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Abstract

The scrambling index of a primitive digraph D is the smallest positive integer k

such that for every pair of vertices u and v, there is a vertex w such that we can
get to w from u and v in D by directed walks of length k; it is denoted by k(D).

In [1] we gave the upper bound on k(D) in terms of the order and the girth of a
primitive digraph D. In this paper, we characterize all the primitive digraphs such
that the scrambling index is equal to the upper bound.
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1 Introduction

There are numerous results giving the upper bounds on the second largest
modulus of eigenvalues of primitive stochastic matrices (see [3,5–8]). In [1],
by using Seneta’s [6] definition of coefficients of ergodicity, we have provided
an attainable upper bound on the second largest modulus of eigenvalues of a
primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u, v and w of a digraph D, if (u, w), (v, w) ∈ E(D), then vertex w
is called a common out-neighbour of vertices u and v. The scrambling index of
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a primitive digraph is the smallest positive integer k such that for every pair

of vertices u and v, there exists a vertex w such that u
k
→ w and v

k
→ w in D.

The scrambling index of D will be denoted by k(D).

The main result in [1] is the following.

Theorem 1.1 [1] D be a primitive digraph with n vertices and girth s. Then

k(D) ≤ K(n, s). (1)

Equality holds if D = Ds,n and gcd(n, s) = 1. Where Ds,n is a digraph as in
Figure 1, K(n, s) = k(n, s) + n − s and

k(n, s) =











( s−1
2

)n, when s is odd,

(n−1
2

)s, when s is even.
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Fig. 1. Ds,n

In this paper, we characterize all the primitive digraphs D such that k(D) =
K(n, s).

2 Some results on scrambling index

For terminology and notation used here we follow [1] and [2].

Let D = (V, E) denote a digraph (directed graph) with vertex set V = V (D),
arc set E = E(D) and order n. Loops are permitted but multiple arcs are not.
A u → v walk in a digraph D is a sequence of vertices u, u1, . . . , ut, v ∈ V (D)
and a sequence of arcs (u, u1), (u1, u2), . . . , (ut, v) ∈ E(D), where the vertices
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and arcs are not necessarily distinct. A closed walk is a u → v walk where
u = v. A cycle is a closed u → v walk with distinct vertices except for u = v.

The notation u
k

−→ v is used to indicate that there is a u → v walk of length
k. The distance from vertex u to vertex v in D, is the length of a shortest walk
from u to v, and denoted by d(u, v). A p-cycle is a cycle of length p, denoted
Cp. If the digraph D has at least one cycle, the length of a shortest cycle in D
is called the girth of D, denoted s(D). The number of arcs entering (leaving) a
vertex u is called the in-degree (out-degree) of u, denoted deg−(u) (deg+(u)).

A digraph D is called primitive if for some positive integer t there is a walk
of length exactly t from each vertex u to each vertex v. If D is primitive, the
smallest such t is called the exponent of D, denoted by exp(D). A digraph
D is primitive if and only if its strongly connected and the greatest common
divisor of all cycle lengths in D is equal to one [2]. For a positive integer r,
we define Dr to be the digraph with the same vertex set as D and arc (u, v)
if and only if u

r
→ v in D. Consequently, the scrambling index is the smallest

positive integer k such that each pair of vertices has a common out-neighbour
in Dk.

For a vertices u, v ∈ V (D) (u 6= v), we define

ku,v(D) = min{k : u
k
→ w and v

k
→ w, for some w ∈ V (D)}.

Then
k(D) = max

u,v∈V (D)
{ku,v(D)}.

Lemma 2.1 [1] Let p and s be positive integers such that gcd(p, s) = 1 and
p > s ≥ 2. Then for each t, 1 ≤ t ≤ max{s−1, bp/2c}, the equation xp+ys = t
has a unique integral solution (x, y) with |x| ≤ bs/2c and |y| ≤ bp/2c.

Let D be a primitive digraph, and let s and p be two different cycle lengths
in D and gcd(s, p) = 1, where 2 ≤ s < p ≤ n. For u, v ∈ V (D), we can find
a vertex w ∈ V (D) such that there are directed walks from u to w and v to
w such that both walks meet cycles of lengths s and p. Denote the lengths of
these directed walks by l(u, w) and l(v, w). We say that w is a double-cycle
vertex of u and v, and we let

lu,v = max{l(u, w), l(v, w)}.

Lemma 2.2 [1] Let D be a primitive digraph, and let s and p be two different
cycles lengths in D. Suppose that 2 ≤ s < p ≤ n and gcd(s, p) = 1. Then

ku,v(D) ≤ min{|y|s, |x|p}+ lu,v, (2)

where (x, y) is the integer solution of the equation xp + ys = r with minimum
absolute value and where |l(u, w)− l(v, w)| ≡ r(mods).
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Corollary 2.3 [1] Let D be a primitive digraph of order n with a Hamilton
cycle, and let the girth of D be s, where 1 ≤ s ≤ n − 1 and gcd(s, n) = 1. If
k(D) = K(n, s), then D contains a subgraph isomorphic to Ds,n.

Lemma 2.4 [1] Let D = Ds,n. Then for all vertices u and v in D, lu,v(D) ≤
max{n − s, bn

2
c}.

Let r be the positive integer that is defined as follows

r ≡











n

2
(mods), if s is odd and n is even,

n−s

2
(mods), if both s and n are odd .

(3)

Corollary 2.5 [1] Suppose that gcd(s, n) = 1, and s ≥ 2. Then for u, v ∈
V (Ds,n), without loss of generality take u > v, ku,v(Ds,n) = K(n, s) if and
only if u = n and

(1) v = n − r − ts for some t ∈ {0, 1, 2, · · · , n−2r
s

}, when s is odd.

(2) v = n − s

2
, when s is even.

Lemma 2.6 [1] Let D be a primitive digraph with a Hamilton cycle and let
the girth of D be s, where gcd(n, s) = 1, 2 ≤ s < n. Then either the cycle
Cs is formed from s consecutive vertices on the Hamilton cycle or there is
another cycle of length p such that gcd(s, p) = q, where q ≤ s

2
when s is even

and q ≤ s

3
when s is odd.

Lemma 2.7 [1] Let D be a primitive digraph with n vertices, and suppose
that s is the girth of D with s ≥ 2. If there is another cycle of length p,
s < p ≤ n, such that gcd(s, p) = 1, then

k(D) ≤ K(n, s). (4)

Furthermore, if p < n, then k(D) < K(n, s).

Let D be a primitive digraph and L(D) = {s, a1, · · · , ar} be the set of distinct
cycle lengths of D, where s < a1 < · · · < ar.

Lemma 2.8 [1] Let D be a primitive digraph with n vertices, and s be the
girth of D with s ≥ 2. Let L(D) = {s, a1, · · · , ar}. If gcd(s, ai) 6= 1 for each
i = 1, 2, · · · , r, Then

k(D) < K(n, s).

Corollary 2.9 [1] Let D be a primitive digraph of order n, and s be the
girth of D with s ≥ 2. If there is a cycle of length p, s < p ≤ n, such that
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gcd(s, p) < s/3 or gcd(s, p) ≤ s/3 and Cs ∩ Cp 6= ∅, then

k(D) < K(n, s).

3 Characterization of primitive digraphs with k(D) = K(n, s)

3.1 Properties of a primitive digraph D with k(D) = K(n, s)

Let D be a primitive digraph with n vertices, s be the girth of D, and k(D) =
K(n, s). Then by Lemma 2.7 and Lemma 2.8 there is a cycle of length p,
s < p ≤ n, such that gcd(s, p) = 1 and p = n. Since D contains a Hamilton
cycle, then by Corollary 2.3 D contains Ds,n as a subgraph. From the above,
we conclude the following.

Theorem 3.1 Let D be a primitive digraph with n vertices, let the girth of D
be s ≥ 2 , and suppose that k(D) = K(n, s). Then

(1) There is no cycle of length p, s < p < n, such that gcd(s, p) = 1.

(2) D contains Ds,n as a subgraph and gcd(s, n) = 1.

In the following we only consider primitive digraphs that contain Ds,n as a
subgraph, and we label the digraph D as in Figure 1. For Ds,n, by Corollary 2.5
we know all the pairs of vertices u, v ∈ V (Ds,n) such that ku,v(Ds,n) = K(n, s).

Proposition 3.2 [4] The t-th power of a cycle of length p is the disjoint union
of gcd(p, t) cycles of length p/ gcd(p, t).

Definition 3.3 If the digraph D contains at least two different cycles, then
the distance between two different cycles in D is defined as follows

d(C ′, C ′′) = min{d(u, v)|u ∈ C ′, v ∈ C ′′},

where C ′ and C ′′ are different cycles in D.

Lemma 3.4 Let D = Ds,n, gcd(n, s) = 1, and let t be a positive integer such
that t|s. Then

(i) The digraph Dt contains a Hamilton cycle and t disjoint cycles of length
s/t.

(ii) Every cycle of length s/t is formed from s/t consecutive vertices on the
Hamilton cycle in Dt.
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Denote the t cycles of length s/t in Dt by H1, H2, · · · , Ht in order as in Figure
2, and we say that Hi and H(i+1)( mod t), where i = 1, 2, · · · , t, are neighbour
cycles in Dt. We also have the following:

(iii) The distance between two neighbour cycles of length s/t in Dt is either
dn−s

t
e or dn−s

t
e + 1.

Proof: (i) Since gcd(s, n) = 1, then gcd(t, n) = 1. Therefore by Lemma 3.2,
we know that Dt contains a Hamilton cycle and t disjoint cycles of length s/t.

(ii) For vertices i, 1 ≤ i ≤ t, we have i + pt ∈ Cs, 0 ≤ p ≤ s

t
− 1. Also we have

i
t
→ i + t

t
→ i + 2t

t
→ · · ·

t
→ i + (

s

t
− 1)t

t
→ i.

Therefore every cycle of length s/t is formed from s/t consecutive vertices on
the Hamilton cycle in Dt.

H1

H

H2

t

t−1H

Fig. 2. D
t

(iii) There are two different types of directed paths of length t in Ds,n. One
type contains the arc 1 → s, and the other type does not contain the arc
1 → s. Observing Dt, we know that every arc in the Hamilton cycle in Dt

corresponds to a directed path of length t in Ds,n that does not contain the
arc 1 → s, and all the other arcs, we call them shortly s-arcs, correspond to
directed paths of length t in Ds,n that contain the arc 1 → s. Also notice that
if u1 → u2 is an s-arc, then 1 ≤ u1 ≤ t and s − (t− 1) ≤ u2 ≤ s.

Let d(Hi, H(i+1)( mod t)) = q for some i, then there exist a vertex u ∈ Hi and
a vertex v ∈ H(i+1)( mod t) such that d(u, v) = q in Dt. From the digraph Dt,
we know that deg+(u) = 2 and deg−(v) = 2. Hence u is the starting vertex of
an s − arc and v is the ending vertex of an s − arc. Therefore 1 ≤ u ≤ t and
s − (t − 1) ≤ v ≤ s.
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Since in Dt, we have u
q
→ v, then in Ds,n we have u

qt
→ v and this directed

walk does not go through the arc 1 → s.

In Ds,n, the directed path from vertex u to vertex v without going through

the arc 1 → s is of the form u
l1−→ 1

1
→ n

n−s
→ s

l2→ v, where l1, l2 ≤ t− 1. Thus

n − s + 1≤ qt ≤n − s + 1 + (t − 1) + (t − 1), and

n − s + 1≤ qt ≤n − s + (t− 1) + t.

Hence
⌈

n − s

t

⌉

≤ q ≤
⌈

n − s

t

⌉

+ 1.

Therefore the distance between any two neighbour cycles of length s/t is
⌈

n−s

t

⌉

or
⌈

n−s

t

⌉

+ 1. 2

3.2 The case s is even

Lemma 3.5 Let D be a primitive digraph that contains Ds,n as a subgraph,
where s is the girth of D, gcd(n, s) = 1 and s is even. If D contains another
cycle of length p, where s ≤ p < n. Then k(D) < K(n, s).

Proof. Let Cp be the cycle of length p in the primitive digraph D.

Case 1: Suppose gcd(s, p) = r, with r < s

3
. Then by Corollary 2.9 we have

k(D) < K(n, s).

Case 2: Suppose gcd(s, p) = s

3
. If Cs ∩ Cp 6= ∅, we are also done by Corollary

2.9. If Cs ∩ Cp = ∅, consider D
s

3 . There are s
3

cycles of length 3 and s
3

cycles
of length 3p

s
. Let p′ = 3p

s
. For u, v ∈ V (D

s

3 ), luv ≤ n − 3. Hence

ku,v(D
s

3 )≤ (
3 − 1

2
)p′ + n − 3

= p′ + n − 3.

Since p ≤ n − s, p′ ≤ 3n

s
− 3, we have

ku,v(D) ≤
s

3
(n + p′ − 3) ≤

ns

3
+ n − 2s < k(n, s) + n − s.

Case 3. gcd(s, p) = s

2
. Since s is even, then n is odd. We know there is only

one pair of vertices u, v ∈ V (Ds,n) such that ku,v(Ds,n) = k(n, s) + n − s,
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and they are vertex n and n − s

2
. Consider the digraph D

s

2 . It is easy to see
that vertices n and n − s

2
are consecutive vertices on the Hamilton cycle in

the digraph D
s

2 , and there are s

2
cycles of length 2 and s

2
cycles of length p′

respectively, where p′ = 2p

s
and p′ is odd (since p = s

2
p′). Let p′ = 2t + 1 for

some nonnegative integer t. For vertex n− s

2
, we can find a vertex w such that

the directed walk from vertex n− s

2
to vertex w is a path through both cycles

of length 2 and p′, and l(n− s

2
, w) ≤ n− p′. Since in D

s

2 , we have n
1
→ n− s

2
.

Then l(n, w) − l(n − s
2
, w) = 1 and l(n, w) ≤ n − p′ + 1. Therefore in the

digraph D
s

2 , we have

n
l(n,w)+2t
−→ w and

n −
s

2

l(n− s

2
,w)+p′

−→ w.

Thus kn,n− s

2
(D

s

2 ) ≤ n; and hence

kn,n− s

2
(D) ≤ (

s

2
)n < k(n, s) + n − s.

Case 4. gcd(s, p) = s. Suppose p = ts, where 1 ≤ t < n

s
.

If t = 1, then p = s. If the cycle Cp is formed from s vertices that are not
consecutive on the Hamilton cycle, then by Lemma 2.6, there exists another
cycle of length q such that gcd(s, q) ≤ s

2
. For this case, from the previous

results we know that kn,n− s

2
(D) < k(n, s) + n − s.

If the cycle Cp is formed by joining vertex i to vertex (i+s−1)(mod n), where
i 6= 1, then consider the subgraph Dp,n. Note that since i 6= 1, although p = s,
but Cp 6= Cs. Therefore Dp,n 6= Ds,n. In Dp,n, the upper bound is attained for
only one pair of vertices, and they are vertex i−1 and vertex (i+s−2)( mod n).
Since i− 1 6= n, we have kn,n− s

2
(Dp,n) < K(n, s). Therefore in the digraph D,

we also have

kn,n− s

2
(D) < k(n, s) + n − s.

Now suppose that t > 1, then s < n

2
. If Cs ∩ Cp 6= ∅, there is at least one

vertex w belonging to the cycle Cp such that s+1 ≤ w ≤ n− s

2
−1. Otherwise

the cycle Cp only has to contain vertices between vertex s to vertex 1 and n
to n − s

2
+ 1. But there are only s + s

2
such vertices and s + s

2
< p. Hence

for vertices n − s

2
, we have l(n − s

2
, w) < n − 3s

2
. Then l(n, w) < n − s and

l(n, w) − l(n− s

2
) = s

2
. In Ds,n, when n > 3s

2
, we get

n
n−s
−→ s

( n−1

2
)s

−→ s and

n −
s

2

n− 3s

2−→ s
s

2
n

−→ s.
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When n < 3s

2
, we have

n
n−s
−→ s

( n−1

2
)s

−→ s and

n −
s

2

n− s

2
+n−s

−→ s
( s

2
−1)n
−→ s.

Note that n−1
2

≥ n−1
s

≥ t and let n−1
2

= t + t′. Then (n−1
2

)s = p + t′s, where
p = st. Hence

n
l(n,w)
−→ w

p+t′s
−→ w and

n −
s

2

l(n− s

2
,w)

−→ w
s

2
n

−→ w.

Therefore kn,n− s

2
(D) ≤ l(n, w) + p + t′s < k(n, s) + n − s.

If Cs ∩ Cp = ∅, for vertex n − s

2
we can find a vertex w ∈ Cp such that

l(n− s

2
, w) ≤ n−s−p. Then l(n, w) ≤ n−s−p+ s

2
and l(n, w)−l(n− s

2
, w) = s

2
.

Since n−1
2

≥ n−1
s

≥ t, let n−1
2

≡ t′(mod t). For a nonnegative integer h we have
n−1

2
= th + t′. If t′ = 0, then (n−1

2
)s = hts = hp, and so

n
l(n,w)
−→ w

hp
−→ w and

n −
s

2

l(n− s

2
,w)

−→ w
s

2
n

−→ w.

Therefore kn,n− s

2
(D) ≤ hp + l(n, w) < k(n, s) + n − s.

If t′ 6= 0, t > t′ > 0, we know that

s

2
n − (

n − 1

2
)s =

s

2
,

or equivalently

(th + t′)s −
s

2
n = −

s

2
.

Adding (t − t′)s on both sides, we get

hts + t′s + (t − t′)s −
s

2
n = −

s

2
+ (t − t′)s,

or
(h + 1)ts − (

s

2
n + (t − t′ − 1)s) =

s

2
.

Therefore we have

n
l(n,w)
−→ w

s

2
n+(t−t′−1)s
−→ w and

n −
s

2

l(n− s

2
,w)

−→ w
(h+1)p
−→ w.

Then kn,n− s

2
(D) ≤ s

2
n+(t− t′−1)s+ l(n, w) ≤ s

2
n+(t− t′−1)s+n− s−p =

(n−1
2

)s + n − s − t′s < k(n, s) + n − s, as desired. 2

Theorem 3.6 Let D be a primitive digraph of order n and girth s, where s
is even. Then k(D) = K(n, s) if and only if D = Ds,n and gcd(n, s) = 1.
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3.3 The case s is odd

Lemma 3.7 Let D be a primitive digraph that contains Ds,n as a subgraph,
where gcd(n, s) = 1, s is odd and s ≥ 3. If D contains a cycle of length p with
gcd(s, p) ≤ s

3
, then k(D) < K(n, s).

Proof. Case 1. gcd(s, p) = l, l < s
3
. Then by Corollary 2.9 k(D) < k(n, s) +

n − s.

Case 2. gcd(s, p) = s

3
. If Cs∩Cp 6= ∅, we are done by Corollary 2.9. If Cs∩Cp =

∅, consider D
s

3 . There are s

3
cycles of length 3 and s

3
cycles of length 3p

s
, let

p′ = 3p

s
. For u, v ∈ V (D

s

3 ), we have luv ≤ n − 3. Hence

ku,v(D
s

3 ) ≤ (
3 − 1

2
)p′ + n − 3

= p′ + n − 3.

Since p ≤ n − s and p′ ≤ 3n

s
− 3, we get

ku,v(D) ≤
s

3
(n + p′ − 3) ≤

ns

3
+ n − 2s < k(n, s) + n − s. 2

Next we consider a primitive digraph D that contains Ds,n as a subgraph,
where gcd(s, n) = 1 and s is odd, and where the digraph D also contains
another cycle of length p with gcd(s, p) = s.

Lemma 3.8 Let D be a primitive digraph that contains Ds,n as a subgraph,
where gcd(s, n) = 1, s is odd and s ≥ 3. Suppose that the digraph D also
contains another cycle of length p with gcd(s, p) = s. If Cs ∩ Cp 6= ∅, then
k(D) < K(n, s).

Proof. Suppose that p = ts and that u is a vertex of Ds,n such that knu(D) =
( s−1

2
)n + n − s.

If u /∈ Cs, then in the digraph Ds,n we have

n
n−s
−→ s

( s−1

2
)n

−→ s and

u
u−s
−→ s

ms
−→ s,

where m is a positive integer such that ms − ( s−1
2

)n = n − u.

If there is a vertex w such that s + 1 ≤ w ≤ u and it belongs to the cycle Cp,
then choose w as the double-cycle vertex of u and n. Then we have l(u, w) <
u − s, l(n, w) < n − s and l(n, w) − l(u, w) = n − u. Also since ms > n > p
and p = ts, then ms = p + t′s for some nonnegative integer t′. Then
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n
l(n,w)
−→ w

( s−1

2
)n

−→ w and

u
l(u,w)
−→ w

p+t′s
−→ w.

Thus kn,u(D) ≤ ( s−1
2

)n + l(n, w) < k(n, s) + n − s.

Otherwise there is an arc from vertex j , u < j ≤ n, to vertex i, 1 ≤ i ≤ s.
Then we can get from vertex n to a vertex i on the cycle Cs in less than n− s
steps. Therefore kn,u(D) < k(n, s) + n − s.

Next consider u ∈ Cs. If p = s, suppose that the cycle Cp is formed from s
consecutive vertices as in Figure 3.

1

nu

s

v

v+s

Fig. 3. Ds,n ∪ {v → v + s}

If v = u + 1, then l(n, w) < n − s and l(u, w) = s 6= n − s. Therefore
kn,u(D) < k(n, s) + n − s. If v 6= u + 1, then consider the subgraph Dp,n. In
Dp,n, for some vertex v′ we have kv−1,v′(Dp,n) = K(n, s). Since v − 1 6= u, n,
then kn,u(Dp,n) < k(n, s) + n − s. Therefore kn,u(D) < k(n, s) + n − s.

If the cycle Cp is not formed from s consecutive vertices, then by Lemma 2.6,
there exists a cycle of length q such that gcd(s, q) ≤ s

3
. In that case, by Lemma

3.7, we have k(D) < k(n, s) + n − s.

If p > s, then take the first vertex w on cycle Cp from vertex n as the double-
cycle vertex of u and n. Since p ≥ 2s, l(n, w) ≤ n− 2s. Since l(u, n) < s, then
l(u, w) < n − s.

In the digraph Ds,n, there is a vertex u′, u < u′ < n, such that d(u, n) =
d(n, u′) = n − u′ , kn,u′(D) = k(n, s) + n − s and

n
n−s
−→ s

( s−1

2
)n

−→ s and
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u′ u′
−s

−→ s
ms
−→ s,

where ms − ( s−1
2

)n = n − u′. Since ms > n > p, then ms = p + ts for some
nonnegative integer t. In the digraph D we have

n
l(n,w)
−→ w

p+ts
−→ w and

u
l(u,w)
−→ w

( s−1

2
)n

−→ w,

where l(u, w) − l(n, w) = n − u′. Therefore kn,u(D) ≤ ( s−1
2

)n + l(u, w) <
( s−1

2
)n + n − s. 2

Lemma 3.9 Let D be a primitive digraph that contains Ds,n as a subgraph,
suppose that s is odd, s ≥ 3, and that there is another cycle of length p such
that Cs ∩Cp = ∅ and gcd(s, p) = s. If the cycle of length p is not formed from
p consecutive vertices on the Hamilton cycle, then k(D) < K(n, s).

Proof. Since the cycle of length p is not formed from p consecutive vertices on
the Hamilton cycle, then there exists an arc from vertex i to vertex j, where
s + 1 ≤ i < j ≤ n and j > i + 1. Then for any two vertices u, v ∈ V (D),
we can get to vertices s1, s2 ∈ Cs in less than n − s − 1 steps. Therefore
k(D) ≤ k(n, s) + n − s − 1. 2

The only remaining case is that D is a digraph constructed from Ds,n by
adding an arc from vertex u to vertex u + ms − 1, where s is odd, s ≥ 3,
s < u < n − ms + 1 and m is a positive integer such that 1 ≤ m ≤ n−u+1

s
.

Recall that in (3) we define the positive integer r as follows

r ≡











n

2
(mods), if s is odd, n is even,

n−s
2

(mods), if both s and n are odd .

In both cases n − 2r can be divided by s. Let

h =
n − 2r

s
. (5)

Note that in Ds,n, h+1 is the number of pairs of vertices that attain the upper
bound K(n, s).

Lemma 3.10 Let D be a digraph constructed from Ds,n, s ≥ 3, by adding an
arc from vertex u to vertex u + ms − 1, where s < u < n − ms + 1. Then
kn,n−r−ts(D) = K(n, s) if and only if u = n − r − ts + 1 and n+h

2
− t − 1 ≡

0(modm).
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Proof. For the digraph D = Ds,n, the upper bound K(n, s) on the scrambling
index is attained by the pair of vertices n and n− r− ts, where 0 ≤ t ≤ n−2r

s
.

We only consider those pairs of vertices.

Suppose that u = n − r − ts + 1 for some t. From the digraph we know that

n
r+ts−ms
−→ n − r − ts + ms and

n − r − ts
n−ms
−→ n − r − ts + ms,

and n − ms − (r + ts − ms) = n − r − ts = r + (h − t)s, since n = 2r + hs.
When n is even,

(
n + h

2
− t)s− (

s − 1

2
)n = r + (h − t)s.

Suppose m − 1 − q is the smallest nonnegative integer such that (n+h
2

− t +
m − 1 − q)s can be divided by p = ms, where 0 ≤ q ≤ m − 1. Then

n
r+ts−ms
−→ n − r − ts + ms

( n+h

2
−t+m−1−q)s
−→ n − r − ts + ms

and

n − r − ts
n−ms
−→ n − r − ts + ms

( s−1

2
)n+(m−1−q)s
−→ n − r − ts + ms.

Therefore kn,n−r−ts(D) = ( s−1
2

)n + n − s − qs.

Since (n+h

2
− t + m − 1 − q)s can be divided by p = ms, then

n + h

2
− t − 1 ≡ q(modm).

Therefore if n+h

2
− t− 1 ≡ 0(modm), we have

kn,n−r−ts(D) = K(n, s).

If n+h
2

− t− 1 6≡ 0(modm), then kn,n−r−ts < K(n, s).

Next we consider all other pairs of vertices n and u such that kn,u(Ds,n) =
K(n, s).

If u 6= n − r − ts + 1, let v = u + ms − 1. Consider the following three cases.

Case 1. n − r − ts + 1 < u. We have

n
n−v
→ v and

13



n − r − ts
n−r−ts+n−v

→ v.

In addition we have n− r − ts + (n− v)− (n− v) = n− r− ts = r + (h− t)s.
Then we obtain

n
n−v
−→ v

( n+h

2
−t+m−1−q)s
−→ v and

n − r − ts
n−r−ts+n−v

−→ v
( s−1

2
)n+(m−1−q)s
−→ v.

Therefore kn,n−r−ts(D) = n − r − ts + (n − v) + ( s−1
2

)n + (m − 1 − q)s <
n − ms + ( s−1

2
)n + (m − 1 − q)s = ( s−1

2
)n + n − s − qs ≤ k(n, s) + n − s.

Case 2. n − r − ts > v. We have

n
n−v
→ v and

n − r − ts
n−r−ts−v

→ v,

and n − v − (n − r − ts − v) = r + ts. Also

(
n − h

2
+ t)s − (

s − 1

2
)n = r + ts.

Then

n
n−v
−→ v

( s−1

2
)n+(m−1−q)s
−→ v and

n − r − ts
n−r−ts−v
−→ v

( n−h

2
−t+m−1−q)s
−→ v.

Therefore kn,n−r−ts(D) = n− v + ( s−1
2

)n + (m− 1− q)s < n−ms + ( s−1
2

)n +
(m − 1 − q)s = ( s−1

2
)n + n − s − qs ≤ k(n, s) + n − s.

Case 3. u ≤ n − r − ts ≤ v. Choose v as the double-cycle vertex of n and
n − r − ts. Then

n
n−v
−→ v and

n − r − ts
n−r−ts−u+1

−→ v.

If n−v > n−r−ts−u+1, since n−v−(n−r−ts−u+1) = r+ts−(v−u+1) =
r + (t − m)s and v > ms, then

kn,n−r−ts(D)≤ (
s − 1

2
)n + n − v + (m − 1 − q)s

= (
s − 1

2
)n + n − s − v + ms − qs

< k(n, s) + n − s.

If n−v < n−r−ts−u+1, then n−r−ts−u+1−(n−v) = −r−ts+v−u+1 =
−r − ts + ms = s − r + (m − 1 − t)s. Then

(
s − 1

2
)n − (b

n

2
c − t′)s = s − r + (m − 1 − t)s
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for some integer t′. Therefore

kn,n−r−ts(D) ≤ (
s − 1

2
)n + n − v + (m − 1 − q)s

= (
s − 1

2
)n + n − s − v + ms − qs < k(n, s) + n − s. 2

Lemma 3.11 Let D be a digraph constructed from Ds,n (s ≥ 3) by adding
arcs from vertex ui to vertex ui + mis− 1, where ui > s, mi ≥ 1, i = 1, 2 and
u1 6= u2. Then k(D) < K(n, s).

Proof. Let Di, i = 1, 2, be the subgraph of D that contains Ds,n and the cycle
of length mis, then by Lemma 3.10, we know that there is at most one pair
of vertices, vertex n and vertex ui − 1, such that kn,ui−1(Di) = K(n, s). Since
u1 6= u2, In the digraph D, we have kn,ui−1(D) < K(n, s). 2

Concluding the above results, we have the following theorem.

Theorem 3.12 Let D be a primitive digraph of order n and girth s, where
s is odd and s ≥ 3. Then k(D) = K(n, s) if and only if gcd(n, s) = 1 and
D = Ds,n or, D = Ds,n ∪ {n− r − ts + 1 → n− r − ts + ms} for some m ∈ N

and some t ∈ {1, 2, · · · , n−2r

s
− 1} such that n+h

2
− t− 1 ≡ 0(modm), where r

and h are as in (3) and (5).
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