∈ S6, then

1
2
||(ei − ej)T A||1 >

|N1 \N2|
d1

,

a contradiction and we conclude that S6 = ∅.
Thus we can take our matrix A to be written as

A =



0 1
d1

1
d1

1T 0T 1
d1

1T 0T

1
d2

0 0T 1
d2

1T 1
d2

1T 0T

A3,1 0 0 A3,4 A3,5 A3,7

0 A4,2 A4,3 A4,4 A4,5 A4,7

A5,1 A5,2 A5,3 A5,4 A5,5 A5,7

0 0 A7,3 A7,4 A7,5 A7,7


.

Note that A4,21+A4,31 = |N1\N2|
d1

1 and that A5,21+A5,31 = |N1\N2|
d1

1. Thus by

considering j ∈ S4 or j ∈ S5, it follows that 1
2 ||(e2 − ej)T A||1 ≤ |N1\N2|

d1
only if

A4,7 and A5,7 are zero matrices. Hence A7,4 = 0 and A7,5 = 0 by combinatorial

symmetry. But this last is a contradiction since then for any j ∈ S7, eT
2 A and

eT
j A have disjoint support. We conclude that S7 = ∅.
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Consequently, our matrix A can be written as

A =



0 1
d1

1
d1

1T 0T 1
d1

1T

1
d2

0 0T 1
d2

1T 1
d2

1T

A3,1 0 0 A3,4 A3,5

0 A4,2 A4,3 A4,4 A4,5

A5,1 A5,2 A5,3 A5,4 A5,5


,

with z partitioned conformally as z =



b

a

a1

b1

b1


. By considering 1

2

∥∥(e1 − ej)T A|
∥∥

1

for any j ∈ S3, it follows that A3,5 > 0 (assuming that S3 6= ∅). If S4 6= ∅,
we note that if A3,4 contains a zero entry, say in the column corresponding to

i ∈ S4, then it follows that the columns of A4,4 and A5,4 corresponding to index

i must be zero columns. Hence the rows of A4,4 and A4,5 corresponding to index

i must also be zero rows. But then two rows of A have disjoint support, namely

the second row of A and the row corresponding to index i ∈ S4, a contradiction.

We conclude that if S4 6= ∅, then A3,4 > 0. It now follows that every row of A

corresponding to an index in S3 is the same as row 2 of A.

Collapsing S2 and S3 into a single set S2, we find that A and z can be written

as

A =


0 1

d1
1T 0T 1

d1
1T

1
d2

1 0 1
d2

J 1
d2

J

0 A4,2 A4,4 A4,5

A5,1 A5,2 A5,4 A5,5

 and z =


b

a1

b1

b1

 .

From combinatorial symmetry, we see that A4,2 and A5,2 must be positive, as is

A5,1. Since A4,21 = |N1\N2|
d1

1 and A5,21 = |N1\N2|
d1

1, it follows that the vertices

of S4 and S5 must all have degree d1. In particular,

A =


0 1

d1
1T 0T 1

d1
1T

1
d2

1 0 1
d2

J 1
d2

J

0 1
d1

J A4,4 A4,5

1
d1

1 1
d1

J A5,4 A5,5

 .

The conditions on A4,4, A4,5, A5,4, and A5,5 now follow readily. 2
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Note that in Theorem 4.8, the matrix d1

[
A4,4 A4,5

A5,4 A5,5

]
is the adjacency

matrix of a biregular graph, say H, with the vertices in S4 having degree

d1 − |N1 \ N2| and the vertices in S5 having degree d1 − |N1 \ N2| − 1. In

order that the matrix A of (4.13) satisfies Z(A) = |N1\N2|
d1

, the following condi-

tions on H must hold:

i) each vertex in S4 is adjacent to at most |N1 \N2| vertices in S4, and each

vertex in S5 is adjacent to at most |N1 \N2| − 1 vertices in S4;

ii) for each pair of vertices i, j ∈ S4, |Ni \Nj | ≤ |N1 \N2|;

iii) for each pair of vertices i, j ∈ S5, |Ni \Nj | ≤ |N1 \N2|;
and

iv) for each pair of vertices i ∈ S4, j ∈ S5, |Ni \Nj | ≤ |N1 \N2| − 1.

Finally, we also note that if S4 = ∅, then necessarily H = Kd1−|N1\N2|.

As an example of an adjacency matrix of a graph G satisfying the conditions

of Theorem 4.8 we give the matrix

M =



0 1 1 1 1 0 1 1

1 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1

0 1 1 1 1 0 1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0


.

Here D = diag([6, 4, 4, 4, 4, 6, 6, 6]) and the transition matrix for the random

walk, A = D−1M induced by G satisfies that γ(A) = 2/3 = | − 2/3| = Z(A).

We observe that the eigenvector of A corresponding to λsub = −2/3 is, indeed,

given by

z = [−0.2774, 0.4160, 0.4160, 0.4160, 0.4160, −0.2774, −0.2774, −0.2774]T .

In our next result we investigate the form of the transition matrix which

satisfies the DDZ bound for a random walk induced by a regular graph.
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Theorem 4.9 Suppose that A =

[
A1,1 A1,2

A2,1 A2,2

]
is a n×n transition matrix for

a connected d–regular graph G that satisfies equality in (2.7), with corresponding

λsub–eigenvector z =

[
b1

a1

]
, where a > b. Label the subsets of the partition

S1 and S2, respectively. Fix indices i and j with i ∈ S1 and j ∈ S2, respectively,

and with i ∼ j. Then

λsub = −|Ni \Nj |
d

.

Set α = |Ni ∩Nj ∩ S2| and β = |Ni ∩Nj ∩ S1|. Then

A1,11 =
β

d
1, A1,21 =

|Ni \Nj |+ α

d
1, A2,11 =

|Ni \Nj |+ β

d
1, and A2,21 =

α

d
1.

Proof: From Lemma 2.5 b), we find immediately that λsub = − |Ni\Nj |
d . From the

equations Az = λsubz and A1 = 1, we find that each of the blocks A1,1, . . . , A2,2

must have constant row sums, say x1,1, . . . , x2,2, respectively. It is straight-

forward to see that, necessarily, the eigenvalues of the 2 × 2 matrix X =[
x1,1 x1,2

x2,1 x2,2

]
are 1 and λsub, with corresponding eigenvectors

[
1

1

]
and[

b

a

]
, respectively.

Considering (ei − ej)T A and applying Lemma 2.3 we see that one of two

situations holds: either zk = a for each k ∈ Ni \ Nj , and zk = b, for each

k ∈ Nj \Ni, or zk = b for each k ∈ Ni \Nj , and zk = a, for each k ∈ Nj \Ni.

Suppose that the latter case occurs. It then follows that

X =

[
|Ni\Nj |+β

d
α
d

β
d

|Ni\Nj |+α
d

]
which fails to have λsub as an eigenvalue. Hence only the former case can occur,

from which we find that eT
i A1,21 = |Ni \ Nj | + α, and hence eT

i A1,11 = β. A

similar argument yields eT
j A2,11 = |Ni \Nj |+ β, and hence eT

j A2,21 = α. The

conclusion now follows. 2

Remark 4.10 Suppose that A is as in Theorem 4.9 and let G(S1) and G(S2)

denote the subgraphs induced by S1 and S2, respectively. It follows that G(S1)

and G(S2) are both regular, of degrees |Ni \Nj |+ α and |Ni \Nj |+ β, respec-

tively. Further, in order that Z(A) = |Ni\Nj |
d , each of the following conditions
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must hold:

i) for each k, l ∈ S1, |Nk \Nl| ≤ |Ni \Nj |;

ii) for each k, l ∈ S2, |Nk \Nl| ≤ |Ni \Nj |;
and

iii) for each k ∈ S1, l ∈ S2, |Nk \Nl| = |Ni \Nj |.

According to Seneta [19, Definition 3.2], a stochastic matrix A is called

scrambling if any two rows of A have at least one positive element in a coincident

position. It is easy to see that for such matrices A, Z(A) < 1. In a similar vein,

we say that a graph G is scrambling if it has the property that each pair of

vertices has a common neighbour. Evidently G is scrambling if and only if

the transition matrix for the corresponding random walk on G is a scrambling

stochastic matrix. This leads us to the following result:

Theorem 4.11 Let G be a scrambling graph on n ≥ 4 vertices and let A be the

transition matrix for the corresponding random walk on G. Then

|λsub(A)| ≤ n− 2
n− 1

.

Furthermore equality holds if and only if G = K2 ∨ On−2, where “∨” denotes

the join of two graphs and Ok denotes the empty graph on k vertices.

Proof: From (2.7) we know that |λsub(A)| ≤ Z(A) and, on applying Lemma 4.1,

it follows that

Z(A) = max
{
|Ni \Nj |

di
| i, j are vertices of G and di ≥ dj

}
.

We thus readily find that

|λsub(A)| ≤ max
{

di − 1
di

| i = 1, . . . , n

}
≤ n− 2

n− 1
.

Suppose now that |λsub(A)| = n−2
n−1 and note that necessarily G must have at

least one vertex of degree n− 1. Let z be an eigenvector of A corresponding to

λsub, say, with maximum entry a and minimum entry b. Suppose first that z has

an entry strictly between a and b. Let i and j correspond to entries in z equal

to a and b, respectively. Referring to (4.12) of Lemma 4.4, we find that vertices

i and j have the same degree, say d. Since n−2
n−1 = d−1

d , we find that d = n− 1.
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But in this case, 1
2 ||(ei − ej)T A||1 = 1

n−1 , a contradiction. We conclude that z

has no entries strictly between a and b.

Suppose next that G is regular, say of degree d. It follows that Z(A) ≤ d−1
d ,

from which we conclude that d = n− 1. But then G = Kn, the complete graph

on n vertices, and again we have a contradiction. It now follows that A satisfies

the hypotheses of Theorem 4.8, necessarily with d1 = n−1. Referring to (4.13),

we find that A can be written as follows for some d2:

A =


0 1

n−11
T 1

n−11
T

1
d2

1 0 1
d2

J
1

n−11
1

n−1J 1
n−1 (J − I)

 . (4.15)

Suppose that G has k vertices of degree d2 and n − k vertices of degree n − 1.

We find readily from (4.15) that Z(A) = k
n−1 so that necessarily we have that

k = n− 2. It follows that d2 = 2 and that G = K2 ∨On−2.

Conversely, if G = K2 ∨On−2, then

A =


0 1

n−1
1

n−11
T

1
n−1 0 1

n−11
T

1
21

1
21 0

 ,

which is easily seen to have eigenvalues 0 (of multiplicity n − 3), 1,− 1
n−1 and

−n−2
n−1 . 2

Theorem 4.12 yields the following corollary for the eigenvalues of the nor-

malized Laplacian arising from scrambling graphs:

Corollary 4.12 Let G be a scrambling graph on n ≥ 4 with normalized Lapla-

cian matrix L. If λ 6= 0 is an eigenvalue of L, then 1
n−1 ≤ λ ≤ 2n−3

n−1 . Equality

holds in either of the bounds on λ if and only if G = K2 ∨On−2.

Recall that G is a threshold graph on n vertices if it can be generated from a

one–vertex graph by repeated applications of the following two operations: (i)

addition of a single isolated vertex to the graph, and (ii) addition of a single to

the graph that is connected to all other vertices. Recall further that threshold

graphs are characterized by the property that they contain no induced subgraphs

that are isomorphic to either P4, C4 or K2 ∪K2. It is not difficult to see that

the only regular threshold graphs are either complete or empty.

Our final result in this paper is:
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Theorem 4.13 Let G be a connected threshold graph on n vertices and let A

be the adjacency matrix for the corresponding random walk on G. Then equality

holds in (2.7) if and only if G can be written as G = Op ∨ Kn−p, for some

1 ≤ p ≤ n− 1.

Proof: Suppose first that A is of the form described in (4.13) in Theorem 4.8 and

partition the rows and columns of A as S1, . . . , S4 conformally with (4.13). Since

d2 < d1 ≤ n − 1, we find that p ≡ |S2| ≥ 2. If S3 6= ∅, then selecting vertices

u,v ∈ S2 and w ∈ S3, we find that the subgraph of G induced by vertices

1, u, v, w is C4, a contradiction. Hence S3 = ∅, so that d1 = n − 1. Hence the

vertices in S4 must also have degree n− 1 and it follows that G = Op ∨Kn−p.

Suppose next that A is of the form (4.12) described in Theorem 4.4, and

partition the rows and columns of A as S1, . . . , S4 conformally with (4.12).

Since the subgraph H of G induced by the vertices of S1 ∪ S2 is regular, it is

either a complete subgraph or an empty subgraph. The latter case then yields

Z(A) = 1
2 ||(ei − ej)T A||1 = 0, for i ∈ S1and j ∈ S2, a contradiction. Thus we

see that S1 ∪ S2 induces a complete subgraph on d + 1 vertices from which it

follows that Z(A) = 1
d . Observe that in this situation, necessarily S3 = ∅ for

otherwise Z(A) ≥ d−1
d . Hence d = n − 1, so that |λsub(A)| = 1

n−1 . It now

follows readily that in fact G = Kn.

Conversely, it is straightforward to determine that if G = Op ∨Kn−p, then

A yields equality in (2.7).

2
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