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Abstract

The scrambling index of a primitive digraph D is the smallest positive integer k
such that for every pair of vertices v and v, there is a vertex w such that we can
get to w from uw and v in D by directed walks of length k; it is denoted by k(D).
In [1] we gave the upper bound on k(D) in terms of the order and the girth of a
primitive digraph D. In this paper, we characterize all the primitive digraphs such
that the scrambling index is equal to the upper bound.
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1 Introduction

There are numerous results giving the upper bounds on the second largest
modulus of eigenvalues of primitive stochastic matrices (see [3,5-8]). In [1],
by using Seneta’s [6] definition of coefficients of ergodicity, we have provided
an attainable upper bound on the second largest modulus of eigenvalues of a
primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u, v and w of a digraph D, if (u, w), (v,w) € E(D), then vertex w
is called a common out-neighbour of vertices u and v. The scrambling index of
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a primitive digraph is the smallest positive integer k such that for every pair

of vertices u and v, there exists a vertex w such that u £ wand v 5 w in D.
The scrambling index of D will be denoted by k(D).

The main result in [1] is the following.
Theorem 1.1 [1] D be a primitive digraph with n vertices and girth s. Then
k(D) < K(n,s). (1)

FEquality holds if D = Dy, and gcd(n,s) = 1. Where Dy, is a digraph as in
Figure 1, K(n,s) = k(n,s) +n — s and

(551 )n, when s is odd,
k(n,s) =
(25%)s, when s is even.
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Fig. 1. Dy,

In this paper, we characterize all the primitive digraphs D such that k(D) =
K(n,s).

2 Some results on scrambling index

For terminology and notation used here we follow [1] and [2].

Let D = (V, E) denote a digraph (directed graph) with vertex set V = V (D),
arc set £/ = E(D) and order n. Loops are permitted but multiple arcs are not.
A u — v walk in a digraph D is a sequence of vertices u, uy, ..., us,v € V(D)
and a sequence of arcs (u, uy), (u1,us), ..., (u,v) € E(D), where the vertices



and arcs are not necessarily distinct. A closed walk is a u — v walk where
u=1v.A cycleis a closed u — v walk with distinct vertices except for u = v.
The notation u —— v is used to indicate that there is a u — v walk of length
k. The distance from vertex u to vertex v in D, is the length of a shortest walk
from u to v, and denoted by d(u,v). A p-cycle is a cycle of length p, denoted
C). If the digraph D has at least one cycle, the length of a shortest cycle in D
is called the girth of D, denoted s(D). The number of arcs entering (leaving) a
vertex u is called the in-degree (out-degree) of u, denoted deg™(u) (deg™(u)).

A digraph D is called primitive if for some positive integer t there is a walk
of length exactly ¢ from each vertex u to each vertex v. If D is primitive, the
smallest such t is called the ezponent of D, denoted by exp(D). A digraph
D is primitive if and only if its strongly connected and the greatest common
divisor of all cycle lengths in D is equal to one [2]. For a positive integer r,
we define D" to be the digraph with the same vertex set as D and arc (u,v)
if and only if u = v in D. Consequently, the scrambling index is the smallest
positive integer k such that each pair of vertices has a common out-neighbour
in D¥.

For a vertices u,v € V(D) (u # v), we define

kuo(D) = min{k : v wand v % w, for some w € V(D)}.

Then
k(D) = kuo(D)}.
(D) = max {kuo(D)}
Lemma 2.1 [1] Let p and s be positive integers such that ged(p,s) =1 and
p>s > 2. Then foreacht, 1 <t <max{s—1, |p/2]}, the equation xp+ys =t
has a unique integral solution (z,y) with |z| < |s/2] and |y| < |p/2].

Let D be a primitive digraph, and let s and p be two different cycle lengths
in D and ged(s,p) = 1, where 2 < s < p < n. For u,v € V(D), we can find
a vertex w € V(D) such that there are directed walks from u to w and v to
w such that both walks meet cycles of lengths s and p. Denote the lengths of
these directed walks by I(u,w) and [(v,w). We say that w is a double-cycle
vertex of u and v, and we let

Ly = max{l(u,w),l(v,w)}.

Lemma 2.2 [1] Let D be a primitive digraph, and let s and p be two different
cycles lengths in D. Suppose that 2 < s < p <n and ged(s,p) = 1. Then

kup(D) < min{|y|s, |z|p} + luw, (2)

where (x,y) is the integer solution of the equation xp+ ys = r with minimum
absolute value and where |l(u,w) — (v, w)| = r(mods).



Corollary 2.3 [1] Let D be a primitive digraph of order n with a Hamilton
cycle, and let the girth of D be s, where 1 < s <n —1 and ged(s,n) = 1. If
k(D) = K(n,s), then D contains a subgraph isomorphic to Dy, .

Lemma 2.4 [1] Let D = Ds,,. Then for all vertices u and v in D, 1, ,(D) <
max{n — s, | 5]}

Let r be the positive integer that is defined as follows

5(mods), if sis odd and n is even, 3)
“5%(mods), if both s and n are odd .

ﬁ
Il

Corollary 2.5 [1] Suppose that ged(s,n) = 1, and s > 2. Then for u,v €
V(Dsy), without loss of generality take u > v, ky(Dsn) = K(n,s) if and
only if u=n and

(1) v=mn—1r—ts for somet € {0,1,2,--- , 22"} when s is odd.

s

(2) v =mn— 35, when s is even.
Lemma 2.6 [1] Let D be a primitive digraph with a Hamilton cycle and let
the girth of D be s, where ged(n,s) = 1, 2 < s < n. Then either the cycle
Cs is formed from s consecutive vertices on the Hamilton cycle or there is
another cycle of length p such that ged(s,p) = q, where ¢ < 5 when s is even
and q < § when s 1s odd.

Lemma 2.7 [1] Let D be a primitive digraph with n vertices, and suppose
that s is the girth of D with s > 2. If there is another cycle of length p,
s < p <n, such that ged(s,p) =1, then

k(D) < K(n,s). (4)
Furthermore, if p < n, then k(D) < K(n,s).

Let D be a primitive digraph and L(D) = {s,a, - ,a,} be the set of distinct
cycle lengths of D, where s < a; < --- < a,.

Lemma 2.8 [1] Let D be a primitive digraph with n vertices, and s be the
girth of D with s > 2. Let L(D) = {s,ay,--- ,a,}. If ged(s,a;) # 1 for each
1=1,2,---,r, Then

k(D) < K(n,s).

Corollary 2.9 [1] Let D be a primitive digraph of order n, and s be the
girth of D with s > 2. If there is a cycle of length p, s < p < n, such that



ged(s,p) < s/3 or ged(s,p) < s/3 and CsNC, # 0, then

k(D) < K(n,s).

3 Characterization of primitive digraphs with k(D) = K(n,s)

3.1 Properties of a primitive digraph D with k(D) = K(n, s)

Let D be a primitive digraph with n vertices, s be the girth of D, and k(D) =
K(n,s). Then by Lemma 2.7 and Lemma 2.8 there is a cycle of length p,
s < p < n, such that ged(s,p) = 1 and p = n. Since D contains a Hamilton
cycle, then by Corollary 2.3 D contains Dy, as a subgraph. From the above,
we conclude the following.

Theorem 3.1 Let D be a primitive digraph with n vertices, let the girth of D
be s > 2, and suppose that k(D) = K(n,s). Then

(1) There is no cycle of length p, s < p < n, such that ged(s,p) = 1.
(2) D contains Dy, as a subgraph and ged(s,n) = 1.
In the following we only consider primitive digraphs that contain Dj, as a

subgraph, and we label the digraph D as in Figure 1. For D, ,,, by Corollary 2.5
we know all the pairs of vertices u,v € V(Ds,,) such that k,,(Dsn) = K(n, s).

Proposition 3.2 [4] The t-th power of a cycle of length p is the disjoint union
of ged(p, t) cycles of length p/ ged(p,t).

Definition 3.3 If the digraph D contains at least two different cycles, then
the distance between two different cycles in D s defined as follows

d(C",C") = min{d(u,v)|u € C', ve C"},
where C' and C" are different cycles in D.

Lemma 3.4 Let D = Ds,,, ged(n, s) = 1, and let t be a positive integer such
that t|s. Then

(i) The digraph D' contains a Hamilton cycle and t disjoint cycles of length

s/t.

(1) Every cycle of length s/t is formed from s/t consecutive vertices on the
Hamilton cycle in Dt.



Denote the t cycles of length s/t in D' by Hy, Ho,--- , Hy in order as in Figure
2, and we say that H; and Hi1)(mod ), where t = 1,2,--- | t, are neighbour
cycles in Dt. We also have the following:

(i1i) The distance between two neighbour cycles of length s/t in D' is either
(2] or [*2] + 1.

t

Proof: (i) Since ged(s,n) = 1, then ged(t,n) = 1. Therefore by Lemma 3.2,
we know that D' contains a Hamilton cycle and ¢ disjoint cycles of length s/t.

(4i) For vertices i, 1 <4 <t, we have i +pt € C;, 0 < p < 7 —1. Also we have

z'i>z'+ti>z'+2ti>---i>z'+(§—1)ti>z'.

Therefore every cycle of length s/t is formed from s/t consecutive vertices on
the Hamilton cycle in D",

H,

H,

Fig. 2. D?

(731) There are two different types of directed paths of length ¢ in D;,,. One
type contains the arc 1 — s, and the other type does not contain the arc
1 — s. Observing D!, we know that every arc in the Hamilton cycle in D!
corresponds to a directed path of length ¢ in D, that does not contain the
arc 1 — s, and all the other arcs, we call them shortly s-arcs, correspond to
directed paths of length ¢ in Dj,, that contain the arc 1 — s. Also notice that
if u; — ug is an s-arc, then 1 <wuy <tand s — (t —1) <wup < s.

Let d(H;, H(i11)(mod t)) = ¢ for some i, then there exist a vertex v € H; and
a vertex v € H;11)(modt) such that d(u,v) = ¢ in D'. From the digraph D,
we know that deg®(u) = 2 and deg™ (v) = 2. Hence u is the starting vertex of
an s — arc and v is the ending vertex of an s — arc. Therefore 1 < u <t and
s—(t—1)<v<s.



Since in D!, we have u 4, v, then in D,,, we have u 2 4 and this directed
walk does not go through the arc 1 — s.

In Dy, the directed path from vertex u to vertex v without going through

the arc 1 — s is of the form u -2 1 i>nn;>ssgv,where ly,lo <t—1. Thus

n—s+1<qg<n—s+1+(({t—1)+(t—1), and
n—s+1<qg<n—s+(t—1)+t.

Hence

e ees

Therefore the distance between any two neighbour cycles of length s/t is [%1
or 2] +1. O

3.2 The case s is even

Lemma 3.5 Let D be a primitive digraph that contains Dy, as a subgraph,
where s is the girth of D, ged(n,s) =1 and s is even. If D contains another
cycle of length p, where s < p <n. Then k(D) < K(n,s).

Proof. Let C, be the cycle of length p in the primitive digraph D.

S

Case 1: Suppose ged(s,p) = r, with 7 < 3. Then by Corollary 2.9 we have
k(D) < K(n,s).

Case 2: Suppose ged(s,p) = 5. If Cs, N C, # ), we are also done by Corollary

2.9. If C;N C, = (), consider D3. There are 3 cycles of length 3 and £ cycles
of length 3?7’. Let p' = 3?7’. For u,v € V(D3), l,, <n — 3. Hence

Since p < n — s, p’g?’?"—?), we have

kuw(D) < (n+p’—3)§§—l—n—2$<k‘(n,s)—l—n—s.

Wl ®»

Case 3. ged(s,p) = 5. Since s is even, then n is odd. We know there is only
one pair of vertices u,v € V(Ds,,) such that k,,(Ds,) = k(n,s) +n — s,



and they are vertex n and n — 3. Consider the digraph D3. Tt is easy to see
that vertices n and n — 3 are consecutive vertices on the Hamilton cycle in
the digraph D2, and there are 5 cycles of length 2 and 3 cycles of length p/
respectively, where p/ = 2?” and p' is odd (since p = 5p'). Let p’ = 2t + 1 for
some nonnegative integer ¢. For vertex n — 3, we can find a vertex w such that
the directed walk from vertex n — £ to vertex w is a path through both cycles
of length 2 and p', and I[(n — 5,w) < n —p'. Since in D3, we have n = n — 5
Then [(n,w) —I(n — 3, w) = 1 and I(n,w) < n — p' + 1. Therefore in the
digraph D3, we have

I(n,w)+2t
n - and
§ U(n—5%w)+p'
n—— — w

Thus l{:nm_%(D%) < n; and hence

2

knn_s (D) < (%)n < k(n,s)+n—s.

Case 4. ged(s,p) = s. Suppose p = ts, where 1 <t < 2.

If t =1, then p = s. If the cycle C, is formed from s vertices that are not
consecutive on the Hamilton cycle, then by Lemma 2.6, there exists another
cycle of length ¢ such that ged(s,q) < 5. For this case, from the previous
results we know that k,,,—s (D) < k(n,s) +n — s.

If the cycle C,, is formed by joining vertex i to vertex (i+s—1)(modn), where
it # 1, then consider the subgraph D, ,. Note that since i # 1, although p = s,
but C, # C,. Therefore D, ,, # Ds,,. In D, ,,, the upper bound is attained for
only one pair of vertices, and they are vertex i—1 and vertex (i+s—2)( mod n).
Since i — 1 # n, we have kyn—s(Dpn) < K(n, s). Therefore in the digraph D,
we also have

knn—g (D) < k(n,s) +n—s.

Now suppose that ¢ > 1, then s < 5. If Cy; N C, # 0, there is at least one

vertex w belonging to the cycle €}, such that s+1 <w < n— 3 —1. Otherwise
the cycle €, only has to contain vertices between vertex s to vertex 1 and n

to n — 5 + 1. But there are only s + 5 such vertices and s + 5 < p. Hence

for vertices n — £, we have I(n — £,w) < n — 2. Then /(n,w) < n — s and

27
l(n,w) = l(n— %) =%.In D,,, when n > 32, we get

s
2

n—s (nTil)s
n—s — s and



When n < 3 , we have

n—1
n—s 2 )s
n—s — s and
S n—5+4n—s 5—1n
n— 5 -~ 5§ —

Note that "—51
p = st. Hence

2l =t 4+t Then (*5*)s = p + t's, where

I(n,w) p+t's
n — w— w and

S l(n—3,w) 5n
n—= -5 w-2>uw.

2
Therefore &y n—s (D) < l(n,w) +p+t's < k(n,s) +n—s.

If C;NC, =0, for vertex n — 5 we can find a vertex w € C, such that
I(n—35,w) < n s—p. Then [(n,w) < n—s—p+35and l(n,w)—Il(n—35,w) = 5.
Since "21 > 2= > ¢ let 2% = ¢/(modt). For a nonnegative integer h we have
el —th+t. Ift’—O then( n-1)s = hts = hp, and so

I(n,w) hp
n — w—w and

S l(n—3,w) N
n-g —= w25 w.

Therefore &y, n—s (D) < hp + l(n,w) < k(n,s) +n — s.

Ift/#0,t>1t >0, we know that

or equivalently
s
(th+t")s — 3= "5

Adding (t — t')s on both sides, we get
/ / S S /
hts—l—ts—l—(t—t)s—§n: —E—I—(t—t)s,

(h+1)ts—(§n+(t—t'—1)s):—

Therefore we have
I(n,w) snt(t—t'—1)s
— w —

w and
$ l(n—35,w) (h+1)p
n — 5 -2 —

Then kyp—s (D) < sn+(t—t'=1)s+l(n,w) < jn+(t—t'—1)s+n—s—p=
(nT_l)5+n —s—t's<k(n,s)+n—s, as desired. O

Theorem 3.6 Let D be a primitive digraph of order n and girth s, where s
is even. Then k(D) = K(n,s) if and only if D = Dy, and ged(n, s) = 1.



3.3 The case s is odd

Lemma 3.7 Let D be a primitive digraph that contains Dy, as a subgraph,
where ged(n, s) =1, s is odd and s > 3. If D contains a cycle of length p with
ged(s,p) < 3, then k(D) < K(n, s).

Proof. Case 1. gcd(s,p) = [, | < 5. Then by Corollary 2.9 k(D) < k(n, s) +
n—s.

Case 2. ged(s,p) = 5. If C;NC, # (), we are done by Corollary 2.9. If CsNC), =
0, consider D3. There are 2 cycles of length 3 and £ cycles of length 3?1”, let
p = 3?7’. For u,v € V(Dg), we have [l,, < n — 3. Hence

Sincepgn—sandp’g3?"—3,Weget

kuv(D) < (n+p’—3)§§—I—n—2$<k‘(n,s)—l—n—s. O

[GCNV

Next we consider a primitive digraph D that contains D,, as a subgraph,
where ged(s,n) = 1 and s is odd, and where the digraph D also contains
another cycle of length p with ged(s, p) = s.

Lemma 3.8 Let D be a primitive digraph that contains Dy, as a subgraph,
where ged(s,n) = 1, s is odd and s > 3. Suppose that the digraph D also
contains another cycle of length p with ged(s,p) = s. If CsN C, # 0, then
k(D) < K(n,s).

Proof. Suppose that p = ts and that u is a vertex of Dy, such that k(D) =
(55 )n+n —s.

If u ¢ Cs, then in the digraph Ds, we have

n—s (Sgl)n
n—s — s and

u =S5 % s,
where m is a positive integer such that ms — (5*)n =n — u.
If there is a vertex w such that s +1 < w < u and it belongs to the cycle C),
then choose w as the double-cycle vertex of u and n. Then we have [(u, w) <

u—3s, l(n,w) <n—sand l(n,w) —(u,w) =n — u. Also since ms >n >p
and p = ts, then ms = p + t's for some nonnegative integer ¢'. Then

10



I(n,w) (Sgl)n
— =5 w and

I(u,w) p+t's
U — w —

Thus knu(D) < (555)n +l(n,w) < k(n,s) +n —s.

Otherwise there is an arc from vertex j , u < j < n, to vertex i, 1 <1 < s.
Then we can get from vertex n to a vertex ¢ on the cycle Cy in less than n — s
steps. Therefore k;,.,(D) < k(n,s) +n — s.

Next consider u € Cs. If p = s, suppose that the cycle C), is formed from s
consecutive vertices as in Figure 3.

V+sS

Fig. 3. Ds, U{v — v + s}

If v = u+1, then [(n,w) < n — s and l(u,w) = s # n — s. Therefore
knw(D) < k(n,s) +n —s. If v # u + 1, then consider the subgraph D, ,,. In
D, ., for some vertex v' we have ky_1,.,(Dpn) = K(n,s). Since v — 1 # u,n,
then kyu(Dpn) < k(n,s) +mn — s. Therefore k(D) < k(n,s) +n —s.

If the cycle C), is not formed from s consecutive vertices, then by Lemma 2.6,
there exists a cycle of length ¢ such that ged(s, ¢) < 5. In that case, by Lemma
3.7, we have k(D) < k(n,s) +n — s.

If p > s, then take the first vertex w on cycle C, from vertex n as the double-
cycle vertex of u and n. Since p > 2s, I(n,w) < n — 2s. Since l(u,n) < s, then
l(u,w) <n—s.

In the digraph Dj,, there is a vertex v/, u < «' < n, such that d(u,n) =
din,u')=n—1u", kyw(D) =k(n,s)+n—s and
s—1

n—s (g)n
— s — s and

11



; u —s ms
u = s—s,
where ms — (%)n =n —u'. Since ms > n > p, then ms = p + ts for some
nonnegative integer ¢. In the digraph D we have

I(n,w) ptts
— W —

n and

1(u,w) (Sgl)n

% 5
where [(u,w) — I(n,w) = n — u'. Therefore k, (D) < (555)n + l(u,w) <
(5 )n+n—s. 0

Lemma 3.9 Let D be a primitive digraph that contains Dy, as a subgraph,
suppose that s is odd, s > 3, and that there is another cycle of length p such
that CsNCy, =0 and ged(s, p) = s. If the cycle of length p is not formed from
p consecutive vertices on the Hamilton cycle, then k(D) < K(n, s).

Proof. Since the cycle of length p is not formed from p consecutive vertices on
the Hamilton cycle, then there exists an arc from vertex ¢ to vertex j, where
s+1<i<j<mnandj>i+ 1 Then for any two vertices u,v € V (D),
we can get to vertices si,s9 € (s in less than n — s — 1 steps. Therefore
k(D) <k(n,s)+n—s—1.0

The only remaining case is that D is a digraph constructed from D,, by
adding an arc from vertex u to vertex u + ms — 1, where s is odd, s > 3,
s<u<n—ms+1and m is a positive integer such that 1 < m < %

Recall that in (3) we define the positive integer r as follows

(mods), if sis odd, n is even,

ﬁ
Il

n
2
n

7> (mods), if both s and n are odd .

In both cases n — 2r can be divided by s. Let

h:n—2r‘ (5)

S

Note that in D, ,,, h+1 is the number of pairs of vertices that attain the upper
bound K(n, s).

Lemma 3.10 Let D be a digraph constructed from Ds,,, s > 3, by adding an
arc from vertex u to vertex u + ms — 1, where s < u < n —ms+ 1. Then
knn—r—ts(D) = K(n,s) if and only ifu =n —r —ts+1 and ";’—h —t—1=
0(modm).

12



Proof. For the digraph D = D;,, the upper bound K (n, s) on the scrambling
index is attained by the pair of vertices n and n —r —ts, where 0 <t < "_Tzr
We only consider those pairs of vertices.

Suppose that u =n —r —ts+ 1 for some ¢t. From the digraph we know that

T —r —ts+ms  and
n—r—ts % n—r—ts+ms,

and n —ms— (r+ts—ms)=n—r—ts=r+ (h—1t)s, since n = 2r + hs.

When n is even,

n—l—h_t)s_(s—l

(

yn=r+(h—1t)s.

Suppose m — 1 — ¢ is the smallest nonnegative integer such that (% —t+
m — 1 — q)s can be divided by p = ms, where 0 < ¢ < m — 1. Then

(# —t+m—1—q)s

r+ts—ms
— n—r—ts+ms — n—r—ts+ms
and
s—1
n—ms ( )nt+(m—1—q)s
n—r—ts —n—r—ts+ms - — n—r—ts+ms.

Therefore knpnr—ts(D) = (551)n+n—s — gs.

n+h

Since (*3* —t+m — 1 — ¢)s can be divided by p = ms, then

n+h

—t—1=g(modm).

Therefore if %" — ¢ — 1 = 0(modm), we have
knn—r—ts(D) = K(n,s).
If % —t—1 §é O(mOdm)> then kn,n—r—ts < K(TL, S).

Next we consider all other pairs of vertices n and u such that k, ,(Ds,) =
K(n,s).

fu#n—r—ts+1,let v=u+ms— 1. Consider the following three cases.
Case 1.n —r —ts+ 1 < u. We have

n—uv

n v and

13



n—r—ts+n—v
n—r—ts —

In addition we have n —r —ts+ (n—v) —(n—v) =n—r—ts=r+ (h—1t)s.
Then we obtain

n—uv (”g—h—t—i-m—l—q)s
v —

n — v and

n—r—ts+n—uv (S%l)""‘(m—l—Q)s
n—r—ts  — v —

Therefore kyp—rys(D) =n—1r—ts+ (n—v)+ (5 )n+ (m—1—¢q)s <
n—ms+(F)n+(m—1-q)s= (35 )n+n—s—qs <k(n,s)+n—s.

Case 2. n —r —ts > v. We have

n—uv

n v and

n—r—ts—uv
n—r—ts — v,

andn—v—(n—r—ts—v)=r+ts. Also
n—nh s—1

+1t)s — (?)n =r+ts.

(

Then

n—v  (5FE)nt(m—1—q)s
n— v — v and

n—r—ts—uv (ng;h—t‘f‘m—l—Q)s
n—r—ts — v — V.

Therefore kyp—r—is(D) =n—v+ (53)n+ (m—1—¢q)s <n—ms+ (55 )n+
(m—1-—q)s=(F)n+n—s—qs<k(n,s)+n—s.

Case 3. u < n—1r —ts < v. Choose v as the double-cycle vertex of n and
n —r —ts. Then
n ™% v and

n—r—ts—u+1
n—r—ts —

Ifn—v>n—r—ts—u+1,sincen—v—(n—r—ts—u+1) =r+ts—(v—u+1) =
r+ (t —m)s and v > ms, then

s—1

kn,n—r—ts(D) S ( 2
s—1

<k(n,s)+n—s.

In+n—v+(m—1-gq)s

Jn+n—s—v+ms—gqs

Ifn—v<n—r—ts—u+1,thenn—r—ts—u+1—(n—v)= —r—tstv—u+1=

—r—ts+ms=s—r+(m—1—t)s. Then

s—1
2

(

)n—(LgJ—t’)s:s—r—l—(m—l—t)s
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for some integer t'. Therefore

s—1

kn,n—r—ts (D) S ( 2

s—1
2

In+n—v+(m—1-gq)s
= (
Lemma 3.11 Let D be a digraph constructed from Ds, (s > 3) by adding

arcs from vertex u; to vertex u; +m;s — 1, where u; > s, m; > 1,i=1,2 and
uy # ug. Then k(D) < K(n,s).

n+n—s—v+ms—qs<k(n,s)+n—s. 0O

Proof. Let D;, @ = 1, 2, be the subgraph of D that contains D;,, and the cycle
of length m;s, then by Lemma 3.10, we know that there is at most one pair
of vertices, vertex n and vertex u; — 1, such that k,,,_1(D;) = K(n,s). Since
uy # ug, In the digraph D, we have ky,.,—1(D) < K(n,s). O

Concluding the above results, we have the following theorem.

Theorem 3.12 Let D be a primitive digraph of order n and girth s, where
s is odd and s > 3. Then k(D) = K(n,s) if and only if gcd(n,s) = 1 and
D =D, or, D=Ds;,,U{n—r—ts+1—n—r—ts+ms} for somem € N
and some t € {1,2,--- , =22 — 1} such that "t* —t — 1 = 0(modm), where r
and h are as in (3) and (5).
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