Primitive Digraphs with the Largest Scrambling Index

Mahmud Akelbek^{*}, Steve Kirkland¹

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Abstract

The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there is a vertex w such that we can get to w from u and v in D by directed walks of length k; it is denoted by k(D). In [1] we gave the upper bound on k(D) in terms of the order and the girth of a primitive digraph D. In this paper, we characterize all the primitive digraphs such that the scrambling index is equal to the upper bound.

AMS classification: 05C20; 05C50

Key words: Scrambling index; Primitive digraph

1 Introduction

There are numerous results giving the upper bounds on the second largest modulus of eigenvalues of primitive stochastic matrices (see [3,5–8]). In [1], by using Seneta's [6] definition of coefficients of ergodicity, we have provided an attainable upper bound on the second largest modulus of eigenvalues of a primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u, v and w of a digraph D, if $(u, w), (v, w) \in E(D)$, then vertex w is called a *common out-neighbour* of vertices u and v. The *scrambling index* of

^c corresponding author.

Email addresses: akelbek@math.uregina.ca (Mahmud Akelbek),

kirkland@math.uregina.ca (Steve Kirkland).

¹ Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada under grant OGP0138251.

a primitive digraph is the smallest positive integer k such that for every pair of vertices u and v, there exists a vertex w such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in D. The scrambling index of D will be denoted by k(D).

The main result in [1] is the following.

Theorem 1.1 [1] D be a primitive digraph with n vertices and girth s. Then

$$k(D) \le K(n,s). \tag{1}$$

Equality holds if $D = D_{s,n}$ and gcd(n, s) = 1. Where $D_{s,n}$ is a digraph as in Figure 1, K(n, s) = k(n, s) + n - s and

Fig. 1. $D_{s,n}$

In this paper, we characterize all the primitive digraphs D such that k(D) = K(n, s).

2 Some results on scrambling index

For terminology and notation used here we follow [1] and [2].

Let D = (V, E) denote a *digraph* (directed graph) with vertex set V = V(D), arc set E = E(D) and order *n*. Loops are permitted but multiple arcs are not. A $u \to v$ walk in a digraph *D* is a sequence of vertices $u, u_1, \ldots, u_t, v \in V(D)$ and a sequence of arcs $(u, u_1), (u_1, u_2), \ldots, (u_t, v) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a $u \to v$ walk where u = v. A cycle is a closed $u \to v$ walk with distinct vertices except for u = v. The notation $u \xrightarrow{k} v$ is used to indicate that there is a $u \to v$ walk of length k. The distance from vertex u to vertex v in D, is the length of a shortest walk from u to v, and denoted by d(u, v). A *p*-cycle is a cycle of length p, denoted C_p . If the digraph D has at least one cycle, the length of a shortest cycle in D is called the girth of D, denoted s(D). The number of arcs entering (leaving) a vertex u is called the in-degree (out-degree) of u, denoted $deg^-(u)$ ($deg^+(u)$).

A digraph D is called *primitive* if for some positive integer t there is a walk of length exactly t from each vertex u to each vertex v. If D is primitive, the smallest such t is called the *exponent* of D, denoted by $\exp(D)$. A digraph D is primitive if and only if its strongly connected and the greatest common divisor of all cycle lengths in D is equal to one [2]. For a positive integer r, we define D^r to be the digraph with the same vertex set as D and arc (u, v)if and only if $u \xrightarrow{r} v$ in D. Consequently, the scrambling index is the smallest positive integer k such that each pair of vertices has a common out-neighbour in D^k .

For a vertices $u, v \in V(D)$ $(u \neq v)$, we define

$$k_{u,v}(D) = \min\{k : u \xrightarrow{k} w \text{ and } v \xrightarrow{k} w, \text{ for some } w \in V(D)\}$$

Then

$$k(D) = \max_{u,v \in V(D)} \{k_{u,v}(D)\}.$$

Lemma 2.1 [1] Let p and s be positive integers such that gcd(p, s) = 1 and $p > s \ge 2$. Then for each $t, 1 \le t \le max\{s-1, \lfloor p/2 \rfloor\}$, the equation xp+ys = t has a unique integral solution (x, y) with $|x| \le \lfloor s/2 \rfloor$ and $|y| \le \lfloor p/2 \rfloor$.

Let D be a primitive digraph, and let s and p be two different cycle lengths in D and gcd(s, p) = 1, where $2 \le s . For <math>u, v \in V(D)$, we can find a vertex $w \in V(D)$ such that there are directed walks from u to w and v to w such that both walks meet cycles of lengths s and p. Denote the lengths of these directed walks by l(u, w) and l(v, w). We say that w is a *double-cycle* vertex of u and v, and we let

$$l_{u,v} = \max\{l(u, w), l(v, w)\}$$

Lemma 2.2 [1] Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose that $2 \le s and <math>gcd(s,p) = 1$. Then

$$k_{u,v}(D) \le \min\{|y|s, |x|p\} + l_{u,v},\tag{2}$$

where (x, y) is the integer solution of the equation xp + ys = r with minimum absolute value and where $|l(u, w) - l(v, w)| \equiv r \pmod{s}$.

Corollary 2.3 [1] Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s, where $1 \le s \le n-1$ and gcd(s,n) = 1. If k(D) = K(n, s), then D contains a subgraph isomorphic to $D_{s,n}$.

Lemma 2.4 [1] Let $D = D_{s,n}$. Then for all vertices u and v in D, $l_{u,v}(D) \le \max\{n-s, \lfloor \frac{n}{2} \rfloor\}$.

Let r be the positive integer that is defined as follows

$$r \equiv \begin{cases} \frac{n}{2} \pmod{s}, & \text{if } s \text{ is odd and } n \text{ is even,} \\ \frac{n-s}{2} \pmod{s}, & \text{if both } s \text{ and } n \text{ are odd }. \end{cases}$$
(3)

Corollary 2.5 [1] Suppose that gcd(s,n) = 1, and $s \ge 2$. Then for $u, v \in V(D_{s,n})$, without loss of generality take u > v, $k_{u,v}(D_{s,n}) = K(n,s)$ if and only if u = n and

(1) v = n - r - ts for some $t \in \{0, 1, 2, \cdots, \frac{n-2r}{s}\}$, when s is odd.

(2) $v = n - \frac{s}{2}$, when s is even.

Lemma 2.6 [1] Let D be a primitive digraph with a Hamilton cycle and let the girth of D be s, where gcd(n,s) = 1, $2 \le s < n$. Then either the cycle C_s is formed from s consecutive vertices on the Hamilton cycle or there is another cycle of length p such that gcd(s,p) = q, where $q \le \frac{s}{2}$ when s is even and $q \le \frac{s}{3}$ when s is odd.

Lemma 2.7 [1] Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with $s \ge 2$. If there is another cycle of length p, s , such that <math>gcd(s, p) = 1, then

$$k(D) \le K(n,s). \tag{4}$$

Furthermore, if p < n, then k(D) < K(n, s).

Let D be a primitive digraph and $L(D) = \{s, a_1, \dots, a_r\}$ be the set of distinct cycle lengths of D, where $s < a_1 < \dots < a_r$.

Lemma 2.8 [1] Let D be a primitive digraph with n vertices, and s be the girth of D with $s \ge 2$. Let $L(D) = \{s, a_1, \dots, a_r\}$. If $gcd(s, a_i) \ne 1$ for each $i = 1, 2, \dots, r$, Then

$$k(D) < K(n,s).$$

Corollary 2.9 [1] Let D be a primitive digraph of order n, and s be the girth of D with $s \ge 2$. If there is a cycle of length p, s , such that

 $gcd(s,p) < s/3 \text{ or } gcd(s,p) \leq s/3 \text{ and } C_s \cap C_p \neq \emptyset$, then

$$k(D) < K(n,s).$$

3 Characterization of primitive digraphs with k(D) = K(n, s)

3.1 Properties of a primitive digraph D with k(D) = K(n,s)

Let *D* be a primitive digraph with *n* vertices, *s* be the girth of *D*, and k(D) = K(n, s). Then by Lemma 2.7 and Lemma 2.8 there is a cycle of length *p*, s , such that <math>gcd(s, p) = 1 and p = n. Since *D* contains a Hamilton cycle, then by Corollary 2.3 *D* contains $D_{s,n}$ as a subgraph. From the above, we conclude the following.

Theorem 3.1 Let D be a primitive digraph with n vertices, let the girth of D be $s \ge 2$, and suppose that k(D) = K(n, s). Then

(1) There is no cycle of length p, s , such that <math>gcd(s, p) = 1.

(2) D contains $D_{s,n}$ as a subgraph and gcd(s,n) = 1.

In the following we only consider primitive digraphs that contain $D_{s,n}$ as a subgraph, and we label the digraph D as in Figure 1. For $D_{s,n}$, by Corollary 2.5 we know all the pairs of vertices $u, v \in V(D_{s,n})$ such that $k_{u,v}(D_{s,n}) = K(n, s)$.

Proposition 3.2 [4] The t-th power of a cycle of length p is the disjoint union of gcd(p,t) cycles of length p/gcd(p,t).

Definition 3.3 If the digraph D contains at least two different cycles, then the distance between two different cycles in D is defined as follows

$$d(C', C'') = \min\{d(u, v) | u \in C', v \in C''\},\$$

where C' and C'' are different cycles in D.

Lemma 3.4 Let $D = D_{s,n}$, gcd(n, s) = 1, and let t be a positive integer such that t|s. Then

(i) The digraph D^t contains a Hamilton cycle and t disjoint cycles of length s/t.

(ii) Every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle in D^t .

Denote the t cycles of length s/t in D^t by H_1, H_2, \dots, H_t in order as in Figure 2, and we say that H_i and $H_{(i+1)(\text{mod }t)}$, where $i = 1, 2, \dots, t$, are neighbour cycles in D^t . We also have the following:

(iii) The distance between two neighbour cycles of length s/t in D^t is either $\lceil \frac{n-s}{t} \rceil$ or $\lceil \frac{n-s}{t} \rceil + 1$.

Proof: (i) Since gcd(s, n) = 1, then gcd(t, n) = 1. Therefore by Lemma 3.2, we know that D^t contains a Hamilton cycle and t disjoint cycles of length s/t.

(*ii*) For vertices i, $1 \le i \le t$, we have $i + pt \in C_s$, $0 \le p \le \frac{s}{t} - 1$. Also we have

$$i \xrightarrow{t} i + t \xrightarrow{t} i + 2t \xrightarrow{t} \cdots \xrightarrow{t} i + (\frac{s}{t} - 1)t \xrightarrow{t} i.$$

Therefore every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle in D^t .

Fig. 2. D^t

(*iii*) There are two different types of directed paths of length t in $D_{s,n}$. One type contains the arc $1 \to s$, and the other type does not contain the arc $1 \to s$. Observing D^t , we know that every arc in the Hamilton cycle in D^t corresponds to a directed path of length t in $D_{s,n}$ that does not contain the arc $1 \to s$, and all the other arcs, we call them shortly s-arcs, correspond to directed paths of length t in $D_{s,n}$ that contain the arc $1 \to s$. Also notice that if $u_1 \to u_2$ is an s-arc, then $1 \leq u_1 \leq t$ and $s - (t-1) \leq u_2 \leq s$.

Let $d(H_i, H_{(i+1)(\mod t)}) = q$ for some *i*, then there exist a vertex $u \in H_i$ and a vertex $v \in H_{(i+1)(\mod t)}$ such that d(u, v) = q in D^t . From the digraph D^t , we know that $\deg^+(u) = 2$ and $\deg^-(v) = 2$. Hence *u* is the starting vertex of an *s* - *arc* and *v* is the ending vertex of an *s* - *arc*. Therefore $1 \le u \le t$ and $s - (t-1) \le v \le s$. Since in D^t , we have $u \xrightarrow{q} v$, then in $D_{s,n}$ we have $u \xrightarrow{qt} v$ and this directed walk does not go through the arc $1 \rightarrow s$.

In $D_{s,n}$, the directed path from vertex u to vertex v without going through the arc $1 \to s$ is of the form $u \xrightarrow{l_1} 1 \xrightarrow{1} n \xrightarrow{n-s} s \xrightarrow{l_2} v$, where $l_1, l_2 \leq t-1$. Thus

$$n-s+1 \le qt \le n-s+1+(t-1)+(t-1)$$
, and
 $n-s+1 \le qt \le n-s+(t-1)+t$.

Hence

$$\left\lceil \frac{n-s}{t} \right\rceil \le q \le \left\lceil \frac{n-s}{t} \right\rceil + 1.$$

Therefore the distance between any two neighbour cycles of length s/t is $\left|\frac{n-s}{t}\right|$ or $\left[\frac{n-s}{t}\right] + 1$. \Box

3.2 The case s is even

Lemma 3.5 Let D be a primitive digraph that contains $D_{s,n}$ as a subgraph, where s is the girth of D, gcd(n,s) = 1 and s is even. If D contains another cycle of length p, where $s \le p < n$. Then k(D) < K(n,s).

Proof. Let C_p be the cycle of length p in the primitive digraph D.

Case 1: Suppose gcd(s, p) = r, with $r < \frac{s}{3}$. Then by Corollary 2.9 we have k(D) < K(n, s).

Case 2: Suppose $gcd(s, p) = \frac{s}{3}$. If $C_s \cap C_p \neq \emptyset$, we are also done by Corollary 2.9. If $C_s \cap C_p = \emptyset$, consider $D^{\frac{s}{3}}$. There are $\frac{s}{3}$ cycles of length 3 and $\frac{s}{3}$ cycles of length $\frac{3p}{s}$. Let $p' = \frac{3p}{s}$. For $u, v \in V(D^{\frac{s}{3}})$, $l_{uv} \leq n-3$. Hence

$$k_{u,v}(D^{\frac{s}{3}}) \le (\frac{3-1}{2})p' + n - 3$$
$$= p' + n - 3.$$

Since $p \le n - s$, $p' \le \frac{3n}{s} - 3$, we have

$$k_{u,v}(D) \le \frac{s}{3}(n+p'-3) \le \frac{ns}{3} + n - 2s < k(n,s) + n - s.$$

Case 3. $gcd(s, p) = \frac{s}{2}$. Since s is even, then n is odd. We know there is only one pair of vertices $u, v \in V(D_{s,n})$ such that $k_{u,v}(D_{s,n}) = k(n,s) + n - s$,

and they are vertex n and $n - \frac{s}{2}$. Consider the digraph $D^{\frac{s}{2}}$. It is easy to see that vertices n and $n - \frac{s}{2}$ are consecutive vertices on the Hamilton cycle in the digraph $D^{\frac{s}{2}}$, and there are $\frac{s}{2}$ cycles of length 2 and $\frac{s}{2}$ cycles of length p'respectively, where $p' = \frac{2p}{s}$ and p' is odd (since $p = \frac{s}{2}p'$). Let p' = 2t + 1 for some nonnegative integer t. For vertex $n - \frac{s}{2}$, we can find a vertex w such that the directed walk from vertex $n - \frac{s}{2}$ to vertex w is a path through both cycles of length 2 and p', and $l(n - \frac{s}{2}, w) \leq n - p'$. Since in $D^{\frac{s}{2}}$, we have $n \xrightarrow{1}{\rightarrow} n - \frac{s}{2}$. Then $l(n, w) - l(n - \frac{s}{2}, w) = 1$ and $l(n, w) \leq n - p' + 1$. Therefore in the digraph $D^{\frac{s}{2}}$, we have

$$n \xrightarrow{l(n,w)+2t} w \text{ and} \\ n - \frac{s}{2} \xrightarrow{l(n-\frac{s}{2},w)+p'} w.$$

Thus $k_{n,n-\frac{s}{2}}(D^{\frac{s}{2}}) \leq n$; and hence

$$k_{n,n-\frac{s}{2}}(D) \le (\frac{s}{2})n < k(n,s) + n - s.$$

Case 4. gcd(s, p) = s. Suppose p = ts, where $1 \le t < \frac{n}{s}$.

If t = 1, then p = s. If the cycle C_p is formed from s vertices that are not consecutive on the Hamilton cycle, then by Lemma 2.6, there exists another cycle of length q such that $gcd(s,q) \leq \frac{s}{2}$. For this case, from the previous results we know that $k_{n,n-\frac{s}{2}}(D) < k(n,s) + n - s$.

If the cycle C_p is formed by joining vertex i to vertex $(i+s-1) \pmod{n}$, where $i \neq 1$, then consider the subgraph $D_{p,n}$. Note that since $i \neq 1$, although p = s, but $C_p \neq C_s$. Therefore $D_{p,n} \neq D_{s,n}$. In $D_{p,n}$, the upper bound is attained for only one pair of vertices, and they are vertex i-1 and vertex $(i+s-2) \pmod{n}$. Since $i-1 \neq n$, we have $k_{n,n-\frac{s}{2}}(D_{p,n}) < K(n,s)$. Therefore in the digraph D, we also have

$$k_{n,n-\frac{s}{2}}(D) < k(n,s) + n - s.$$

Now suppose that t > 1, then $s < \frac{n}{2}$. If $C_s \cap C_p \neq \emptyset$, there is at least one vertex w belonging to the cycle C_p such that $s+1 \leq w \leq n-\frac{s}{2}-1$. Otherwise the cycle C_p only has to contain vertices between vertex s to vertex 1 and n to $n-\frac{s}{2}+1$. But there are only $s+\frac{s}{2}$ such vertices and $s+\frac{s}{2} < p$. Hence for vertices $n-\frac{s}{2}$, we have $l(n-\frac{s}{2},w) < n-\frac{3s}{2}$. Then l(n,w) < n-s and $l(n,w) - l(n-\frac{s}{2}) = \frac{s}{2}$. In $D_{s,n}$, when $n > \frac{3s}{2}$, we get

$$n \xrightarrow{n-s} s \xrightarrow{(\frac{n-1}{2})s} s$$
 and
 $n - \frac{s}{2} \xrightarrow{n-\frac{3s}{2}} s \xrightarrow{\frac{s}{2}n} s.$

When $n < \frac{3s}{2}$, we have

$$n \xrightarrow{n-s} s \xrightarrow{\left(\frac{n-1}{2}\right)^s} s \text{ and} \\ n - \frac{s}{2} \xrightarrow{n-\frac{s}{2}+n-s} s \xrightarrow{\left(\frac{s}{2}-1\right)n} s.$$

Note that $\frac{n-1}{2} \ge \frac{n-1}{s} \ge t$ and let $\frac{n-1}{2} = t + t'$. Then $(\frac{n-1}{2})s = p + t's$, where p = st. Hence

$$n \xrightarrow{l(n,w)} w \xrightarrow{p+t's} w \quad \text{and} \\ n - \frac{s}{2} \xrightarrow{l(n-\frac{s}{2},w)} w \xrightarrow{\frac{s}{2}n} w.$$

Therefore $k_{n,n-\frac{s}{2}}(D) \le l(n,w) + p + t's < k(n,s) + n - s.$

If $C_s \cap C_p = \emptyset$, for vertex $n - \frac{s}{2}$ we can find a vertex $w \in C_p$ such that $l(n-\frac{s}{2},w) \leq n-s-p$. Then $l(n,w) \leq n-s-p+\frac{s}{2}$ and $l(n,w)-l(n-\frac{s}{2},w) = \frac{s}{2}$. Since $\frac{n-1}{2} \geq \frac{n-1}{s} \geq t$, let $\frac{n-1}{2} \equiv t' \pmod{t}$. For a nonnegative integer h we have $\frac{n-1}{2} = th + t'$. If t' = 0, then $(\frac{n-1}{2})s = hts = hp$, and so

$$n \xrightarrow{l(n,w)} w \xrightarrow{hp} w \quad \text{and}$$
$$n - \frac{s}{2} \xrightarrow{l(n - \frac{s}{2}, w)} w \xrightarrow{\frac{s}{2}n} w$$

Therefore $k_{n,n-\frac{s}{2}}(D) \le hp + l(n,w) < k(n,s) + n - s.$

If $t' \neq 0$, t > t' > 0, we know that

$$\frac{s}{2}n - (\frac{n-1}{2})s = \frac{s}{2},$$

or equivalently

$$(th+t')s - \frac{s}{2}n = -\frac{s}{2}.$$

Adding (t - t')s on both sides, we get

$$hts + t's + (t - t')s - \frac{s}{2}n = -\frac{s}{2} + (t - t')s,$$

or

$$(h+1)ts - (\frac{s}{2}n + (t-t'-1)s) = \frac{s}{2}.$$

Therefore we have

$$n \xrightarrow{l(n,w)} w \xrightarrow{\frac{s}{2}n + (t-t'-1)s} w \text{ and} \\ n - \frac{s}{2} \xrightarrow{l(n-\frac{s}{2},w)} w \xrightarrow{(h+1)p} w.$$

Then $k_{n,n-\frac{s}{2}}(D) \leq \frac{s}{2}n + (t-t'-1)s + l(n,w) \leq \frac{s}{2}n + (t-t'-1)s + n - s - p = (\frac{n-1}{2})s + n - s - t's < k(n,s) + n - s$, as desired. \Box

Theorem 3.6 Let D be a primitive digraph of order n and girth s, where s is even. Then k(D) = K(n, s) if and only if $D = D_{s,n}$ and gcd(n, s) = 1.

3.3 The case s is odd

Lemma 3.7 Let D be a primitive digraph that contains $D_{s,n}$ as a subgraph, where gcd(n, s) = 1, s is odd and $s \ge 3$. If D contains a cycle of length p with $gcd(s, p) \le \frac{s}{3}$, then k(D) < K(n, s).

Proof. Case 1. gcd(s, p) = l, $l < \frac{s}{3}$. Then by Corollary 2.9 k(D) < k(n, s) + n - s.

Case 2. $gcd(s, p) = \frac{s}{3}$. If $C_s \cap C_p \neq \emptyset$, we are done by Corollary 2.9. If $C_s \cap C_p = \emptyset$, consider $D^{\frac{s}{3}}$. There are $\frac{s}{3}$ cycles of length 3 and $\frac{s}{3}$ cycles of length $\frac{3p}{s}$, let $p' = \frac{3p}{s}$. For $u, v \in V(D^{\frac{s}{3}})$, we have $l_{uv} \leq n-3$. Hence

$$k_{u,v}(D^{\frac{s}{3}}) \le (\frac{3-1}{2})p' + n - 3$$

$$= p' + n - 3.$$

Since $p \le n - s$ and $p' \le \frac{3n}{s} - 3$, we get

$$k_{u,v}(D) \le \frac{s}{3}(n+p'-3) \le \frac{ns}{3} + n - 2s < k(n,s) + n - s.$$

Next we consider a primitive digraph D that contains $D_{s,n}$ as a subgraph, where gcd(s,n) = 1 and s is odd, and where the digraph D also contains another cycle of length p with gcd(s,p) = s.

Lemma 3.8 Let D be a primitive digraph that contains $D_{s,n}$ as a subgraph, where gcd(s,n) = 1, s is odd and $s \ge 3$. Suppose that the digraph D also contains another cycle of length p with gcd(s,p) = s. If $C_s \cap C_p \neq \emptyset$, then k(D) < K(n,s).

Proof. Suppose that p = ts and that u is a vertex of $D_{s,n}$ such that $k_{nu}(D) = (\frac{s-1}{2})n + n - s$.

If $u \notin C_s$, then in the digraph $D_{s,n}$ we have

$$n \xrightarrow{n-s} s \xrightarrow{\left(\frac{s-1}{2}\right)n} s \text{ and}$$
$$u \xrightarrow{u-s} s \xrightarrow{ms} s,$$

where m is a positive integer such that $ms - (\frac{s-1}{2})n = n - u$.

If there is a vertex w such that $s + 1 \le w \le u$ and it belongs to the cycle C_p , then choose w as the double-cycle vertex of u and n. Then we have l(u, w) < u - s, l(n, w) < n - s and l(n, w) - l(u, w) = n - u. Also since ms > n > p and p = ts, then ms = p + t's for some nonnegative integer t'. Then

$$n \xrightarrow{l(n,w)} w \xrightarrow{(\frac{s-1}{2})n} w \text{ and}$$
$$u \xrightarrow{l(u,w)} w \xrightarrow{p+t's} w.$$
Thus $k_{n,u}(D) \leq (\frac{s-1}{2})n + l(n,w) < k(n,s) + n - s.$

Otherwise there is an arc from vertex j, $u < j \leq n$, to vertex i, $1 \leq i \leq s$. Then we can get from vertex n to a vertex i on the cycle C_s in less than n-s steps. Therefore $k_{n,u}(D) < k(n,s) + n - s$.

Next consider $u \in C_s$. If p = s, suppose that the cycle C_p is formed from s consecutive vertices as in Figure 3.

Fig. 3. $D_{s,n} \cup \{v \to v+s\}$

If v = u + 1, then l(n, w) < n - s and $l(u, w) = s \neq n - s$. Therefore $k_{n,u}(D) < k(n, s) + n - s$. If $v \neq u + 1$, then consider the subgraph $D_{p,n}$. In $D_{p,n}$, for some vertex v' we have $k_{v-1,v'}(D_{p,n}) = K(n, s)$. Since $v - 1 \neq u, n$, then $k_{n,u}(D_{p,n}) < k(n, s) + n - s$. Therefore $k_{n,u}(D) < k(n, s) + n - s$.

If the cycle C_p is not formed from s consecutive vertices, then by Lemma 2.6, there exists a cycle of length q such that $gcd(s,q) \leq \frac{s}{3}$. In that case, by Lemma 3.7, we have k(D) < k(n,s) + n - s.

If p > s, then take the first vertex w on cycle C_p from vertex n as the doublecycle vertex of u and n. Since $p \ge 2s$, $l(n, w) \le n - 2s$. Since l(u, n) < s, then l(u, w) < n - s.

In the digraph $D_{s,n}$, there is a vertex u', u < u' < n, such that d(u,n) = d(n,u') = n - u', $k_{n,u'}(D) = k(n,s) + n - s$ and

$$n \xrightarrow{n-s} s \xrightarrow{(\frac{s-1}{2})n} s$$
 and

$$u' \xrightarrow{u'-s} s \xrightarrow{ms} s,$$

where $ms - (\frac{s-1}{2})n = n - u'$. Since ms > n > p, then ms = p + ts for some nonnegative integer t. In the digraph D we have

$$n \xrightarrow{l(n,w)} w \xrightarrow{p+ts} w \quad \text{and}$$
$$u \xrightarrow{l(u,w)} w \xrightarrow{\left(\frac{s-1}{2}\right)n} w.$$

where l(u, w) - l(n, w) = n - u'. Therefore $k_{n,u}(D) \leq (\frac{s-1}{2})n + l(u, w) < (\frac{s-1}{2})n + n - s$. \Box

Lemma 3.9 Let D be a primitive digraph that contains $D_{s,n}$ as a subgraph, suppose that s is odd, $s \ge 3$, and that there is another cycle of length p such that $C_s \cap C_p = \emptyset$ and gcd(s, p) = s. If the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle, then k(D) < K(n, s).

Proof. Since the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle, then there exists an arc from vertex i to vertex j, where $s + 1 \le i < j \le n$ and j > i + 1. Then for any two vertices $u, v \in V(D)$, we can get to vertices $s_1, s_2 \in C_s$ in less than n - s - 1 steps. Therefore $k(D) \le k(n, s) + n - s - 1$. \Box

The only remaining case is that D is a digraph constructed from $D_{s,n}$ by adding an arc from vertex u to vertex u + ms - 1, where s is odd, $s \ge 3$, s < u < n - ms + 1 and m is a positive integer such that $1 \le m \le \frac{n-u+1}{s}$.

Recall that in (3) we define the positive integer r as follows

$$r \equiv \begin{cases} \frac{n}{2} \pmod{s}, & \text{if } s \text{ is odd, } n \text{ is even,} \\ \frac{n-s}{2} \pmod{s}, \text{ if both } s \text{ and } n \text{ are odd }. \end{cases}$$

In both cases n - 2r can be divided by s. Let

$$h = \frac{n - 2r}{s}.$$
(5)

Note that in $D_{s,n}$, h+1 is the number of pairs of vertices that attain the upper bound K(n, s).

Lemma 3.10 Let D be a digraph constructed from $D_{s,n}$, $s \ge 3$, by adding an arc from vertex u to vertex u + ms - 1, where s < u < n - ms + 1. Then $k_{n,n-r-ts}(D) = K(n,s)$ if and only if u = n - r - ts + 1 and $\frac{n+h}{2} - t - 1 \equiv 0 \pmod{n}$.

Proof. For the digraph $D = D_{s,n}$, the upper bound K(n, s) on the scrambling index is attained by the pair of vertices n and n - r - ts, where $0 \le t \le \frac{n-2r}{s}$. We only consider those pairs of vertices.

Suppose that u = n - r - ts + 1 for some t. From the digraph we know that

$$n \xrightarrow{r+ts-ms} n-r-ts+ms$$
 and
 $n-r-ts \xrightarrow{n-ms} n-r-ts+ms$.

and n - ms - (r + ts - ms) = n - r - ts = r + (h - t)s, since n = 2r + hs. When n is even,

$$(\frac{n+h}{2}-t)s - (\frac{s-1}{2})n = r + (h-t)s.$$

Suppose m - 1 - q is the smallest nonnegative integer such that $(\frac{n+h}{2} - t + m - 1 - q)s$ can be divided by p = ms, where $0 \le q \le m - 1$. Then

$$n \xrightarrow{r+ts-ms} n-r-ts+ms \xrightarrow{(\frac{n+h}{2}-t+m-1-q)s} n-r-ts+ms$$

and

$$n - r - ts \xrightarrow{n - ms} n - r - ts + ms \xrightarrow{\left(\frac{s - 1}{2}\right)n + (m - 1 - q)s} n - r - ts + ms.$$

Therefore $k_{n,n-r-ts}(D) = (\frac{s-1}{2})n + n - s - qs$. Since $(\frac{n+h}{2} - t + m - 1 - q)s$ can be divided by p = ms, then

$$\frac{n+h}{2} - t - 1 \equiv q(\bmod m).$$

Therefore if $\frac{n+h}{2} - t - 1 \equiv 0 \pmod{m}$, we have

$$k_{n,n-r-ts}(D) = K(n,s).$$

If $\frac{n+h}{2} - t - 1 \not\equiv 0 \pmod{m}$, then $k_{n,n-r-ts} < K(n,s)$.

Next we consider all other pairs of vertices n and u such that $k_{n,u}(D_{s,n}) = K(n,s)$.

If $u \neq n - r - ts + 1$, let v = u + ms - 1. Consider the following three cases.

Case 1. n - r - ts + 1 < u. We have

$$n \xrightarrow{n-v} v$$
 and

$$n - r - ts \xrightarrow{n - r - ts + n - v} v.$$

In addition we have n - r - ts + (n - v) - (n - v) = n - r - ts = r + (h - t)s. Then we obtain

$$n \xrightarrow{n-v} v \xrightarrow{(\frac{n+h}{2} - t + m - 1 - q)s} v \text{ and}$$
$$n - r - ts \xrightarrow{n-r - ts + n - v} v \xrightarrow{(\frac{s-1}{2})n + (m - 1 - q)s} v.$$

Therefore $k_{n,n-r-ts}(D) = n - r - ts + (n - v) + (\frac{s-1}{2})n + (m - 1 - q)s < n - ms + (\frac{s-1}{2})n + (m - 1 - q)s = (\frac{s-1}{2})n + n - s - qs \le k(n,s) + n - s.$

Case 2. n - r - ts > v. We have

$$n \xrightarrow{n-v} v$$
 and
 $n-r-ts \xrightarrow{n-r-ts-v} v,$

and n - v - (n - r - ts - v) = r + ts. Also

$$(\frac{n-h}{2}+t)s - (\frac{s-1}{2})n = r + ts.$$

Then

$$n \xrightarrow{n-v} v \xrightarrow{\left(\frac{s-1}{2}\right)n + (m-1-q)s} v \text{ and}$$
$$n-r-ts \xrightarrow{n-r-ts-v} v \xrightarrow{\left(\frac{n-h}{2} - t + m - 1 - q\right)s} v.$$

Therefore $k_{n,n-r-ts}(D) = n - v + (\frac{s-1}{2})n + (m-1-q)s < n - ms + (\frac{s-1}{2})n + (m-1-q)s = (\frac{s-1}{2})n + n - s - qs \le k(n,s) + n - s.$

Case 3. $u \leq n - r - ts \leq v$. Choose v as the double-cycle vertex of n and n - r - ts. Then

$$n \xrightarrow{n-v} v \text{ and} n-r-ts \xrightarrow{n-r-ts-u+1} v.$$

If n-v > n-r-ts-u+1, since n-v-(n-r-ts-u+1) = r+ts-(v-u+1) = r+(t-m)s and v > ms, then

$$k_{n,n-r-ts}(D) \le \left(\frac{s-1}{2}\right)n + n - v + (m-1-q)s$$

= $\left(\frac{s-1}{2}\right)n + n - s - v + ms - qs$
< $k(n,s) + n - s.$

If n-v < n-r-ts-u+1, then n-r-ts-u+1-(n-v) = -r-ts+v-u+1 = -r-ts+ms = s-r+(m-1-t)s. Then

$$(\frac{s-1}{2})n - (\lfloor \frac{n}{2} \rfloor - t')s = s - r + (m-1-t)s$$

for some integer t'. Therefore

$$k_{n,n-r-ts}(D) \le \left(\frac{s-1}{2}\right)n + n - v + (m-1-q)s$$
$$= \left(\frac{s-1}{2}\right)n + n - s - v + ms - qs < k(n,s) + n - s. \quad \Box$$

Lemma 3.11 Let D be a digraph constructed from $D_{s,n}$ $(s \ge 3)$ by adding arcs from vertex u_i to vertex $u_i + m_i s - 1$, where $u_i > s$, $m_i \ge 1$, i = 1, 2 and $u_1 \ne u_2$. Then k(D) < K(n, s).

Proof. Let D_i , i = 1, 2, be the subgraph of D that contains $D_{s,n}$ and the cycle of length $m_i s$, then by Lemma 3.10, we know that there is at most one pair of vertices, vertex n and vertex $u_i - 1$, such that $k_{n,u_i-1}(D_i) = K(n, s)$. Since $u_1 \neq u_2$, In the digraph D, we have $k_{n,u_i-1}(D) < K(n, s)$. \Box

Concluding the above results, we have the following theorem.

Theorem 3.12 Let D be a primitive digraph of order n and girth s, where s is odd and $s \geq 3$. Then k(D) = K(n, s) if and only if gcd(n, s) = 1 and $D = D_{s,n}$ or, $D = D_{s,n} \cup \{n - r - ts + 1 \rightarrow n - r - ts + ms\}$ for some $m \in \mathbb{N}$ and some $t \in \{1, 2, \dots, \frac{n-2r}{s} - 1\}$ such that $\frac{n+h}{2} - t - 1 \equiv 0 \pmod{n}$, where r and h are as in (3) and (5).

References

- [1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, preprint.
- [2] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications 39, Cambridge University Press, Cambridge, 1991.
- D.J. Hartfiel, U.G. Rothblum, Convergence of inhomogeneous products of matrices and coefficients of ergodicity, *Linear Algebra Appl.* 277 (1998), 1–9.
- M. Kutz, The Angel Problem, Positional Games, and Digraph Roots, Ph.D. thesis, Freie Universitat Berlin, 2004.
- [5] U.G. Rothblum, C.P. Tan, Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices, *Linear Algebra Appl.* 66 (1985), 45–86.
- [6] E. Seneta, Coefficients of ergodicity: structure and applications, Adv. Appl. Prob. 11 (1979), 576–590.

- [7] E. Seneta, Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981.
- [8] C.P. Tan, Coefficients of ergodicity with respect to vector norms, J. Appl. Prob. 20 (1983), 277–287.