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Inspired by the ability of Markov chains to model complex dynamics and handle large volumes of data in
the successful experience of Google’s PageRank algorithm, a similar approach is proposed here to model road
network dynamics. The core of the Markov chain is the transition matrix which can be completely constructed
by easily collecting traffic data. The proposed model is validated by checking the same results through the use of
the popular mobility simulator SUMO. Markov chain theory and spectral analysis of the transition matrix are
shown to reveal non-evident properties of the underlying road network and to correctly predict consequences
of road network modifications. Preliminary results of possible applications of interest are shown and simple
practical examples are provided throughout the paper to clarify and support the theoretical expectations.
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1 Introduction

Intelligent traffic management is viewed as essential in reducing both congestion and harmful
emissions within city limits (Bart and Boriboonsomsin 2009). This is recognised by both
regulatory and federal authorities, and by industry; see the IBM smart city initiative (Dirks et
al. 2010) and Cisco’s smart and connected communities initiative (Villa and Mitchell 2009). A
key enabling technology in developing traffic management strategies are accurate traffic models
that can be easily used for both prediction and control. A major objective in developing such
models is to allow the development of smart traffic management systems that are proactive in
predicting traffic flow and facilitate taking pre-emptive measures to avoid incidents (traffic build
up, pollution peaks etc.) rather than reacting to traffic situations. Given this basic requirement,
and given the trend in the automotive industry to instrument vehicles and infrastructure, a
key feature of such models is that they should not only accurately model traffic flows and road
dynamics, but also that they should be constructed from real data obtained directly from the
road network that is obtained in near real-time.

Our contribution in this paper is to propose a new paradigm for modelling road network
dynamics. The ability to use cars as sensors to harvest information in real time about the
road network offers the possibility to deploy new tools to both model and engineer road
networks. One such tool is the Markov chain, and here we propose to employ Markov chains to
model congestion and emissions in a manner analogous to how Google employs these tools to
model congestion in the Internet (Langville and Meyer 2006). Markov chains offer considerable
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advantages over conventional road network simulators. They can be built from real data easily;
they are fast and effective simulation tools. Also, Markov chains can be used to inform the
design of control strategies that are suitable for regulating load in transportation networks;
namely the design of load balancing strategies using infrastructure to shape the probabilities.
Furthermore, Markov chain models allow users to glean structural information that is usually
difficult to obtain using other modelling techniques. These include: identification of sensitive
links in the network; identification how connected the network actually is (graph connectivity,
sub-communities); the design of networks that are in some sense maximally mixing; and the
ability to predict the effects of failure of a link (i.e. due to road works or an unexpected event).
Such information cannot be extracted easily from conventional simulators (most sensitive road
junctions, speed of mixing, identification of subgraphs, and degree of graph connectivity).
As such they are excellent traffic engineering tools and provide a mechanism to respond to
congestion conditions in near real time in a preemptive manner.

Our paper is organised as follows. First we give a compact overview of road network models.
Then, we review the main concepts of Markov chain theory and spectral analysis, with a special
regard for the description of the key parameters that will be used to analyse the urban network.
In section 4 we build a Markov chain model of a road network using measurements from the
road network simulator. Finally, using this model, we give several applications in which we use
our network model for prediction and control.

2 Stochastic models of road networks and related work

Our basic idea is to use tools from stochastic modelling to model road network dynamics.
Specifically, our idea is very simple. By recording average vehicle speeds, and the average
directions taken by cars when they reach a road junction, we shall use this information to build
a Markov chain representing vehicular mobility patterns in an urban environment. While we
believe our specific approach is novel for this application, stochastic mobility models have been
employed for road network simulation in the past thanks to their inherent simplicity. A popular
example is provided by the Constant Speed Motion model (Fiore and Harri 2008) where vehicles
follow casual paths over a graph representing the road topology. The speed can be constant,
or can be adjusted to take into account interactions with other vehicles. Stochastic models
however usually fail to provide a sufficient level of realism for many applications of interest.
For this reason flow models were introduced to provide a more realistic modelling of urban
networks. Depending on the level of detail flow models are usually classified as microscopic,
mesoscopic and macroscopic (see Hartensein and Laberteaux 2010, Chapter 5). Mesoscopic
models are at an intermediate detail level, as traffic flows are described at an aggregated level
(e.g. through probability density functions), but interactions are at an individual level. Flow
equations can be expressed as Partial Differential Equations (PDEs), discrete time equations or
Cellular Automata (CA) models.

While vehicle motion patterns can be modeled as flows, it still remains to define the path
followed by each single vehicle within the flow. In the literature, a distinction is made between
a trip and a route (sometimes also called path). A trip is defined through a starting point
(origin), a destination point and the departure time. A route is an expanded trip in the
sense that also the sequence of roads to cover must be specified. Typically, trips are defined
through Origin-Destination (OD) matrices, while ’optimal’ routes can be computed according to
Dijkstra-type graph algorithms, where optimality can be referred to shortest path or minimum
time path. This approach clearly suffers from scalability issues when cities characterised by
thousands of roads are investigated. An alternative approach consists in introducing turning
probabilities at every junction to describe the probability of choosing one subsequent road
segment over the others. This approach has advantageous scalability properties and can be
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made time variant to address different traffic behaviours (e.g. week days vs week ends or
morning ingoing flows vs evening outgoing flows).

The most popular way of investigating the behaviour or the efficiency of a road network is to
use mobility simulators that implement most (or all) of the previously described methods to
create traffic. In this paper, the software SUMO (Simulation of Urban MObility) is used as a
comparison tool (Krajzewicz et al. 2006). SUMO is an open source, highly portable microscopic
road traffic simulation package that developed at the Institute of Transportation Systems at
the German Aerospace Center, and is licensed under the GPL.

We use SUMO here to illustrate the efficacy of our approach; SUMO is used both to generate
data to build our Markov chain, to validate the outcomes of our modeling approach, and to
illustrate other merits of the Markovian approach.

3 A Primer on Markov Chains and their Eigenspectra

The objective of this section is to present the mathematical tools that will be used to investigate
the road network dynamics. The first definitions are basic and will not be described in
detail, as they can be found on classic books such as (Meyn and Tweedie 2009) or (Papoulis
and Pillai 2002). More space will be dedicated to less conventional parameters related to
Markov chains and spectral analysis that play an important role in the urban network
counterpart. In particular, we use here the same notation of (see Langville and Meyer 2006,
Chapter 15) as the Google’s PageRank algorithm which has inspired this work on road networks.

The traffic flow will be described through a Markov chain, which is a stochastic process char-
acterised by the important property

P(@ry1 = Skt1|Tr = Sk, Tr—1 = Sk—1, ..., 20 = S0) = P(T41 = Sk+1]|Tr = Sk), (1)

where accordingly to conventional notation p(FE|F') denotes the conditional probability that
event E occurs given event F occurs. Equation (1) states that the probability that the random
variable z is in state Siy1 at time step k + 1 only depends on the state of x at time step k& and
not on preceding values. Throughout the paper only discrete-time, finite-state homogeneous
Markov chains will be considered. We present no theoretical justification for this model, other
than to state that Markov chains have a long history of providing compact representations of
systems described by very complicated sets of dynamical equations (Dellnitz and Junge 1999),
(Froyland 2001); a good example is the recent work on meta-stability in molecular systems
(Huisinga et al. 2004). We also note that the Internet is, in spirit, similar to a road network,
and Markov chains have been used with remarkable success in that application.

The Markov chain is completely described by the n x n transition probability matriz P whose
entries IP;; denote the probability of passing from state S; to state Sj, and n is the number of
states. The matrix P is a row-stochastic non-negative matrix, as the elements of each row are
probabilities and they sum up to 1.

Within Markov chain theory, there is a close relationship between the transition matrix P and
a corresponding graph. A graph is represented by a set of nodes that are connected through
edges. Therefore, the graph associated to the matrix P is a directed graph, whose nodes are
represented by the states S;,7 = 1,...,n and there is a directed edge leading from S; to S; if
and only if P;; # 0.



July 29, 2010

10:53 International Journal of Control SpectralRoad

4 Taylor € Francis and I.T. Consultant

A C D E G

Figure 1. Example of the graph associated to a transition matrix.

Example: Let us consider the transition matrix

[0 05 05 0 0 0
05 0 05 0 0 0
045 045 0 0.1 0 0
P=| 0 0 05005 0 0 |. (2)
0 0 0 01 0 045 0.45
0O 0 0 005 0 05
0 0 0 0 0505 0

o O O

The associated graph is shown in Figure 1, where nodes are enumerated from A to G and all
edges are bidirectional. In this case all edges are bidirectional as in matrix (2) P;; # 0 < Pj; # 0.

A graph is strongly connected if for each pair of nodes there is a sequence of directed edges
leading from the first node to the second one. The matrix P is irreducible if and only if its
directed graph is strongly connected. In the following some properties of irreducible transition
matrices are shortly described, and most of them derive from the well-known Perron-Frobenius
theorem:

e The spectral radius of P is 1.

e 1 also belongs to the spectrum of P, and it is called the Perron root.

e The Perron root has algebraic multiplicity 1.

e The left-hand Perron eigenvector 7 is the unique vector defined by 7P = 7T, such that
m > 0,]|w]]; = 1. Except for positive multiples of 7 there are no other non-negative left
eigenvectors for P.

In the last statement, by saying = > 0 it is meant that all entries of vector 7 are strictly positive.

One of the main properties of irreducible Markov chains is that the i*" component ; of vector
7 represents the long-run fraction of time that the chain will be in state S;. The row vector 7!
is also called the stationary distribution vector of the Markov chain.

3.1 The Mean First Passage Time Matrix and the Kemeny constant

A transition matrix P with 1 as a simple eigenvalue gives rise to a singular matrix I — P (where
the identity matrix I has appropriate dimensions) which is known to have a group inverse
(I —P)*. The group inverse is the unique matrix such that (I — P) (I —P)* = (I — P)* (I — P),
I-PYI-P)*I-P) = I—P), and (I —P)* (I —P)(I —P)* = (I —P)*. More prop-
erties of group inverses and their applications to Markov chains can be found in (Meyer



July 29, 2010

10:53 International Journal of Control SpectralRoad

International Journal of Control 5

1975). The group inverse of the singular matrix (I — ]P’)# contains important information on
the Markov chain and it will be often used; for this reason it is convenient to name it Q# for short.

The mean first passage time m;; from the state S; to state S; is the expected number of steps
to arrive at destination S; when the origin is S;. If we denote as q the entries of the matrix

Q7 , then the mean first passage times can be computed easily accordlng to (see (Cho and Meyer
2001) for example)

# #
% — 4 o
mij; = A ] E ) ? ?é Js (3)
T
where it is intended that m; =0, ¢=1,...,n.

The Kemeny constant is defined as
n
K= Z MGy, (4)
j=1

where the right hand side is surprisingly independent of the choice of i (Kemeny and Snell
1960). An interpretation of this result is that the expected time to get from an origin state .S;
to a destination state S; selected randomly according to the equilibrium measure 7 does not
depend on the starting point S; (Doyle 2009). Therefore the Kemeny constant is an intrinsic
quantity of a Markov chain, and if the transition matrix P has eigenvalues \;y = 1, A9,..., A,
then another way of computing K is (Levene and Loizou 2002)

1
K_Zl—Aj‘ (5)
7j=2

Equation (5) emphasises the fact that K is only related to the particular matrix P and that
it increases if eigenvalues of P (and in particular the second eigenvalue of largest modulus) are
close to 1.

3.2 Spectral analysis of the transition matriz

Accordingly to the previous paragraph, the eigenvalues of the transition matrix determine the
value of the Kemeny constant. However throughout this paper, we give to spectral analysis a
broader meaning than just the spectrum of the matrix P and we generalise the term to include
the associated eigenvectors. Eigenvectors of graph matrices are known to have good clustering
properties, and a modern active area of research is called spectral clustering. An overview of
spectral clustering algorithms is provided in (von Luxburg 2007), although most of the results
presented therein hold for undirected graphs.

The rationale behind the clustering properties of the eigenvector associated to the sec-
ond eigenvalue of largest modulus of P is now anticipated through an illustrative example.
Suppose that we have two irreducible stochastic matrices P;, P> of orders k and n — k, respec-
tively. Assume that the last column of P; and the first column of P, are both positive. Consider

. P o . e
the matrix A = [Tl;?} ; note that A has 1 as an eigenvalue of multiplicity two. Suppose now
2
P1 0 :| |: lke | lkel
_|_
0P~ n kek| n— kel
1,, represents an all ones vector of order m, ey is a vector of zeros with a 1 in k** position,

that we perturb A slightly to obtain the matrix B = [ , where
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and € is a small positive number. Positivity of the last column of P, and the first column
of P, guarantees that the perturbed matrix does not have negative entries for small €. It is
straightforward to see then that B is a stochastic matrix which has 1 — 2¢ as an eigenvalue, with

corresponding right eigenvector . In particular, the sign pattern of this eigenvector

_ln—k
for an eigenvalue close to 1 corresponds to the partition of A into 2 irreducible diagonal blocks.
The idea previously outlined is formalised in the appendix, where the concept of graph cluster

is stated in mathematical terms and formal arguments are provided as well.

4 Modelling a road network as a Markov chain

The connection between a road network and a Markov chain is straightforward if a city map is
interpreted as a directed graph, where nodes correspond to junctions and edges to connecting
roads. In the literature related to urban networks, this representation is sometimes called primal
(Porta et al. 2006) in contrast to the dual representation where the role of streets and junctions is
reversed (i.e. in the dual representation streets correspond to nodes and junctions to edges). The
use of graph theory to analyse urban networks was proposed in the pioneering work of Hillier and
Hanson (Hillier and Hanson 1984) in the late eighties and further developed in the later works
(Hillier 1996, 1999). An important achievement of the proposed theory was the establishment
of a significant correlation between the topological accessibility of streets and urban properties
like pedestrian and vehicular flows, human way-finding, safety against microcriminality, micro-
economic vitality and social liveability (Hillier 1996). The topology of the urban network is
mathematically analysed by computing the degree of the nodes, the characteristic path lengths
and clustering coefficients. More recently, algorithms like Google’s PageRank, have also been used
to analyse the topology of urban networks (Jiang 2008, Jiang et al. 2008, Jiang and Liu 2009).
Although all approaches exploit well-established mathematical tools borrowed from graph theory,
the starting point is a simple plain urban map (or its dual representation) which usually does not
include quantitative data that are important to evaluate traffic. Therefore important variables
like speed limits, street lengths, junction turning probabilities, numbers of lanes, presence of
traffic lights and priority rules are neglected. The objective of this work is propose a data-driven
model with the strong mathematical background of Markov chain theory, that also takes into
account all the previous quantitative parameters, which clearly affect traffic flows.

4.1 From a road network to a Markov chain

This section shows how to construct the Markov chain transition matrix. Throughout the
paper a simple road network will be used as a benchmark example to support and clarify the
theoretical approach. The example is the road graph shown in Figure 1. The network was
deliberately chosen to be simple, so that the behaviour of the proposed method can be evaluated
easily. However, recall that the proposed procedure can be applied to more realistic maps with
thousands of nodes, without scalability issues, as Google’s PageRank algorithm has successfully
proven. The network of Figure 1 was designed to represent (in a stylized way) a city with two
main communities connected through junction D. This idea is consistent with cities like Dublin
where the North and the South parts are separated by a river and are connected through bridges.

The first step to pass from a road network to a Markov chain is to transform the primal map
into the dual one, where the nodes of the graph are represented by roads, as shown in Figure 2.
The nodes of the dual network have been called XY intending that XY is the road that connects
junction X to Y, where X and Y were nodes in the primal network. The dual network is more
convenient than the primal because it includes more information:

e In the primal network some edges should be inhibited depending on the edge of origin. For
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Figure 2. A possible example of dual network associated to the urban map shown in Figure 1.

AC EG

instance from Figure 1 it seems possible to go from node C to D and then to come back, while
the more detailed dual network of Figure 2 shows that at the end of road C'D turnaround is
not permitted, and a longer route should be planned to enter road DC.

e A typical way of creating traffic flows is to exploit junction turning probabilities (see section
2). The probability of choosing an out-going road at a junction clearly depends on the road
segment of origin. This information is lost in the primal network.

To represent traffic flow, we assume that turning probabilities at each junction are available.
From a practical point of view, this implies that at each junction a webcam counts the number
of vehicles that turn right, go straight or turn left. The collected data are then averaged to
estimate mean probabilities. Alternatively, the same result can be obtained if each car stores its
own route and then communicates its data to a central entity that collects and analyses data.
At the end of the process, we assume that turning probabilities are available for each road. For
instance, if we consider the road segment AC of Figure 2, we assume that probabilities of going
from road AC to CA, CB and C'D are available, as summarised in Figure 3.

A second step is used to take into account different travel times. In the Markov chain frame-
work, transitions from one node (i.e. road) to the successive one take place in one time step.
Clearly, independently of the time unit and even neglecting traffic, the time to cover single roads
is not constant and it will generally depend on the length of the road, speed limits, conditions
of the road surface, etc... For instance, let us consider an identical junction to that of Figure 3,
with the only difference that the road AC' is substituted by road A'C" which has double length
than AC and has half speed limit. Let us assume therefore that the time to cover it is four times
the time required for road AC. A simple way to take into account the extra travel time is to
include a self-loop in road A'C" and adjust the other probabilities accordingly so that they still
sum up to 1, as it is shown in Figure 4.

In principle, it is not easy to compute the average time required to cover a road, as it is related
through unknown functions of physical quantities like the conditions of the road surfaces and
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CD

AC

Figure 3. Turning probabilities from road segment AC. Cars coming from road AC will successively choose roads C'B or
CD with equal probability, while it is more unlikely that they will turnaround to take road C'A.

CD C'D’

0.1125
125
A'C'=2AC

Figure 4. Let us consider an identical junction to that of Figure 3, with the difference that road Ac requires four times
the time required to cover AC (because the length doubles and the speed limit is reduced). The problem is solved by
introducing a self-loop and adjusting the remaining probabilities accordingly.

75%

other relevant variables as for instance the presence of pedestrian crosses, bus stops and so on.
More generally, traffic conditions have a very strong impact on average travel times. In order to
include all these variables, we assume that average travel times for each road are also available.
Again, they can be computed on-board and communicated to some central collection point, or
it could be required that two sensors at the beginning and at the end of a road record passing
times. If travel times are computed for all segment roads, and they are normalised so that the
smallest travel time is 1, then the probability value associated to each self-loop is

]P)iizi, izl,...,n (6)

where tt; is the average travel time (estimated from collected data) for the i*" road. The proof
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of equation (6) and its rationale are provided in the Appendix. At this point, the off-diagonal
elements of the transition matrix P can be obtained as

P;; = (1 —Py) - tpij, i # 7, (7)

where tp;; is the turning probability (estimated from collected data) of going from road i to
road j.

In conclusion of this section, we emphasise the fact that the transition matrix P can be obtained
after gathering the average travel times and junction turning probabilities. The nodes of
the graph associated to the matrix PP (and therefore the size of the matrix) are obtained from the
dual representation of the road network. The diagonal and off-diagonal entries of the transition
matrix are then found according to equations (6) and (7). We also note that the transition matrix
P is always irreducible, otherwise the corresponding digraph would not be strongly connected,
which implies that it would be impossible to go from one particular road to another road. Of
course, this does not occur in road networks. Finally, we also add the following remark regarding
the proposed Markov chain model.

Remark 1: In practice, according to the previous model, the vehicle is represented as a parti-
cle following a random walk (although probabilities are given from real data) through a directed
graph. We are aware of course that vehicles do not actually follow a random walk; however,
by analogy with similar approaches like the PageRank model already mentioned (which posits
a computer user performing a random walk on the world wide web), the underlying stochas-
tic process is viewed as a mechanism for obtaining useful information, rather than a literal
representation of the behaviour of a single vehicle.

4.2 Validation

The procedure previously outlined is a data driven approach and can be applied provided that
junction turning probabilities and road travel times are available. Therefore, the road network
of Figure 1 is now simulated with the software SUMO and the required data is collected from
the simulation.

Remark 2: In this work, the simulated traffic scenario plays the role of the real environment,
so from one point of view this corresponds to collecting data from the simulation rather than from
the real world. From another point of view however, a realistic simulation requires in practice
the same data as the Markov chain approach: one must decide a priori the traffic flows over
the road network, and then provide the resulting data to both the simulator and to the Markov
chain transition matrix.

In order to perform the desired simulation, four steps must be performed in SUMO:

(1) The desired network shown in Figure 1 is created in SUMO by fixing the position of
nodes and edges.

(2) Several flows of cars are created inside the road network. This choice affects the traffic
load.

(3) Junction turning probabilities are fixed, so that car routes around the network can be
planned.

(4) SUMO provides several interesting statistics regarding average and overall network prop-
erties. The desired output files with the associated statistics must be chosen.

One of the main ideas of the proposed work is to substitute simulations with the Markov chain
transition matrix, therefore a comparison of the outcomes of both approaches is required.
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4.2.1 Stationary distribution of cars

The stationary distribution corresponds to the long-run fraction of time that cars will be
along a particular road. Although it does not carry information about the traffic load (i.e. the
number of cars), it is still valuable as it is possible to evaluate whether traffic is balanced and
what roads are particularly busy, and eventually crucial. One output provided by SUMO is the
occupancy of each road (measured as vehicles/Kilometers), from which it is possible to compute
the relative density. In the Markov chain approach, this information is the left Perron eigenvector.

We assume that the following transition matrix P is extracted from the collected data

r0 001090 0 0 00O O O 0O 0O 0 0 07
0 00 00108010 0 0 0O 0 O 0 0 O
01090 0 0 0O 0OOO0OO0OO0OO0OO0OO0OO0OO
0 00 00801010 0 0 0 0 0 0 0 O
09010 0 0 0O 0OOOO0OOOOOO0OO
0 009010 0 0 OO O OO0 OO0 OO
00000 O0O0OO0OT1O0O0OO0O0OTO0UO0OTO
P 0 00 005050 00 O0O0OCO0O0OO0OO0OTO (8)
0 0000 O0OO0OO0OO OO 0O05050 0 00
0000 0O0O0O1O0O0O0OO0O0OTUO0OTO0OTO o
0 00000 O0OO0OO0OOTO0OTO 0010900
0 0o 000O0O0OOOO0OOOTG OO0 00109
0 0000 0 O0OO0OO0O0101080 0 0 O
0 0000 0O O0OO0OOTOOTO OO0 00901
00000 0O O0OO0OO0O0108010 0 0 O
L0 00 00O0O 0O 0OO0OO0OO0O O0O09010 0

The nodes are the 16 roads represented in Figure 2 and are taken in alphabetical order. The
entries of the transition matrix reveal that turnarounds are unlikely and that most cars tend
to travel within the two sets of junctions A-B-C and E-F-G and rarely pass from one set to
the other; in this first example we also notice that travel times are considered constant as the
diagonal elements are all zero. Figure 5 compares the stationary distribution obtained from the
simulator with the left Perron eigenvector of matrix (8). We also remark that the simulated
distribution is of course prone to statistical variations caused by the considered set of cars.

4.2.2  Road clusters

In the proposed example cars tend to travel within sets A-B-C and E-F-G of Figure 1, therefore
it is interesting to evaluate the signs of the entries in the eigenvector associated to the second
largest eigenvalue, provided that it is real. As it could be expected, the second eigenvalue is
close to 1 (0.9216), and the entries of the associated eigenvector are shown in Figure 6. It is not
straightforward to extract the same information from the simulator. This information is however
very valuable because it can be used to find hidden communities within an urban network more
complicated than the one of Figure 1. A formal definition of community from a mathematical
point of view is given in the Appendix.

4.2.8 Mean first passage times

It is very simple to compute the mean first passage times from the transition matrix P, accord-
ingly to equation (3). It is very complicated to compute the same quantity from the simulator
SUMO. For this purpose, a different simulation was performed for each possible entry of the
16 x 16 mean first passage time matrix M. A flow of cars was simulated to start from the origin
road until the destination road, and the average required time with respect to all the chosen
routes was computed. The two matrices are compared in Figure 7, where the origin and des-
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Figure 5. Comparison between the stationary distribution of cars estimated from the Markov chain approach (below) and
computed from the simulation (above).
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Figure 6. The second eigenvector clearly separates the first 6 roads belonging to the first cluster A-B-C, the last 6 roads
of cluster E-F-G and the four roads that connect the two clusters (CD, DC, DE, ED).

tination roads are represented on the x-y axes and times are on the z-axis. The resemblance
between the two mean first passage time matrices is further shown in Figure 8 which compares
the contour lines of the two matrices (entries of the matrices that have similar values).

4.2.4 Kemeny constant

We remind the reader for convenience that the Kemeny constant can be computed as in (4)
in section 3.1

n
K = E mijﬂ'j,
7=1

and the important result is that it is independent from the choice of the road of origin . Therefore
we used the mean first passage time matrix previously extracted from the simulations to check if
the Kemeny constant is indeed constant also in practice (or, at least, in simulations). The result
is shown in Figure 9

Remark 3: The mean first passage time matrix computed from SUMO simulations contains
times expressed in seconds, while, at least in principle, the entries of the same matrix from
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Figure 7. Mean first passage times extracted through an ensemble of simulations (left) and computed from the
Markov chain matrix (right). The x-y axes contain the origin and destination roads, while the z-axis contains the
average first passage travel time.
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Figure 8. Contour lines of the mean first passage time matrix extracted through an ensemble of simulations (left)
and computed from the Markov chain (right). The x-y axes contain the origin and destination roads.
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Figure 9. The Kemeny constant computes the average time required to go from one source road to a random destination
chosen according to the stationary distribution. Surprisingly, this quantity does not depend on the starting road, and is
a global parameter of the road network. The set of simulations show that also in the provided example, the “Kemeny
constants” are rather close to being independent of the starting road, represented in the horizontal axis.

the Markov chain are expressed in number of steps. Therefore, also the Kemeny constants are
given in seconds and steps respectively. The multiplicative factor to convert steps to seconds
can be chosen in such a way the Markov chain Kemeny constant corresponds to the average
of those computed via simulations (shown for instance in Figure 9). Alternatively, should the
Kemeny constant from simulation (or from real data) not be available, travel times can be used.
In the proposed example, for instance, all cars coming from road CD must continue to DE (see
for instance Figure 2). Therefore the travel time of CD corresponds directly to one step in the
Markov chain framework.
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Figure 10. Comparison between the stationary distribution of cars estimated from the Markov chain approach (above) and
computed from the simulation (below).

4.2.5 Comparison in presence of traffic

In this paragraph we just intend to show that the approach works also in the presence of traffic.
The main difference with the previous example is that travel times are larger because of traffic
(traffic was simply simulated in SUMO by increasing the number of cars). The diagonal elements
of the new transition matrix are computed according to equation (6) while the non-diagonal
elements maintain the previous relative ratios. (For simplicity we assumed that traffic only
slowed cars, but did not affect junction turning probabilities. As junction turning probabilities
are collected from data, this assumption is not necessary). According to simulation data, the
new matrix becomes

[0.168 0 0.0830.749 0 0 0 0 0 0 0 0 0 0 0 0 7
0 0621 O 0 0.0380.3040.038 O 0 0 0 0 0 0 0 0
0.040 0.361 0.598 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.3380.529 0.066 0.066 0 0 0 0 0 0 0 0 0
0.3450.038 0 0 0616 O 0 0 0 0 0 0 0 0 0 0
0 0 0.7170.080 0 0.203 O 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0049 0 0951 O 0 0 0 0 0 0
P_ 0 0 0 0 04690.469 0 0.062 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 05 05 0 0 0 0
0 0 0 0 0 0 0 0935 0 0.065 O 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0099 0 0.090.811 O 0
0 0 0 0 0 0 0 0 0 0 0 023 O 0 0.076 0.688
0 0 0 0 0 0 0 0 0 0.016 0.016 0.126 0.843 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.144 0.771 0.086
0 0 0 0 0 0 0 0 0 0.0730.5860.073 0 0 0268 0
L O 0 0 0 0 0 0 0 0 0 0 0 0.8380.093 0 0.069 |

where entries are rounded to three decimal places. In Figure 10 the stationary distributions
predicted by the Markov chain (above) and computed through the simulation (below) are com-
pared. It is interesting to note that they are completely different from the distribution shown in
Figure 5, but bear a strong resemblance to each other.
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5 Traffic Management & Control

In this section we claim that the Markov chain traffic model is particularly suitable to control
and regulate traffic, and to both engineer and investigate road networks. In the following we
give an overview of several novel control theoretic applications that are easily realised using the
Markov chain approach. These include applications to control and regulate traffic such as the
following.

(i) Novel approaches to routing based on: (a) First Mean Passage Times; (b) Emissions based
Markovian models;

(ii) Load balancing in traffic networks to improve traffic flows (e.g. timing of traffic lights);

(iii) Identification of critical links in road networks.

Further applications can be outlined to support road network designers include designing road
networks to:

(iv) Minimizing or decreasing the Kemeny constant;

(v) Control of the stationary distribution to balance traffic load;

(vi) Conditioning of the second eigenvector to improve robustness of network.

In the remainder of this section we give a flavour of how the Markov modelling paradigm can
be used to achieve these objectives.

5.1 Control and regulation of traffic

5.1.1 Routing

Smart routing of traffic is seen as a major enabler of reduced carbon transport . It enables
more efficient use of the road network, and it can be used proactively to avoid pollution peaks in
certain urban areas. Currently, in practice, given a pair of origin/destination roads, the optimal
route is computed, usually in terms of minimum time or minimum distance based on map infor-
mation. On the other hand, the Markov chain transition matrix is constructed from real traffic
data, including average travel times of each single road, and expected congestion spots in the
form of the Perron vector. This information can be easily exploited to plan shortest time routes
accordingly to popular algorithms like Dijkstra (Dijkstra 1959) or other dynamic programming
algorithms (Bertsekas 2000). Dijkstra’s algorithm is widely used for routing problems and solves
the shortest path problem for a graph with nonegative edge path costs. Also notice that as
travel times are taken as edge costs, then the solution takes traffic conditions into account as well.

An alternative solution is obtained if Dijkstra’s algorithm is used to minimise a different cost
function. Here we describe the solution obtained if the edge costs correspond to mean first pas-
sage times and we compare it with the minimum time solution. Although the mean first passage
time matrix takes traffic delays into account as well, the main difference is that it also includes
information related to junction turning probabilities. Therefore it also accounts for the possibil-
ity that the driver takes a different path from the scheduled one and for how much time is wasted
due to the wrong (or alternative) choice. Indeed, the route suggested by the mean first pas-
sage time approach and the minimum time path coincide in the case of (0, 1) transition matrices.

The road network example shown in Figure 11 clarifies the differences between the two meth-
ods. For simplicity it is assumed that all turning probabilities are the same, and that the
same time is required to travel along each road of the network. It is therefore obvious that
the minimum-time paths from AB to DA are AB— BC' —CD — DA and AB— BI —ID — DA.
On the other hand, the optimal path accordingly to mean first passage times is AB — BG —
GF — FD — DA. The reason is that the time-optimal routes are more prone to mistakes that
increase the overall travel time.
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Figure 11. The time-optimal routes from AB to DA are AB— BC —CD — DA and AB— BI —1D — DA. If the sum of first
mean passage times is considered as a cost function for optimality, the best solution is the path AB— BG—GF —FD— DA,
as there are fewer chances to take wrong turns and to increase the travel time.

5.1.1.1 Minimum pollution path. The objective of this paragraph is to show how the
proposed Markov chain model can be easily modified to take environmental issues into account.
Let us assume that the average emissions per unit time per road are available. Accordingly
to our usual approach, this implies that average C'Oy emissions (for instance) are measured
along each road. Let us denote by e; the emission per unit time along road j, therefore the
contribution of pollution of a single car that takes tt; seconds to travel along road j is e; - tt;.
We assume that the emission coefficient e; depends on the road j because roads characterised
by frequent changes of speed limits or by average heavy traffic have a stronger impact on
pollution. We also consider normalised values obtained after dividing by a scale factor, so that
minj {ej . ttj} =1.

Let us now change the nominal transition matrix P where travel times have not been taken
into account yet (i.e. with zeros in the diagonal) into a new transition matrix P that further
includes emissions. With an analogous argument to that of equation (6), further detailed in the
Appendix, it is sufficient to include non-zero diagonal elements, for instance for road ¢ we have

~ tti-ei—l
Py = —— 9
& tti-ei ( )

so that the expected number of emissions before leaving the road is e; - {t;. The off-diagonal
terms of P must change accordingly so that the matrix remains row-stochastic:

Py = (1 - ]P’u) Pij, Vi,j,i#j (10)

Then the matrix P describes a new Markov chain where the transition step is not a unit
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time but a unit of pollution emissions. Accordingly, the stationary distribution represents the
long-run fraction of emissions along each single road, while mean first passage times correspond
to the mean first passage emissions.

In a similar way to section 5.1.1, Dijkstra’s algorithm can be used to compute the minimum
pollution path or the minimum mean first passage pollution path. With an analogous argument
to that of 5.1.1, the second optimal path takes into account the possibility that pollution might
increase due to deviations from the nominal path.

5.1.2  Timing traffic lights

In this section it is shown that the Markov chain traffic model can provides simple tools
to tune traffic lights (in particular the ratio of green with respect to red times) with a
view of improving traffic flow. Optimal timings are computed accordingly to theoretical
expectations and SUMO is used to confirm the traffic improvements. As timing traffic lights
directly affects all the streets involved in the junction, in this application it is convenient to
use also the primal network representation where each node corresponds to a junction. The
beginning of this section is therefore dedicated to illustrate how it is possible to pass from a
dual representation to a primal one, while in the second part the traffic application is illustrated.

In the primal representation nodes correspond to road intersections, thus the stationary dis-
tribution refers to the long-run fraction of time that cars will be at a particular junction. In
the following, we will make a distinction between 7 (X '), which represents the stationary distri-
bution at junction X, and therefore in the primal network, and 7 (XY), which represents the
stationary distribution along road XY from intersection X to intersection Y, and therefore in
the dual network. It is possible to derive the stationary distribution of the primal network easily
from the stationary distribution of the dual network as

m(X) =) 7 (xX) (11)

*

where the symbol “x” denotes all the roads that end at junction X. For instance, for junction C'
of Figure 1 one obtains 7 (C) = 7 (AC) + 7 (BC) 4+ w (DC). Similarly, the entries of the primal
transition matrix P, can be computed from dual data as

Y. m(xX)P(xX, XY)
22 ™ (+X)

For completeness, we also remark that as the dual network is richer in information than the
primal network, it is not generally possible to compute the transition matrix P of the dual using
only information of the primal, but it is possible to infer the stationary distribution of the dual
as

P, (XY) =

(12)

7 (XY) =7 (X)P, (XY) (13)

“Optimal” green times can be obtained from the knowledge of the number of cars queuing at
each traffic light and their next destination. This information can be easily recovered from the
dual stationary distribution (i.e. density of cars along each road) and average junction turning
probabilities. A simple method to time traffic lights is now given through the example of junction
C taken from Figure 1. The junction is shown in Figure 12, which is a snapshot from SUMO,
and it is formed by the three in-going roads AC, BC and DC and the three out-going roads
CA, CB and CD. Note that the only impossible connection is from DC to C'D. In practice,
a sensible way to implement the junction is to build a roundabout, and to give green light in
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Figure 12. Junction C from Figure 1. All connection between roads are permitted except from DC to CD. The junction
can be easily realised with a roundabout where flows of cars from AC, BC and DC in turn have a green light.

turn to flows of cars coming from AC, BC and DC (this is also motivated by the fact that
all roads have one only lane). If no further information is considered, a first solution is to have
equal periods of green light for all the three flows. Let us denote by T this green period and
by mac, 7o and wpco the components of the Perron eigenvector corresponding to the roads of
interest. Then, we set the green period of each road accordingly to this theoretical distribution,
for instance the green time of road AC becomes ?%CT where 7¢ is computed according to (11).
The same network is then simulated again in SUMO with the new traffic light timings and
improvements are measured in terms of the different stationary density at junction C'. As all the
cars take exactly the same route in both simulations, the difference in the long-run fraction of
time spent at junction C' only depends on the different traffic light timings.

With the same green periods the primal stationary distribution computed from the simulation
was

Tiumo = [0.0696  0.0661 0.4601 0.0766 0.2525 0.0323 0.0428] (14)
while after changing the green periods, it becomes
TrEUMO =10.0599 0.0706 0.3278 0.0979 0.3652 0.0336 0.0450] (15)

with an evident decrease in the third entry which corresponds to junction C, illustrating the fact
that there are less cars queuing at the traffic light. We remark that improvements are planned on
the basis of theoretical data (the Perron eigenvector) and are confirmed by SUMO simulations.
By comparing (14) with (15) it is also possible to notice that the density of cars vanished from
junction C' spreads to other junctions of the network, and most of it at the following junction
E of Figure 1 (as could be easily expected by visual inspection of the road network), which
corresponds to the the fifth entry of the stationary distribution vector. In the later section 5.2.3
it is shown that this result could be predicted as well without performing simulations.
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5.1.8 Identification of critical links

The objective of this section is to illustrate the use the Markov chain transition matrix to
find critical links within the road network. Criticality of a road can be defined accordingly to
several points of view: in this section we consider a road critical if travel times increase when
the road is missing (i.e. due to road works or an unexpected event). This problem can be even
more serious if criticality is not expected at all, for instance because in normal traffic conditions
the road is not particularly busy.

In the usual example of Figure 1, if some of the roads are closed, connectivity of the road
network is lost. This is by far the worst scenario, as depending on the starting point, some
destinations would not be reachable any more. In realistic and complicated road networks it is
possible to predict the loss of connectivity as a consequence of removing a road by computing
the rank of the incidence matrix C'. In the directed dual network, the incidence matrix C' is the
(0, —1, 1)-matrix having (Langville and Meyer 2006)

1 if edge Ej is directed toward node IV;
cij =  —1if edge E; is directed away from node N;
0 if edge E; neither begins nor ends at node N;

A directed graph with n nodes and m edges and n x m incidence matrix C' is connected if and
only if rank(C) =n — 1.

A new example shown in Figure 13 is now provided where the graph remains strongly connected
no matter which link is deleted, so that another parameter than the loss of connectivity is
required to identify critical roads. Figure 13 represents the primal network, while the dual is not
shown for the sake of clarity, as it consists of 49 nodes. It is assumed that all turnarounds are
prohibited, except those required to preserve connectivity in case of closed roads. For simplicity,
equal turning probabilities and constant travel times are considered for all the roads (therefore
there is no traffic, or at least it is uniformly spread). The Kemeny constant is computed for the
whole network in the case that each road is individually closed (so that 49 Kemeny constants are
obtained). Kemeny constants represent a global performance cost of the network and obviously
it is desired that they are as small as possible as they measure the average time required to
reach a destination chosen randomly accordingly to the stationary distribution. In the example
of Figure 13 the largest values of the Kemeny constants are obtained if roads I.J, JI, FM and
MF are deleted, as shown in Figure 14, which is the expected outcome by visual inspection of
the network. It is interesting to remark that the result was found without taking traffic into
account, and to emphasise that critical links occupy respectively positions 32, 39, 23 and 13 in
the rank of most trafficked roads in the stationary distribution, and therefore it is not trivial to
predict their criticality.

5.2 Road network engineering

In this section we use properties of the Markov transition matrix P as an indicator of the quality
of the road network. For the sake of clarity the properties of P and their interpretation in the road
network context are briefly summarised in Table 1. In this section we show how road network
designers can use these properties as control variables to design networks.

5.2.1 What type of road network has the smallest Kemeny constant?

In section 3.1 we defined the Kemeny constant as a global indicator of the network, because
it depends solely on the eigenvalues of the Markov chain transition matrix. As the Kemeny
constant also corresponds to the average time to travel from an arbitrary road to a destination
chosen randomly accordingly to the stationary distribution, it suggests that networks charac-
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A B C D

Figure 13. A new example of road network where connectivity is preserved if any one of the roads is closed to traffic. The
primal network is represented only for the sake of simplicity, since the dual network consists of 49 nodes.
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Figure 14. Values of the Kemeny constant as each road of the original road network is closed. Accordingly to visual
inspection of Figure 13 the most critical roads are I.J, JI, FM and MF. Roads are numbered according to alphabetical
order.
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Table 1. Properties of the Markov transition matrix P and their meaning in the road network counterpart.

Property Meaning
Perron Eigenvector Congested roads in the network
Second Eigenvalue (a) Rate of convergence to stationary distribution

(b) If it is real, it identifies the presence of weakly-connected sub-communities

Second Eigenvector In case (b) it associates nodes to sub-communities
First Mean Passage Times Average travel time from origin to destination
Kemeny Constant Average travel time in the network

Perron Eigenvector (Primal)  Congested junctions in the network

terised by small values of the Kemeny constant should be more efficient in terms of traffic flow.
This section provides the intuitive interpretation of which type of road network is characterised
by the smallest Kemeny constant.

In paper (Kirkland 2010) it is shown that given an irreducible matrix 7', there exists a matrix
of minimum Kemeny constant 7" such that its non-zero entries are a subset of the non-zero
entries of T' (and therefore it can be obtained without adding extra links to the original graph).
In particular it is also shown that an optimal (0,1) matrix 7" can be found. Following the
procedure outlined in the same paper (Kirkland 2010), it can be found that the minimum
Kemeny constant of the road network of Figure 2 can be obtained for instance from the graph
shown in Figure 15, which corresponds to the well-known concept of ring road. In practice, this
traffic solution can be obtained from the original network by closing all roads that do not appear
explicitly in Figure 15, and by forcing all cars to follow the only available ring path. Although
this “optimal” solution circumvents the need of junctions, it clearly has the main drawback that
it might be required to drive along the whole ring road before reaching the final destination (for
instance to go from road BC to AB). We do not discuss further the optimality of this solution,
which is only the interpretation of the minimum Kemeny constant road network. We also note
that the abstract mathematical solution of the minimum Kemeny constant may not always be
applied in practice, as depending on the original graph it might give rise to a non-connected
network. Thus, it may be desirable to decrease the Kemeny constant subject to maintaining
certain connectivity properties.

Comment: As a conclusion of this section we note that the Kemeny constant can reduce
if appropriate roads are closed. Indeed the optimal solution shown in Figure 15 is a subgraph
of the original network of Figure 2. It is interesting to remark that this result is in agreement
with a well known paradox in road networks, also known as Braess’s paradox, which states that
adding extra capacity to a network can in some cases reduce overall performance (Braess 1968,
Braess et al. 2005).

5.2.2  Decreasing the Kemeny constant

In practice, road network designers are usually interested in finding the simple modifications
of a pre-existing road network that have positive effects in mitigating traffic and reducing
average travel times. The first problem is that it might not be clear which point of the network
would provide the most benefits to the overall traffic flow. We find here the best solution in
terms of the Kemeny constant again. The idea is that of computing which small modification
in the Markov chain transition matrix P provides the highest local reduction of the overall
Kemeny constant.

Mathematically, this corresponds to evaluating the derivative of the Kemeny constant with
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Figure 15. The smallest Kemeny constant is achieved when roads are connected as in a ring road. Although this solution
avoids junctions, it might still be required to drive along the whole ring road before reaching the final destination (for
instance to go from road BC to AB).

respect to small perturbations of entries of the matrix P. Following the same approach of (Kirk-
land 2010) let us check what happens if the p!* element of the i row of matrix P is decreased
of a quantity equal to t - P;,, where t € [0, 1]. The original transition matrix P is perturbed into

P="P+ FE,;, where F; = tl EDZ]’I)D e; [eZT}P’ —eﬂ, where e, is a vector of zeros with a 1 in k"
1

position. As we have that K (P + E;) = trace <(Q — Et)#) (where we recall that the definition

of @ was given in 3.1) then the derivative corresponds to

¢ Lip T T\ A# A#
t — ; i
1—(e]P—¢)) Q#tﬁei (16)
P, Y
~ B (e arere

Such a procedure refers to a particular entry of the matrix P, and it can be computed for all
(non-zero) elements of P, thus obtaining a matrix of derivatives with the same size as P. The
derivative can be assumed to be zero in positions corresponding to zero elements of P.

The highest negative entries of the derivative matrix indicate that immediate benefits in terms
of reductions of average travel times can be obtained if the corresponding entries of P can be
decreased. A non-diagonal entry IP;; can be set to zero easily by closing the connection from
road i to road j. In contrast, the diagonal terms also include information regarding the road
viability (e.g. the length of the road) and therefore they can not be set to zero. However, they
can be decreased by raising speed limits, or by timing traffic lights or changing priority rules
appropriately.
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5.2.8  Conditioning of the stationary distribution under perturbations of the transition matriz

A valuable property of the Markov chain road network model is that it is possible to predict
the effects of modifications of the original road network in terms of road dynamics. This feature
is useful for instance to plan road works or to predict the propagation of the traffic density as a
consequence of different traffic light timings.

Mathematically this corresponds to predicting changes in the stationary distribution as some
entries of the transition matrix are slightly perturbed. This topic has been investigated for
instance in references (Kirkland 2003) and (Kirkland 2004). Let us denote with P = P + E the
transition matrix after the perturbation . For instance, in the example of timing a traffic light,
FE has all zero rows except for the rows corresponding to the roads involved in the junction of
interest. In these roads, the diagonal elements are positive or negative depending on whether
their ratio of green period has been decreased or increased. As the matrix P+ E has to remain
row-stochastic, elements of E corresponding to off-diagonal non-zero elements of [P have non-zero
value as well, and opposite sign with respect to the diagonal entry of £. Then

AP+ #TE =77 =

ATEI-P)F =7T (I-17") =77 — 7T =

T _ =T [I _ )#} - , (17)
T

- pa-e]”

where 1 is the column vector of ones of appropriate dimensions. In the last passage the inverse
exists provided that both P and P are irreducible (Meyer 1980).

44
3

~T:7T

E(I-P
=T E(I-P

The ability of predicting the new stationary distribution was tested for the example shown in
section 5.1.2 where green times were modified to improve traffic flow. The theoretical results were
in accordance with the new stationary distribution (15) extracted from the SUMO simulation.

6 Conclusions

Inspired by the success of Google’s PageRank algorithm, a Markov chain approach was
proposed to model road network dynamics. The major difference with conventional road
traffic models is that all the network information is concentrated inside the transition matrix,
which is constructed from collected data, specifically road travel times and junction turning
probabilities. The proposed approach circumvents the requirement of modelling complex road
dynamics and car interactions, or the necessity of extensive Monte Carlo simulations, but at the
same time it still provides an accurate and realistic representation of the road network dynamics.

One of the main objectives of this paper is to validate the proposed model. Extensive simula-
tions over several road networks of different shapes have confirmed the theoretical expectations,
and results concerning one particular network were shown in detail throughout the paper as a
benchmark example. Although only initial results are reported, they are very promising for two
main reasons. The first one is that cars can be easily equipped to start collecting real data to
build the Markov transition matrix. From this point of view, validation of the proposed model
with real data is expected to be one of the very next steps. The second advantage is that from
the mathematical analysis of the Markov chain it is possible to infer hidden properties of the
underlying road network which can be hardly revealed even by tailored ad-hoc simulations.
In addition it is possible to predict road dynamics, for instance the propagation of the traffic
density in consequence of different traffic light timings, or to the closure of a road for road works.
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The ability of predicting road dynamics paves the way to a wide variety of applications, some
of which have been briefly discussed. The Markov chain model apparently correctly identifies
critical links and offers a very simple and intuitive way to optimise traffic light timings. The
analysis of mean first passage times and the use of the Kemeny constant serve to quantify
the efficiency of the road network. Although it might be argued that the “ring road” can not
obviously be always the best solution in practice, still the idea that simple and schematic urban
networks should be preferred against tangled and complicated networks is rather intuitive and
interesting. Obviously each of the outlined applications should be further investigated, while
several other applications can be easily stated within the same framework. This is subject of
current study and will be taken into explicit account in future work.

Appendix

6.1 Clustering properties of the second eigenvector

Theorem 6.1: Let P be an irreducible stochastic matrix and suppose that A € R is an eigen-

value of P. Let v = [vf | — vg |OT]T be a corresponding \ eigenvector (with v > 0 and ve > 0)
Pyy [Pro | Pys

and let us partition the matriz P conformally as | Py |Pag |Pas | and label the subsets of the
P31 | P32 | P33

partition as S1, So and Sy respectively. Then:
(1) p(P11), p(P22) = A.

(2) There are subsets S; C Sy, So C Sa, and positive vectors wl , w3 with supports on Sy, So
respectively such that o] 1 = w51 =1 and 3;cg, 1 (1) X5 Piy = 1= p(P11) <1 -\
and Ziegz (G (Z) Z]‘¢§2 Pz’j =1- p(PQQ) <1-A

(38) For any j € Sy, > i, W1 () mi; > 1—p1(P11) > 1l)\ and for any j € Si,

Ziegz Wy (1) myj > 1—p1(IP’22) > 11)\, where m;; are elements of the mean first
passage matrix.

In the previous theorem the third partition can be empty without affecting the validity of the

theorem; 0 and 1 are column vectors of zeros and ones of appropriate dimensions; p (A) indicates
the spectral radius of matrix A; the support of a vector is the set of coordinates on which the
vector is nonzero.
The theorem shows how an eigenvector corresponding to an eigenvalue close to 1 can be used to
detect nearly disconnected groups of states in a Markov chain. The clustering idea is formalised
through parts 2 and 3 of the theorem in terms of small probabilities of going from one part of
the graph to the other, and with high mean first passage times.

Proof

(1) We have Pyjjv; = Mvp + Piove. Let 27 be a Perron vector for Pj;. Then
p(P11)zTvy = 2TPyvr = XTop + 2TPigvy > AzTvp. The inequality follows be-
cause all terms are positive (either because Perron vectors or because parts of the
nonnegative stochastic matrix IP). Therefore, comparing the first and last term of the
chain of inequalities, we obtain p (P11) > A. An analogous argument applies for p (Pag).

(2) Let w? be a left Perron vector for P17, normalised so that w?l = 1. Partition Sy as
Sy U S1, where S is the support of w!, and denote the corresponding subvector of w{
by 1711T. Let w2T , sz, Sy and Sy denote the analogous quantities for Poy. Let us write P
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in partitioned form as

P35 (P55 [P35 [Pss, | Pss,
Ps s P55 |Ps s, | P55, | Pss,
P35, 1Ps,5 | P53, |Pss | Pss, | - (18)
Ps,3 1 P5,5, |Ps,3, | P5.5, | Ps,s,
Pg 5 1 P55 | Pos,5, | Psoss | Psoss

We have
1=w{Pg 51+ w{Pgg1+ufPg51+w{Ps51+w{Pgq1=
=p(P11) + 0{Pg g1 +w{Ps 51+ w{Pggl+uwfPsgl

so that 1 — A > 1 — p(P11) = wf Pg g1+ w{Pg g1+ wfPg g1+ wfPsg1 and the
desired inequality follows. An analogous argument applies to (Pa2).

(3) Fix j € Sy and let P(;y be formed from P by deleting its 4" row and column. Then for
any i € Sy we have

mij = el (I-Pg) 1> e (1- IPSISI>_11.

The last mequahty follows as Pg g is a submatrix of P(;). Hence, > ;.5 w1 (i) mi; >

L) 1= 1 1 .
i (I —Pg, Sl) 1= = (Pn) > 71— A similar argument establishes the desired

inequality for j € S;.

6.2 Motivation of equation (6)

Let us assume that all roads can be covered in the same time, therefore all diagonal elements
of the matrix P are zero and we have 7/ P = ', where 77 is the left Perron eigenvector. As in
reality all roads have different travel times, self loops will now be added accordingly.

Let us assume that the diagonal entry in the it" position is P, then the probability of leaving
the road in exactly j steps is Pgifl (1 —P;;), thus the expected number of steps before leaving
the road is

1
§ P ( i) = . 1
J - Pu) 1—P, (19)

As described in section 4.1, we assume that travel times for each single road are avail-

able; if tt; is the observed travel time for road i, and travel times are normalised so that

min {tt;} = 1,i = 1,...,n, then we have 1 - = it; and equation (6) follows. P;; represents

3
the updated entry of the transition matrix required to take different travel times into account.

Once diagonal terms are changed, off-diagonal terms have to be updated to keep the transition
matrix row-stochastic, without affecting turning probabilities ratios. That is

P;; = (1 - E”ii) Pyj, (20)
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where I@’ij are the updated off-diagonal terms of the transition matrix. It is interesting to notice

that the (non-normalised) Perron eigenvector #7 associated to matrix P is related to 77 of matrix
PP, where travel times had not been taken into account, through #7 = [ttym;  ttame ... tt,m,].
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