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Abstract
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following topics: graphs whose skew-adjacency matrices are all cospectral;
relations between the matchings polynomial of a graph and the characteris-
tic polynomials of its adjacency and skew-adjacency matrices; skew-spectral
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skew-adjacency matrices of a graph with distinct spectra.
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1. Introduction

Given two simple graphs1 whose adjacency matrices have the same spec-
trum, what additional information is sufficient to distinguish the graphs?

For example, if ab = cd and a+ b = m+ c+ d, where a, b, c, d,m are posi-
tive integers then the complete bipartite graph Ka,b is (adjacency) cospectral
with Kc,d +Km, the complete bipartite graph Kc,d together with m isolated
vertices. These graphs may be distinguished by the spectra of their com-

plements, Ka,b = Ka + Kb and Kc,d +Km = (Kc + Kd) ∨ Km. For, −1 is
an eigenvalue of the former complement with multiplicity a + b − 2 and of
the latter with multiplicity a + b − 3. However, there are many examples
of cospectral strongly regular graphs (see, e.g., [3]) and these cannot be dis-
tinguished by the spectra of their complements because cospectral regular
graphs have cospectral complements.

As an additional test to distinguish a graph, consider the spectra of its set
of skew-adjacency matrices; that is, of the set of skew-symmetric {0, 1,−1}-
matrices derived from its adjacency matrix A = [ai,j] by negating one of
ai,j, aj,i for each unordered pair ij.

Figure 1 (from [3]) shows all pairs of adjacency cospectral graphs on
six vertices. Each graph in the first row is adjacency cospectral with the
graph below it. The skew-adjacency matrices of a graph G all have the same
spectrum if and only if G has no cycles of even length (Theorem 4.2). We
call such a graph an odd-cycle graph. All but the second pair of graphs have
skew-adjacency matrices with different spectra because one of the graphs is
an odd-cycle graph and the other is not.

Figure 1: The adjacency cospectral graphs on 6 vertices.

It is known (and shown in Lemma 5.3) that the coefficients of the charac-
teristic polynomial of the skew-adjacency matrices of a graph are the absolute

1Terminology in the introduction that is not defined later may be found, e.g., in [23].
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values of those of its adjacency matrix if and only if the graph is a forest.
Thus, two forests are adjacency cospectral if and only if some (or all) of their
skew-adjacency matrices are cospectral. In particular, the second pair of
graphs in the figure have the same adjacency spectra and the same (unique)
skew-adjacency spectra.

It is not clear how often it would be practical or effective to distinguish
graphs by the spectra of their derived sets of skew-adjacency matrices, but,
as we have just seen, addressing that question leads to interesting results.

Section 2 reviews relations between coefficients of a characteristic polyno-
mial and collections of vertex disjoint directed cycles in a weighted digraph.
The relations are specialized to the case of adjacency matrices in Section 3.
These relations and those for other matrices of graphs may be found in [8].

In Section 4, the skew co-spectral characterization of odd-cycle graphs is
proved (Theorem 4.2). Equation (8) is the key to that result and most of
the other results in this section. It expresses the coefficient sk of xn−k in
the characteristic polynomial pS(x) of a skew-adjacency matrix S in terms of
vertex disjoint collections of edges and even cycles of G that cover k vertices.
In particular, if G is an odd-cycle graph, it implies that sk is the number of
matchings in G that cover k vertices.

Section 5 explores relations between the characteristic polynomials of
adjacency matrices and skew-adjacency matrices. It is observed there that
G is an odd-cycle graph if and only if the coefficients of the characteristic
polynomials of all of its skew-adjacency matrices are the absolute values of the
coefficients of its matchings polynomial. It is not known if this equivalence
is still true if the coefficient condition holds for some skew-adjacency matrix
of G (Problem 1).

Section 6 contains groundwork for an investigation of ρs(G), the maxi-
mum value of the spectral radii of the skew-adjacency matrices of a graph G.
It is not known that G must be an odd-cycle graph if all of its skew-adjacency
matrices have the same spectral radius (Problem 2). Also, we conjecture that
if G is an odd-cycle graph on n vertices whose skew-adjacency matrices have
the greatest spectral radius, then G has a vertex joined to all others (Con-
jecture 6.1 and following comment). Together with Remark 6.1, Lemma 6.3
may be regarded as an analogue of the Perron-Frobenius Theorem, one with
nonnegative matrices replaced by those skew-signings of a symmetric non-
negative matrix with zero trace for which the spectral radius is maximum.

Section 7 contains bounds on the number of skew-adjacency matrices of
a graph that have distinct spectra.
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2. Characteristic polynomials from weighted digraphs

Given an n×n matrix A = [ai,j], let
−→
G(A) be the arc-weighted digraph on

the vertex set V = [n] = {1, 2, . . . , n} with arc set E(
−→
G ) = {(i, j) : ai,j ̸= 0}

and weight ai,j assigned to arc (i, j). An example is given in Figure 2.
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Figure 2: A square matrix and its associated arc-weighted digraph.

When t>1, a dicycle of length t is a digraph with a vertex set {i1, i2, . . . it}
and arcs (ik, ik+1), 1 ≤ k < t and (it, i1). A dicycle of length t = 1 is a loop

(i1, i1). For example, in the arc-weighted digraph
−→
G (A) in Figure 2, there is

a dicycle of length 1 (or loop) at vertex 1, dicycles of length 2 (or digons) on
each of the vertex sets {1, 2}, {2, 3}, {2, 4} and a dicycle of length 3 on the
vertex set {2, 3, 4}.

Let
−→
Uk denote the set of all collections

−→
U of vertex disjoint dicycles in−→

G(A) (including loops and digons) that cover precisely k vertices of
−→
G (A).

For
−→
U ∈

−→
Uk, let e(

−→
U ) denote the number of dicycles in

−→
U of even length

(including digons) and let Π−→
U
(A) = Π

(i,j)∈E(
−→
U )
ai,j.

Let the characteristic polynomial of A be denoted by

pA(x) = det(xI − A) = xn + a1x
n−1 + · · ·+ an−1x+ an. (1)

Then (−1)kak is equal to the sum of the k×k principal minors of A. Because
dicycles of even length are associated with permutations with negative sign
(see, e.g.,[2, p.45]), it follows that

ak = (−1)k
∑
−→
U ∈

−→
Uk

(−1)e(
−→
U )Π−→

U
(A) =

∑
−→
U ∈

−→
Uk

(−1)|
−→
U |Π−→

U
(A), (2)
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where |
−→
U | denotes the number of dicycles in

−→
U . In particular, A has deter-

minant

detA = (−1)nan = (−1)n
∑
−→
U ∈

−→
Un

(−1)|
−→
U |Π−→

U
(A). (3)

For example, applying (2) and (3) to the arc-weighted digraph
−→
G(A) for

the 4× 4 matrix A above, we see that detA = adfh and

pA(x) = x4 − ax3 + (−bc− de− gh)x2 + (ade+ agh− dfh)x+ adfh.

3. Characteristic polynomials of adjacency matrices

If G is a simple graph with vertex set V = [n] = {1, 2, . . . , n} and edge
set E(G), the adjacency matrix of G is the n × n symmetric {0, 1}-matrix
A = A(G) with ai,j = 1 if ij ∈ E(G) and ai,j = 0 if ij ̸∈ E(G). In particular,
each diagonal entry of A is 0.

A routing
−→
U of a vertex disjoint collection U of cycles and (isolated) edges

in a simple graph G is obtained by replacing each of the cycles in U by a
dicycle and each edge in U by a digon. Thus, if c(U) denotes the number of
cycles in U , then U has 2c(U) routings.

If A is a symmetric {0, 1}-matrix with zero diagonal, then A is the ad-
jacency matrix of an (undirected) simple graph G = G(A). The digraph
−→
G(A) defined earlier is the doubly-directed graph obtained from G(A) by
replacing each edge by a digon and giving each arc a weight of 1. Thus, the
summands in (2) may be grouped according to the members U of the set
Uk of all collections of (undirected) vertex disjoint edges and cycles in G (of
length 3 or more) that cover k vertices. Here dicycles of length 3 or more

in
−→
G (A) are associated with undirected cycles in G(A), digons in

−→
G (A) are

associated with edges in G(A) and there are no loops in
−→
G(A) since A has

zero diagonal. Each U in Uk accounts for 2c(U) summands in (2), one for each

routing
−→
U of U . Thus, if A is the adjacency matrix of a simple graph G,

then the characteristic polynomial (1) of A has coefficients

ak =
∑
U∈Uk

(−1)k+e(U)+m(U)2c(U) =
∑
U∈Uk

(−1)|U |2c(U), (4)

where e(U) is the number of even cycles in U , m(U) is the number of disjoint
edges in U , c(U) is the number of cycles in U , and |U | is the number of
components of U . (See also [8, p.32],[10, p.20], [2, p.45].)
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A matching in G on k vertices is a set M = {i1i2, i3i4, . . . , ik−1ik} of
vertex disjoint edges in G. A matching M in G is perfect if each vertex in G
is in some edge of M . If the edge set of U ∈ Uk is a matching on k vertices,
then k is even, |U | = k/2, c(U) = 0, and the summand (−1)|U |2c(U) in (4)
simplifies to (−1)k/2. Thus, if mk(G) denotes the number of matchings in G
that cover k vertices, then mk(G) = 0 if k is odd and the coefficient formula
(4) may be rewritten as

ak = (−1)k/2mk(G) +
∑
U∈Uk,

c(U)>0

(−1)|U |2c(U). (5)

where (−1) k
2mk(G) = 0 if k is odd. In particular,

(−1)n detA = an = (−1)n/2mn(G) +
∑
U∈Un,
c(U)>0

(−1)|U |2c(U). (6)

For example, if A is the adjacency matrix of Cn, the cycle on n vertices, then
detA = 2 if n is odd and detA = 2

(
(−1)n/2 − 1

)
if n is even.

4. Characteristic polynomials of skew-adjacency matrices

An orientation of a simple (undirected) graph G is a sign-valued function
σ on the set of ordered pairs {(i, j), (j, i) | ij ∈ E(G)} that specifies an
orientation (or direction) to each edge ij of G. If ij ∈ E(G), we take σ(i, j) =
1 when i→ j and σ(i, j) = −1 when j → i. The resulting oriented graph is
denoted by Gσ. Both σ and Gσ are called orientations of G.

The skew-adjacency matrix Sσ = S(Gσ) of Gσ is the {0, 1,−1}-matrix
with (i, j)-entry equal to σ(i, j) if ij ∈ E(G) and 0 otherwise. If there is no
confusion, we simply write S = [si,j] for S

σ. Thus si,j = 1 if (i, j) ∈ E(Gσ),
−1 if (j, i) ∈ E(Gσ), and 0 otherwise. An example is shown in Figure 3.

To obtain the characteristic polynomial of S, we require the arc-weighted

digraph
−→
G(S). Because S⊤ = −S,

−→
G(S) will be doubly-directed and each

digon will be skew-signed: one arc will be weighted 1, and one arc weighted

−1. For the example of Gσ and S above,
−→
G(S) is shown in Figure 4.

Recall that Uk denotes the set of all collections U of (undirected) vertex
disjoint edges and cycles (of length 3 or more) in G that cover k vertices,

and that a routing
−→
U of U ∈ Uk is obtained by replacing each edge in U by

a digon and each cycle in U by a dicycle.
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Figure 3: The skew-adjacency matrix S of an orientation σ of a simple graph G.
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Figure 4: The {−1, 1}-arc-weighted doubly-directed digraph of a skew-adjacency matrix.

If σ is an orientation of a simple graph G and
−→
U is a routing of U ∈ Uk,

let σ(
−→
U ) = Π

(i,j)∈E(
−→
U )
σ(i, j). We say that

−→
U is positively oriented (resp.

negatively oriented) relative to σ if σ(
−→
U ) equals 1 (resp. −1), or, equivalently,

if an even (resp. odd) number of arcs in
−→
U have an orientation that is opposite

to that in Gσ. For example, if U is a single edge, then
−→
U is a digon and

σ(
−→
U ) = −1 since one arc of a digon always disagrees with one arc of Gσ.

However, if
−→
U is a routing of a single cycle U and

←−
U is its reversal, then

σ(
←−
U ) = σ(

−→
U ) if U has even length, while σ(

←−
U ) = −σ(

−→
U ) if U has odd

length.
If S = S(Gσ) is the skew-adjacency matrix of Gσ, then in (2), Π−→

U
(S) =

Π
(i,j)∈

−→
U
si,j = Π

(i,j)∈
−→
U
σ(i, j) = σ(

−→
U ). Also, if the dicycle components (in-

cluding digons) of
−→
U are

−→
Ui, i ∈ [k], then σ(

−→
U ) = Πk

i=1σ(
−→
Ui). Thus, if

S = S(Gσ) is the skew-adjacency matrix of Gσ and
−→
G (S) is the doubly-
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directed arc-weighted digraph of S, then the summands in (2) over all rout-

ings
−→
U of a particular U in Uk will cancel if U contains an odd cycle and will

all be equal if U consists only of edges and even cycles.
Let U e

k be the set of all members of Uk with no odd cycles. If σ is an
orientation of G and U ∈ U e

k , let c
+(U) (resp. c−(U)) denote the number of

cycles in U that are positively (resp. negatively) oriented relative to σ when U

is given a routing
−→
U . (Because dicycles in

−→
U all have even length, c+(U) and

c−(U) do not depend on the routing chosen.) Then c(U) = c+(U) + c−(U)
is the total number of cycles in U and, as before, if m(U) is the number
of single edge components of U , then |U | = c(U) + m(U) is the number

of components of U . Let σ(U) denote the common value of σ(
−→
U ) for the

routings
−→
U of U ∈ U e

k . Because each digon associated with an edge in U is
negatively oriented, σ(U) = (−1)m(U)+c−(U) = (−1)|U |+c+(U). It follows from
(2) that if the characteristic polynomial of S is

pS(x) = det(xI − S) = xn + s1x
n−1 + · · ·+ sn−1x+ sn,

then sk = 0 if k is odd and

sk =
∑
U∈Ue

k

(−1)|U |2c(U)σ(U) =
∑
U∈Ue

k

(−1)c+(U)2c(U) if k is even. (7)

If c(U) = 0 (i.e., if U is a matching) then σ(U) = (−1)|U |. Thus, sk = 0
if k is odd and

sk = mk(G) +
∑
U∈Ue

k,

c(U)>0

(−1)c+(U)2c(U) if k is even, (8)

where the sum is taken over all those U ∈ U e
k that have at least one cycle.

In particular, detS = −sn = 0 if n is odd and

detS = sn = mn(G) +
∑
U∈Ue

n,

c(U)>0

(−1)c+(U)2c(U), if n is even. (9)

Thus, if the number mn(G) of perfect matchings in G is odd, then detS ̸= 0.
The converse statement fails. For example, if S is a skew-adjacency matrix
of a negatively oriented even cycle Cn, then detS = 4, but mn(Cn) = 2.
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It follows from (8) that if k is even, then

sk ≤ mk(G) +
∑
U∈Ue

k,

c(U)>0

2c(U), (10)

with equality if and only if each even cycle in G of length l ≤ k that is disjoint
from a matching on k − l vertices is negatively oriented relative to σ.

More can be said when k = n. Because the union of two distinct perfect
matchings of G is a member U of U e

n and each U ∈ U e
n with c(U) > 0

is determined by 2c(U) ordered pairs of perfect matchings, it follows that
mn(G)(mn(G)− 1) =

∑
U∈Ue

n,

c(U)>0

2c(U). Thus, when n is even,

sn ≤ mn(G) +
∑
U∈Ue

n,

c(U)>0

2c(U) = mn(G)2. (11)

A subgraph H of G is termed nice [20, p.125] if G − V (H) has a perfect
matching. Note that if U ∈ U e

n and C is a cycle in U , then C must be nice
because each of the remaining cycles in U may be replaced by matchings. It
follows that when n is even, equality holds in (11) if and only if each nice
even cycle in G is negatively oriented relative to σ.

Because S is skew-symmetric, iS is Hermitian and so has real eigenvalues
[17, p.171]. (When not used as an index, i denotes the principal square root
of −1.) Thus, S has pure imaginary eigenvalues and, since S has real entries,
the eigenvalues occur in complex conjugate pairs. It follows that if S has
rank t, then pS(x) = xn−tΠ

t/2
k=1(x

2 + b2k) for some nonzero scalars bk. Thus
sk ≥ 0 for each k. In particular, detS ≥ 0. In fact, detS is the square of
an integer. This follows from a result on the pfaffian of S (see equation (13)
and the definition below).

If G is a simple graph with vertex set V = [n] = {1, 2, . . . , n} and edge set
E(G), the generic skew-adjacency matrix of G is the n× n skew-symmetric
matrix X(G) = X = [xi,j] where the entries xi,j with i < j and ij ∈ E(G)
are independent indeterminates over a field and where xi,j = 0 if ij ̸∈ E(G).

If X is a generic skew-adjacency matrix of G, then the pfaffian of X,
pfX, is defined by the rule

pfX =
∑

M∈M(G)

wt(XM), (12)
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whereM(G) denotes the set of all perfect matchings

M = {i1i2, i3i4, . . . , in−1in}

in G and where wt(XM) is equal to the product Π{ij ,ij+1}∈Mxij ,ij+1
multiplied

by the sign of the permutation that takes (1, 2, . . . , n) to (i1, i2, . . . , in). Be-
cause X is skew-symmetric, wt(XM) is not affected by the order of the edges
in M or the order chosen for the vertices of each edge. If n is odd, or if n is
even andM(G) is empty, we take pfX = 0.

It is well-known (see, e.g., [6, p.318]) that

detX = (pfX)2. (13)

Because the entries of X are independent indeterminates, detX = (pfX)2 ̸=
0 if and only if G has a perfect matching (see also [6, pp. 317-323]). Thus,
G has a perfect matching if and only if pfX is not identically zero.

In particular, if S is a skew-adjacency matrix of G, then detS is the
square of an integer, and detS ≥ 0. Also, if detS > 0 then G must have a
perfect matching. However, if G has a perfect matching, it is possible that
detS = 0 because of cancellation in pf S. But, if the total number of perfect
matchings in G is odd (in particular, if G has a unique perfect matching),
then detS > 0 for all skew-adjacency matrices S of G.

The girth g(G) (resp. even girth ge(G)) of a graph G is the length of a
shortest cycle (resp. shortest even cycle) in G, if one exists. If G has no cycles
(resp. no even cycles) then g(G) (resp. ge(G)) is infinite. Recall that mk(G)
denotes the number of matchings in G that cover precisely k vertices. Thus,
mk(G) = 0 if the number of vertices in G is odd. The next lemma follows
immediately from formula (8) for sk.

Lemma 4.1. In (8), if 1 ≤ k < ge(G), then sk = mk(G) for all skew-
adjacency matrices of G. In particular, if G has no even cycles, then sk =
mk(G) for all k ∈ [n], and the skew-adjacency matrices of G all have the
same spectrum.

We have been referring to graphs with no even cycles as odd-cycle graphs.
A cactus is a connected graph each of whose blocks (2-connected subgraphs)
is an edge or a cycle. A connected odd-cycle graph is a cactus each of whose
blocks is an edge or an odd cycle [4, Ex. 3.2.3]. By comparison, the graphs
with no odd cycles (the even-cycle graphs) are the bipartite graphs. Graphs
with no cycles (the forests) are both even-cycle and odd-cycle graphs.

10



Example 4.1. Each of the four graphs in Figure 5 is a connected odd-cycle
graph. The first pair of graphs has the same number of matchings on k
vertices for each k = 2, 4, 6, and the second pair does as well. It follows from
Lemma 4.1 that the skew-adjacency matrices of each of the first two graphs
all have characteristic polynomial x6+6x4+8x2+1 while the skew-adjacency
matrices of each of the last two graphs have characteristic polynomial x6 +
6x4 + 6x2 + 1. An exhaustive check shows that no other pairs of connected
odd-cycle graphs on 6 or fewer vertices have skew-adjacency matrices with
the same characteristic polynomial.

Figure 5: The only pairs of skew-adjacency cospectral odd-cycle graphs on 6 or fewer
vertices.

The following lemma shows that the odd-cycle graphs are the only graphs
whose skew-adjacency matrices all have the same spectrum.

Theorem 4.2. The skew-adjacency matrices of a graph G are all cospectral
if and only if G has no even cycles.

Proof. The sufficiency has already been observed in Lemma 4.1.
For the necessity, suppose that G has finite even girth l. Then each

collection U in U e
l consists either of a single l-cycle in G or a matching in

G covering l vertices. By (8), the first l coefficients of the characteristic
polynomial of a skew-adjacency matrix S = S(Gσ) are

sk = mk(G) when k < l and sl = ml(G)− 2
∑
l(C)=l

σ(C), (14)

where mk(G) is the number of matchings in G covering k vertices and the
sum is taken over all cycles C in G of (smallest even) length l. Thus, sl is the
first coefficient that could possibly be used to distinguish the characteristic
polynomials of two skew-adjacency matrices of G.

For an edge e, let n+(e) be the number of l-cycles C in G that contain
e and have σ(C) = 1, and let n−(e) be defined analogously. Suppose that

11



n+(e) ̸= n−(e). If the direction of the arc on e is reversed, then in (14)
the contribution from the matchings will be unaffected as will that from the
l-cycles not containing e. But the contribution from the l-cycles that contain
e equals −2 (n+(C)− n−(C)) and will be negated. Consequently, sl will
change. Thus G will have a skew-adjacency matrix whose spectrum differs
from that of S and the necessity will have been proved.

Suppose then that n+(e) = n−(e) for all edges e in G and all orientations
Gσ of G. We shall see that this leads to a contradiction.

For t ∈ {1, . . . , l}, let n+(e1, . . . , et) be the number of l-cycles C in G that
have σ(C) = 1 and contain all of e1, . . . , et. Define n−(e1, . . . , et) analogously.

We claim that for each t ∈ {1, . . . , l}, n+(e1, . . . , et) = n−(e1, . . . , et) for
all orientations Gσ and all edges e1, . . . , et. We proceed by induction on t.

The case t = 1 is assumed. Suppose that the claim holds for some t < l
and let Gσ be an orientation of G. For edges e1, e2, . . . et, et+1 in G, let
n+(e1, . . . , et, et+1) denote the number of l-cycles C that have σ(C) = 1
and contain edges e1, . . . , et, but not edge et+1. Define n−(e1, . . . , et, et+1)
analogously. Then

n+(e1, . . . , et) = n+(e1, . . . , et, et+1) + n+(e1, . . . , et, et+1),

n−(e1, . . . , et) = n−(e1, . . . , et, et+1) + n−(e1, . . . , et, et+1),

and n+(e1, . . . , et) = n−(e1, . . . , et) by assumption. Next, consider the orien-

tation G̃ obtained from Gσ by reversing the orientation of et+1. Then

ñ+(e1, . . . , et) = n−(e1, . . . , et, et+1) + n+(e1, . . . , et, et+1),

ñ−(e1, . . . , et) = n+(e1, . . . , et, et+1) + n−(e1, . . . , et, et+1),

and ñ+(e1, . . . , et) = ñ−(e1, . . . , et) by assumption. Consequently,

n+(e1, . . . , et, et+1)− n−(e1, . . . , et, et+1)

= n−(e1, . . . , et, et+1)− n+(e1, . . . , et, et+1)

= n+(e1, . . . , et, et+1)− n−(e1, . . . , et, et+1).

Lines 1 and 3 above are equal and sum to zero. Thus n+(e1, . . . , et, et+1) =
n−(e1, . . . , et, et+1), as desired. This completes the proof of the induction
step, and the claim.

In particular, for any orientation Gσ, and edges e1, . . . , el of an l-cycle,
we have n+(e1, . . . , el) = n−(e1, . . . , el). This is a contradiction, since one
member of the equality is 0, while the other is 1.
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In the proof of Theorem 4.2, it was shown that if G is a graph with finite
even girth l, then n+(e) ̸= n−(e) for some orientation Gσ of G and some
edge e in G. It was necessary to prove this because it need not hold for all
orientations Gσ. For example, for the orientation Gσ of the 4 × 4 square
lattice on a torus with 16 vertices and 16 squares shown in Figure 6, l = 4
and n+(e) = n−(e) = 1 for all edges e.

+

+

+

+

+

+

+ +

- -

- -

- -

- -

Figure 6: A square lattice on a torus oriented so that n+(e) = n−(e) = 1 for all edges e.

If A is an n × n matrix and R is a sequence with distinct entries from
[n], then A[R] is the matrix obtained from A by selecting rows with indices
in R and columns with indices in R, taken in the order that they appear
in R. Thus, if R is a strictly increasing sequence, then A[R] is a principal
submatrix of A. Also, let A(R) be the submatrix of A obtained by deleting
rows and columns with indices in R. (Here, the order of the entries of R is
not important).

Note that if S is a skew-adjacency matrix of a graph G of order n and
R ( [n], then S[R] is a skew-adjacency matrix of G[R] = G−R, the induced
subgraph of G obtained by deleting the vertices in the complement R of the
proper subset R. We now have the following theorem.

Theorem 4.3. Let G be a simple graph with vertex set [n]. Then G is an
odd-cycle graph if and only if any one of the following conditions holds.

1. G has no even cycles.

2. Each induced subgraph of G has at most one perfect matching.

3. For each nonempty subset R ⊆ [n], either detS[R] = 1 for every skew-
adjacency matrix S of G, or detS[R] = 0 for every skew-adjacency
matrix S of G.

4. For each skew-adjacency matrix S of G and each nonempty subset R ⊆
[n], detS[R] = 0 or 1.

13



5. For every skew-adjacency matrix S of G and each k ∈ [n], the coefficient
sk of the characteristic polynomial of S is equal to mk(G), the number
of matchings in G that cover k vertices.

6. The skew-adjacency matrices of G all have the same spectrum.

Proof. Condition 1 is the definition of an odd-cycle graph.
1 ⇒ 2. If G has no even cycles, no induced subgraph could have two

perfect matchings because their symmetric difference would contain an even
cycle.

2⇒ 3. Because detS[R] = (pf S[R])2, it follows that detS[R] = 1 if G[R]
has one perfect matching and detS[R] = 0 if G[R] has no perfect matching.

3⇒ 4. This implication is immediate.
4 ⇒ 1. We argue by contradiction. Suppose that G contains an even

cycle and R is the vertex set of a cycle in G of shortest even length. Then
the edges of the induced subgraph G[R] consist of the edges of the cycle
and perhaps some chords which do not lie on shorter even cycles in G[R].
It follows that either G[R] = K4 or that G[R] has at most one chord. If S
is a skew-adjacency matrix for G, then S[R] is a skew-adjacency matrix for
G[R]. If G[R] has no chords then by (9), G[R] (hence G) may be oriented
so that detS[R] = 4. If G[R] has one chord, then it may be deleted since
neither of the two odd cycles it creates will affect detS[R]. If G[R] = K4

then by the comment following (11), G[R] has a skew-adjacency matrix with
determinant m4(K4)

2 = 9.
1⇒ 5. This is proved in Lemma 4.1.
5⇒ 6. The skew-adjacency matrices of G all have the same characteristic

polynomial, and so the same spectrum.
6⇒ 1. This is the result of Theorem 4.2.

5. Some polynomial comparisons

As before, let

pA(x) = det(xI − S) = xn + a1x
n−1 + · · ·+ an

be the characteristic polynomial of the adjacency matrix A of a graph G,
and let

pS(x) = det(xI − S) = xn + s1x
n−1 + · · ·+ sn

be the characteristic polynomial of a skew-adjacency matrix S associated
with an orientation Gσ of G. Recall that mk(G) denotes the number of
matchings in G on k vertices. Thus mk = 0 if k is odd.

14



Lemma 5.1. Let A be the adjacency matrix of a simple graph G with vertex
set [n] and let S be the skew-adjacency matrix of G associated with an orien-
tation σ of G. Then the polynomial coefficients ak and sk have the following
properties.

1. sk ≡ ak ≡ mk(G) (mod 2) for all k ∈ [n], sk = 0 for all odd k ∈ [n],
and sk = mk(G) for all even k with 1 < k < ge(G).

2. ak is even for all odd k ∈ [n] and ak = 0 for all odd k < g(G).

3. ak = (−1)k/2mk(G) = (−1)k/2sk for all k < g(G).

4. If g(G) is odd, ak = 0 for all even k ∈ [n] with g(G) < k < 2g(G).

5. If g(G) is even, ak = 0 for all odd k ∈ [n] with g(G) < k < 2g(G).

6. If an is odd, then G has a perfect matching.

7. If an is odd, then n is even and an ≡ n+ 1 (mod 4).

8. sn = detS = (pf S)2 ≤ mn(G)2 with equality if and only if either n is
odd (so sn = mn(G) = 0) or n is even and each nice even cycle in G
is negatively oriented relative to σ.

Proof. Properties 1-6 follow immediately from (5) and (8). Property 7 follows
from property 1 and [1, Thm. 1]. Property 8 follows from the definition and
properties of the pfaffian and the comment after inequality (11).

A graph G of even order is said to be Pfaffian if it has an orientation σ
such that | pf Sσ| = mn(G), that is, if the condition for equality in Lemma
5.1(8) holds. For example, an examination of the constant coefficient for each
of the characteristic polynomials in Example 7.1 shows that K4 is Pfaffian
but K3,3 is not. Clearly, every cactus of even order has an orientation that
satisfies the equality condition in Lemma 5.1(8) and so is Pfaffian. In fact, a
construction of Kasteleyn [20, p.322] shows that every planar graph of even
order is Pfaffian.

Recall that if G is an odd-cycle graph, then sn = mn(G) for all orienta-
tions σ of G. Also, the condition for equality in statement 8 of Lemma 5.1
is satisfied vacuously. Thus mn(G) = mn(G)2 so mn(G) = 0 or 1. That is,
each odd-cycle graph has at most one perfect matching. Of course, this must
be the case because the components of the symmetric difference of the edge
sets of two distinct perfect matchings are even cycles.

We now examine the polynomials pA and pS for two special types of
graph: those with no odd cycles (the bipartite graphs), and those with no
even cycles (the odd-cycle graphs).
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If G has no odd cycles, that is, if G is bipartite, then Lemma 5.1 implies
that ak = sk = 0 for all odd k and all skew-adjacency matrices S of G.
Lemmas 5.2 and 5.3 imply that more can be said for some skew-adjacency
matrix of a bipartite graph G. (The equivalence of conditions 1 and 2 in
both of the Lemmas 5.2 and 5.3 was proved by Shader and So in [22].)

Lemma 5.2. Let G be a graph of order n with adjacency matrix A. Then
the following conditions are equivalent.

1. G is bipartite.

2. SpecS = i SpecA for some skew-adjacency matrix S of G.

3. pS(x) = (−i)npA(ix), for some skew-adjacency matrix S of G.

4. For some skew-adjacency matrix S of G, ak = (−1)k/2sk for all even
k ∈ [n] and ak = sk = 0 for all odd k ∈ [n].

Proof. 1 ⇒ 2. If G is bipartite, let B be the biadjacency matrix of G as
shown in (15). Let Gσ be the orientation of G obtained by taking σ(k, l) = 1
when kl ∈ E(G) and k < l. Then the skew-adjacency matrix associated with
Gσ is the matrix S in (15). Then iS = P−1AP where

A =

[
O B
B⊤ O

]
, S =

[
O B
−B⊤ O

]
, and P =

[
I O
O iI

]
. (15)

Thus, A is similar to iS and so SpecA = i SpecS. But SpecS = SpecS⊤ =
Spec(−S) = − SpecS, so SpecS = i SpecA.

2⇒ 3. If the eigenvalues of A are λ1, . . . , λn and (2) holds, then the eigen-
values of S are iλ1, . . . , iλn. Thus, pS(x) = Πn

k=1(x − iλk) = Πn
k=1(−i)(ix +

λk) = (−i)npA(ix), since condition 2 implies that SpecA = − SpecA.
3 ⇒ 4. If condition 3 holds then sk = (−i)nin−kak = ikak. Since sk and

ak are real numbers, ak = sk = 0 if k is odd and ak = (−1)k/2sk if k is even.
4⇒ 1. If condition 4 holds, then pA(λ) = 0 if and only if pA(−λ) = 0. A

standard result [8, p.87] now implies that G is bipartite.

As a special case of Lemma 5.2, we next consider graphs G that have no
cycles at all, either odd or even (that is, forests).

Lemma 5.3. Let G be a graph of order n with adjacency matrix A. Then
the following conditions are equivalent.

1. G is a forest.
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2. SpecS = i SpecA for all skew-adjacency matrices S of G.
3. pS(x) = (−i)npA(ix), for all skew-adjacency matrices S of G.
4. For all skew-adjacency matrices S of G, (−1)k/2ak = mk(G) = sk for

all even k ∈ [n] and ak = sk = 0 for all odd k ∈ [n].

Proof. If condition 1 holds, then 4 holds by Lemma 5.1(3). If condition 4
holds, then the skew-adjacency matrices of G are all cospectral so G has no
even cycles by Theorem 4.2. Also, G has no odd cycles by Lemma 5.2. Thus
G is a forest, so 1 holds. The remaining equivalences follow easily.

In Lemma 5.3(4), when G is bipartite but not a forest, it is possible that
sn ̸= mn(G) for all skew-adjacency matrices of G. For example, if G is the
4-cycle, then m4(G) = 2 but s4(G) = detS must be a perfect square.

Since graphs with no even cycles (the odd-cycle graphs) are in a sense the
opposite of the well-studied class of graphs with no odd cycles (the bipartite
graphs), it is natural to seek properties of the odd-cycle graphs. A feasible
task would be to obtain more results on the skew spectrum of an odd-cycle
graph because Theorem 4.3(5) can be used to relate its unique skew charac-
teristic polynomial to its matchings polynomial (defined below), and because
the latter polynomial is well-studied [10, 20].

The matchings polynomial of a graph G of order n [10, p.1] is

m(G, x) =
n∑

k=0

(−1)k/2mk(G)xn−k,

where m0(G) = 1 and the k’th summand is 0 if k is odd. Here, as before,
mk(G) denotes the number of matchings in G that cover k vertices, while in
the literature, mk(G) usually denotes the number of matchings in G with k
edges. For example, for the graph G in Figure 3, m2(G) = 9, m4(G) = 21,
and m6(G) = 11, so m(G, x) = x7 − 9x5 + 21x3 − 11x.

The following lemma is an immediate consequence of the preceding re-
sults. In part 2 of the lemma, it is well-known that m(G, x) = pA(x) if G is
a forest (see, e.g., [10, Cor. 1.4, p.21], [20, Thm. 8.5.3]).

Lemma 5.4. Let G be a graph of order n with adjacency matrix A.

1. G is an odd-cycle graph if and only if pS(x) = (−i)nm(G, ix) for all
skew-adjacency matrices S of G.

2. G is a forest if and only if m(G, x) = pA(x).

Problem 1. If pS(x) = (−i)nm(G, ix) for some skew-adjacency matrix S of
G, must G be an odd-cycle graph?
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6. Spectral properties of skew-adjacency matrices

If M is an invertible matrix of order n with entries from some field and
R is a proper nonempty subset of [n] of cardinality r = |R|, Jacobi’s identity
(see, e.g., [6, p.301]) implies that

(detM)r−1 detM(R) = det ((adjM)[R]) , (16)

where adjM = (cof A)⊤, the transpose of the matrix of cofactors of M .
If z is a column n-vector with complex entries, the notation |z| will be

reserved for the vector with |z|k = |zk| for each k ∈ [n]. The vector z is a
unit vector if z∗z = 1, where z∗ = z̄⊤, the complex conjugate transpose of z.

Lemma 6.1. Let G be an odd-cycle graph and let iα, α real, be a (common)
eigenvalue of the skew-adjacency matrices of G. Let σ be an orientation of
G with skew-adjacency matrix Sσ, and let zσ be a unit iα-eigenvector of Sσ.
If iα is simple2 then |zσ| is the same vector for all orientations σ of G.

Proof. Let M = λI−Sσ. Then M adjM = (detM)I = det(λI−Sσ)I. Thus,
if λ is an eigenvalue of Sσ, then each nonzero column of adjM (if any) is
a λ-eigenvector of Sσ. If λ is a simple eigenvalue of Sσ, then adjM has a
nonzero column because M is similar to a diagonal matrix with one diagonal
entry 0, and so has rank equal to n− 1.

Because M = λI − Sσ is invertible over the field of rational functions in
λ, we may apply identity (16) to a 2 × 2 submatrix of adjM to obtain the
polynomial identity

detM detM(k, l) = det ((adjM)[k, l])

= Ck,k(M)Cl,l(M)− Ck,l(M)Cl,k(M), (17)

where Ck,l(M) is the (k, l) cofactor of M . But detM , detM(k, l), Ck,k(M)
and Cl,l(M) are the characteristic polynomials of skew-adjacency matrices of
the odd-cycle graphs G, G− k− l, G− k and G− l, respectively, and so do
not depend on σ. Thus Ck,l(M)Cl,k(M) does not depend on σ. Also,

Cl,k(M) = Ck,l(M
⊤) = Ck,l(λI + Sσ) = (−1)n−1Ck,l(−λI − Sσ),

so, if λ = iα, then Cl,k(M) = (−1)n−1Ck,l(M). Thus, if λ = iα, then
|Cl,k(M)| does not depend on σ. If λ = iα is a simple eigenvalue of Sσ then,

2For example, by Lemma 6.3, iρ(Sσ) is simple if G is connected.
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as observed earlier, we may choose l ∈ [n] so that column l of adjM is an
iα eigenvector, wσ say, of Sσ. Then |wσ|k = |Cl,k(M)| = |Cl,k(iαI − Sσ)| for
k ∈ [n], so |wσ| does not depend on the orientation σ of G. If zσ is a unit
iα-eigenvector of Sσ, then zσ is a scalar multiple of wσ since iα is simple.
Thus, |zσ| does not depend on σ.

If M is a square matrix, let ρ(M) denote the spectral radius of M , that
is, ρ(M) = maxλ |λ| where the maximum is taken over all eigenvalues of
M . If G is a graph with adjacency matrix A, let ρ(G) = ρ(A) and let
ρs(G) = maxS ρ(S) where the maximum is taken over all of the skew-
adjacency matrices S of G. We refer to ρ(G) as the spectral radius of G
and ρs(G) as the maximum skew-spectral radius of G.

Lemma 6.2. If G is a simple graph, then ρs(G) ≤ ρ(G). Moreover,

1. If G is an odd-cycle graph, then ρs(G) = ρ(S) for all skew-adjacency
matrices S of G, and ρs(G) is the largest root of m(G, x).

2. If G is bipartite, then ρs(G) = ρ(G). If G is connected and not bipartite,
then ρs(G) < ρ(G).

3. If G is connected and bipartite and A =

[
O B
B⊤ O

]
, S̃ =

[
O B̃

−B̃⊤ O

]
,

are an adjacency and a skew-adjacency matrix of G, then ρ(A) = ρ(S̃)

if and only if B̃ = D1BD2 for some {−1, 1}-diagonal matrices D1, D2.

Proof. If S is a skew-adjacency matrix of a graph G with adjacency matrix
A, then A = |S|, where |S| is the matrix with entries |S|k,l = |sk,l| for all k, l.
By the Perron-Frobenius theorem [17, p.509], ρ(S) ≤ ρ(A) = ρ(G).

1. This follows from Lemmas 4.1 and 5.4(1).
2. By Lemma 5.2, ρs(G) = ρ(G).
Suppose G is connected and ρs(G) = ρ(G). Then ρ(S) = ρ(A) for some

skew-adjacency matrix S of G. Since iρ(S) is an eigenvalue of S, the Perron-
Frobenius theorem implies S = iDAD−1 for some diagonal matrix D with
complex diagonal entries d1, . . . , dn of modulus 1. Thus, idkd̄l ∈ {−1, 1}
when kl ∈ E(G). We may take d1 = 1, so this implies that the vertices of the
connected graph G may be alternately labelled by the two symbols ±1, ±i
so that adjacent vertices are assigned different labels. Thus G is bipartite.

3. If ρ(S̃) = ρ(A) then, because ρ(S) = ρ(A) for S as in (15), it follows

easily from the Perron-Frobenius theorem that S̃ = DSD−1 where D may
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be chosen to be a {−1, 1}-diagonal matrix since S and S̃ have real entries.

Then B̃ = D1BD2 where D1 ⊕D2 is a partition of D compatible with that
of S.

The converse implication in statement 3 follows easily.

Problem 2. If G is a connected graph and ρ(S) is the same for all skew-
adjacency matrices S of G, must G be an odd-cycle graph?

Example 6.1. (The extremal skew-spectral radii of trees on n vertices.) Let
T be a tree on n vertices. Because T is bipartite, ρs(T ) = ρ(T ). Lovász and
Pelikán [19] show that ρs(T ) = ρ(T ) ≤ ρ(K1,n−1) =

√
n− 1, and a result

of Hong [16, Thm. 1] implies that equality holds only if T = K1,n−1, the
star on n vertices. Also, a result of Collatz and Sinogowitz [7] implies that,
ρs(T ) = ρ(T ) ≥ ρ(Pn) = ρs(Pn), with equality only if T = Pn, the path on n
vertices (see also [19]).

If S is a skew-symmetric real matrix of order n and z is a column n-vector
with complex entries, then z∗Sz is pure imaginary:

z∗Sz =
∑
k ̸=l

sk,lz̄kzl =
∑
k<l

sk,l(z̄kzl − z̄lzk) = 2i
∑
k<l

sk,l Im(z̄kzl).

Let wkl = 2sk,l Im(z̄kzl) = 2sl,k Im(z̄lzk). Because−iS is Hermitian, z∗(−iS)z
is real, so if S is a skew-adjacency matrix of a graph G, then

Im(z∗Sz) = z∗(−iS)z =
∑

kl∈E(G)

wkl.

Also, ρ(−iS) = maxz∗z=1 z
∗(−iS)z, and an examination of the proof of this

fact (in [17, p.176], say) shows that equality is attained if and only if the unit
vector z is an eigenvector of −iS for the eigenvalue ρ(−iS) = ρ(S). Thus

ρ(S) = max
z∗z=1

Im(z∗Sz) = max
z∗z=1

∑
kl∈E(G)

wkl where wkl = 2sk,l Im(z̄kzl), (18)

and equality is attained if and only if z is a unit ρ(S)-eigenvector of −iS, or,
equivalently, a unit iρ(S)-eigenvector of S.

Lemma 6.3. Let G be connected and let S be a skew-adjacency matrix of
G for which ρ(S) = ρs(G). If z is an eigenvector of S for the eigenvalue
iρ(S), then zk ̸= 0 for all k ∈ [n], iρ(S) is simple, and wkl > 0 for all
kl ∈ E(G). Moreover, there is a {−1, 1}-signed permutation matrix P such
that (PSP⊤)k,l ≥ 0 when k < l.
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Proof. By scaling z, we may assume that z∗z = 1. Then, by (18), ρ(S) =

Im(z∗Sz). Suppose that kl ∈ E(G). Let Ŝ be the skew-adjacency matrix of

G such that ŝk,l = −sk,l and ŝi,j = si,j when ij ̸= kl. Then ρ(S) ≥ ρ(Ŝ) and,

by (18), ρ(S)− ρ(Ŝ) ≤ Im(z∗Sz)− Im(z∗Ŝz) = 2wkl. Thus, wkl ≥ 0.

Suppose that wkl = 0. Then ρ(S) = ρ(Ŝ) = ρ say, and ρ(Ŝ) = Im(z∗Ŝz)

so z is also an eigenvector of Ŝ for the common eigenvalue iρ. Thus Sz =
iρz = Ŝz, so 0 = (Sz)k − (Ŝz)k = 2sk,lzl. Thus, zl = 0 and so wjl = 0 for all
vertices j adjacent to l. Since G is connected, by repeating this argument,
it follows that if wkl = 0, then zj = 0 for all vertices j in G. Since z is not
a zero vector, this is a contradiction. Thus, wkl > 0 for each edge kl in G.
But then wk ̸= 0 for all k ∈ [n], so iρ(S) is simple.

Let D be the diagonal matrix with k’th diagonal entry equal to 1 if
arg zk ∈ [0, π) and −1 if arg zk ∈ [π, 2π). Then arg(Dz)k ∈ [0, π) for all
k ∈ [n]. Choose a permutation matrix Q so that z̃ = QDz is such that
arg z̃k ≤ arg z̃l if k < l and let P = QD. Then P is a {−1, 1}-signed
permutation matrix and z̃ is an iρ(S)-eigenvector of S̃ = PSP⊤. Also,

ρ(S) = ρ(S̃) since S̃ is similar to S, and Im ¯̃zkz̃l ≥ 0 if k < l since arg ¯̃zkz̃l =
arg z̃l−arg z̃k ∈ [0, π). By the first part of the lemma, w̃kl = 2s̃k,l Im ¯̃zkz̃l > 0
for all kl ∈ E(G), so s̃k,l = 1 when kl ∈ E(G) and k < l.

Lemma 6.3 may fail if ρ(S) < ρs(G). For example, by (8), the character-
istic polynomial of the skew-adjacency matrix of a positive orientation (resp.
negative orientation) of the 4-cycle C4 is z4 + 4z2 (resp. z4 + 4z2 + 4). Thus
ρs(C4) = 2, and if S is the skew-adjacency matrix associated with a negative
orientation, then iρ(S) =

√
2i with multiplicity 2.

If G is a graph with vertex set [n], let G− kl denote the graph obtained
by deleting an edge kl of G (but not the vertices k or l), and let G− k and
G−k− l be the induced subgraphs obtained by deleting vertex k and vertices
k and l, respectively.

Lemma 6.4. If kl is an edge of G then ρ(G) ≥ ρ(G−kl), ρs(G) ≥ ρs(G−kl),
ρ(G) ≥ ρ(G− k) and ρs(G) ≥ ρs(G− k), with all inequalities strict when G
is connected.

Proof. The statements for ρ(G) follow from the Perron-Frobenius theorem.

Let Ŝ be a skew-adjacency matrix of G− kl for which ρ(Ŝ) = ρs(G− kl)

and let z be a unit eigenvector of Ŝ for the eigenvalue iρ(Ŝ). Let S be the
skew-adjacency matrix for G with si,j = ŝi,j if ij ̸= kl and with sk,l = 1 or −1
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chosen so that wkl = 2sk,l Im(z̄kzl) ≥ 0. Then by (18), ρs(G)− ρs(G− kl) ≥
ρ(S) − ρ(Ŝ) ≥ Im(z∗Sz) − Im(z∗Ŝz) = wkl ≥ 0. Thus, ρs(G) ≥ ρs(G − kl).
Moreover, if ρs(G) = ρs(G− kl) then ρs(G) = ρ(S), wkl = 0 and Lemma 6.3
implies that G is not connected. Thus, ρs(G) > ρs(G− kl) if G is connected
and kl is an edge of G.

By removing edges of G incident to k, we also have ρs(G) ≥ ρs(G − k)
with strict inequality when G is connected.

Example 6.2. (The complete graph.) If G is a graph on n vertices and Kn

is the complete graph of order n, it follows from Lemmas 6.3 and 6.4 that
ρ(G) ≤ ρ(Kn) = ρ(A) = n − 1 and ρs(G) ≤ ρs(Kn) = ρ(S) = cot π

2n
where

A is the adjacency matrix of Kn and S is the skew-adjacency matrix of Kn

which has all entries above the diagonal equal to 1. The second inequality is
a special case of Pick’s inequality [12, 21].

Remark 6.1. (Generalizations to real skew-symmetric matrices.) Many of
the preceding observations hold for skew-adjacency matrices of positive edge-
weighted graphs; equivalently, for skew-signings of symmetric matrices with
zero diagonal and nonnegative real entries. Suppose that G is an edge-
weighted graph with positive edge weights ai,j = aj,i when ij ∈ E(G) and
ai,j = 0 when ij ̸∈ E(G). If σ is an orientation of G, we may define an
associated skew-weighted matrix Sσ by Sσ

i,j = aij = −Sσ
j,i if i → j in Gσ.

Then, Lemmas 6.1, 6.3 and 6.4 all hold for positive edge-weighted graphs. In
particular, if G is a positive edge-weighted odd-cycle graph, the characteristic
polynomial of Sσ does not depend on σ, so ρ(Sσ) is the same for all σ.
Also, Lemma 6.3 may be regarded as an analogue (for those skew-adjacency
matrices of weighted connected graphs that have maximum spectral radius)
of the Perron-Frobenius Theorem.

Example 6.3. (Minimum skew-spectral radii of connected odd-cycle graphs.)
By Lemma 6.4, if G is a connected odd-cycle graph on n vertices with min-
imum skew-spectral radius, then G must be a tree. From Example 6.1 it
follows that among the connected odd-cycle graphs on n vertices, the path
Pn has the minimum skew-spectral radius.

Let Hn be the odd-cycle graph formed from the star K1,n−1 by adding
⌊(n− 1)/2⌋ independent edges between pairs of pendant vertices.

Lemma 6.5. 1. |E(Hn)| = ⌊3(n− 1)/2⌋.
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2. ρ(Hn) equals 1
2
+

√
n− 3

4
when n is odd and the largest root of x3 −

x2 − (n− 1)x+ 1 when n is even.

3. ρs(Hn) equals
√
n when n is odd and

√
n+
√
n2 − 4/

√
2 when n is

even.

Proof.
1. By the definition of Hn, |E(Hn)| = n−1+ ⌊(n−1)/2⌋ = ⌊3(n−1)/2⌋.
2. Let A be the adjacency matrix of Hn and let ρ = ρ(Hn) = ρ(A).

Because Hn is connected, ρ is a simple eigenvalue of A and Ax = ρx for some
eigenvector x with positive entries. If x̂ is a vector obtained by permuting
the entries of x by an automorphism of Hn, then x̂ is also a ρ-eigenvector of
A. Because ρ is simple, each such vector x̂ is a multiple of x. It follows that
xi = xj whenever i and j are vertices of Hn of degree 2. Solving the system
Ax = ρx with this restriction on x gives the values in statement 2.

3. If n is odd, delete the unique vertex of degree n− 1 in Hn and use the
standard identities for the matchings polynomial [10, p.2] to get

m(Hn, x) = xm(Mn−1, x)− (n− 1)m(Mn−3, x)

= x(x2 − 1)
n−1
2 − x(n− 1)(x2 − 1)

n−3
2 ,

where Mn−1 is a matching on n−1 vertices and Mn−2 is a matching on n−3
vertices together with an isolated vertex. Then m(Hn, x) = x(x2−1)n−3

2 (x2−
n) and ρs(Hn) =

√
n by Lemma 6.2(1).

If n is even, delete the unique vertex of degree 1 in Hn to get m(Hn, x) =
xm(Hn−1, x) − m(Mn−2, x) and substitute the previous formula with n re-

placed by n−1 to get m(Hn, x) = (x2−1)
n−4
2 (x4−nx2+1). Then the largest

root of x4 − nx2 + 1 gives the stated value for ρs(Hn).

Recall that a cactus is a connected graph each of whose blocks is either a
cycle or an edge. The next lemma asserts that the graph Hn has the greatest
size and the greatest spectral radius of the cactii of order n. Part 2 of the
lemma is proved in [5].

Lemma 6.6. If G is a cactus of order n, then

1. |E(G)| ≤ |E(Hn)| and equality holds if and only if at most one block of
G is a single edge and all other blocks of G are 3-cycles.

2. ρ(G) ≤ ρ(Hn) and equality holds if and only if G ∼= Hn.
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Proof. 1. Since a cactusG is planar and each edge ofG is on at most one finite
face, the number of finite faces is at most |E(G)|/3. It follows from Euler’s
formula for connected planar graphs [4, p.143] that |E(G)| ≤ ⌊3(n − 1)/2⌋.
Thus, by Lemma 6.5(1), |E(G)| ≤ |E(Hn)| and equality is attained by the
graph Hn (and every connected odd-cycle graph whose cycles are all triangles
and with at most one edge not in some triangle).

2. See [5, Thm. 3.1].

We conjecture that Hn also has the greatest skew-spectral radius of the
odd-cycle graphs G of order n.

Conjecture 6.1. If G is an odd-cycle graph of order n, then ρs(G) ≤ ρs(Hn)
and equality holds if and only if G ∼= Hn.

Of the odd cycle graphs with n vertices, ifG has the greatest skew-spectral
radius, G must be edge maximal by Lemma 6.4. Thus, by Lemma 6.6(1), to
prove Conjecture 6.1, it would be sufficient to prove that G must contain a
vertex of degree n− 1.

There are many papers containing techniques for examining the max-
imum spectral radii of the adjacency matrices and Laplacian matrices of
graphs with few cycles (e.g., [9, 14, 15, 24]). Corresponding techniques for
the skew-adjacency matrices of odd-cycle graphs may be helpful. One of the
standard techniques used to compare spectral radii of adjacency matrices is
that of edge-switching [24]. For skew-adjacency matrices, the edge-switching
technique takes the following form.

Lemma 6.7. Let S be a skew-adjacency matrix of a simple graph G of order
n and let z be a unit eigenvector of S for the eigenvalue iρ(S). Let u, v be two
vertices of G and suppose that u1u, . . . , utu are edges of G but u1v, . . . , utv
are not. Let Ĝ be the graph obtained from G by deleting the edges uku and
adding the edges ukv, 1 ≤ k ≤ t. If

∑t
k=1 (| Im(z̄uk

zv|)− suk,u Im(z̄uk
zu)) ≥ 0,

then ρs(Ĝ) ≥ ρ(S).

Proof. Let Ŝ be the skew-adjacency matrix of Ĝ with ŝi,j = si,j whenever
(i, j) is none of (uk, v) or (v, uk) for 1 ≤ k ≤ s, and let ŝuk,v = −ŝv,uk

have

the same sign as Im(z̄uk
zv). Then ρ(Ŝ) − ρ(S) ≥ Im(z∗Ŝz) − Im(z∗Sz) =∑t

k=1 (| Im(z̄uk
zv)| − suk,u Im(z̄uk

zu)) ≥ 0.
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7. Skew-adjacency matrices of a graph with different spectra

A key notion in estimating the number of skew-adjacency matrices of a
graph with distinct spectra is that of sign similarity. Two n× n matrices A
and Ã are sign similar if Ã = DAD for some diagonal matrixD with diagonal
entries di ∈ {−1, 1} for i ∈ [n]. In particular, two skew-adjacency matrices

S, S̃ of a graph G of order n with edge set E(G) are sign similar if and only if
there are n scalars di ∈ {1,−1} such that s̃i,j = didjsi,j whenever ij ∈ E(G).
Sign similar skew-adjacency matrices of a graph must be cospectral but, as
the following lemma shows, the converse need not hold.

Lemma 7.1. Let S be a skew-adjacency matrix of a graph G. Then S⊤ is
sign similar to S if and only if G is bipartite.

Proof. If S is a skew-adjacency matrix, then S⊤ = −S is sign similar to S if
and only there are di ∈ {1,−1} such that didj = −1 whenever ij ∈ E(G);
that is, if and only if G is bipartite.

The following lemma shows that, in determining skew-adjacency matrices S
of a graph G that have distinct spectra, it is sufficient to consider those for
which si,j = 1 when either i < j and ij is an edge of a prespecified spanning
forest of G or i < j and ij is on no even cycle in G.

Lemma 7.2. Let F be a forest in a graph G and let S be a skew-adjacency
matrix of G. Then there is a skew-adjacency matrix S̃ sign-similar to S with
s̃i,j = 1 when either (a) i < j and ij is an edge of F or (b) i < j and ij is
an edge of G on no even cycle in G.

Proof. To prove part (a), we apply induction on the number m of edges of

F to show that there is a skew-adjacency matrix S̃ sign similar to S with
s̃i,j = 1 whenever i < j and ij is an edge of F .

If m = 1, F has a single edge ij. If si,j = 1 when i < j, take S̃ = S.

If si,j = −1, let S̃ = DSD where dj = −1 and dk = 1 for k ̸= j. Then
s̃i,j = −si,j = 1.

If F has m edges, let r be a leaf of F and let t be its neighbor in F . By
induction, there is a diagonal matrix D for which S̃ = DSD has s̃i,j = 1
when i < j and ij is an edge of F\{r}. If r < t and s̃r,t = 1 or t < r and

s̃t,r = 1, we are done. If not, let D̂ be the diagonal matrix obtained from D
by replacing dr by −dr. Because r is adjacent only to t in F , the product
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Ŝ = D̂SD̂ will still equal 1 on (i, j) entries for which i < j and ij is an edge
of F\{r}, but the signs of the (r, t) and (t, r) entries will be reversed.

To see part (b), note that if ij is an edge of G in no even cycle in G, then
sk is unchanged in (8) if the direction of on ij is reversed. Thus sk does not
depend on the sign of si,j.

We note that the previous lemma gives an alternate proof of the fact that
the skew-adjacency matrices of an odd-cycle graph all have the same spectra.

If G is a connected graph, to obtain an upper bound on the number
of possible skew-adjacency matrices of G with distinct spectra, it would be
appropriate to first choose a spanning tree T ofG that contains as many edges
as possible that are in even cycles of G. Then assign si,j = 1 if i < j and ij is
an edge of T or if i < j and ij is on no even cycle of G. If m edges of G that
are on even cycles remain unassigned, it follows that G will have at most 2m

skew-adjacency matrices with distinct spectra. The following example shows
that although this upper bound can be attained, it is sometimes very poor.

Example 7.1. (Characteristic polynomials of all skew-adjacency matrices of
some graphs.) In the (unoriented) graph G in Figure 3, the path 1 − 2 −
3 − 4 − 5 − 6 − 7 is a spanning tree, and the edge 17 is on no even cycle
in G. As shown in Gσ, the 7 edges ij on the outer 7-cycle may be oriented
so that i → j when i < j, and the corresponding 7 entries of S above the
diagonal will equal 1. There are four possible ways that the remaining edges
25 and 16 may be oriented (only the orientation with 5 → 2 and 6 → 1 is
shown). The characteristic polynomials of the skew-adjacency matrices for
the four orientations are: x7 + 9x5 + 25x3 + 21x, x7 + 9x5 + 21x3 + 13x,
x7 + 9x5 + 17x3 + 5x and x7 + 9x5 + 21x3 + 5x.

On the other hand, if G is the complete graph K4, then G has 6 edges, 3
of which are in a spanning tree. Thus at most 26−3 = 8 distinct characteristic
polynomials can be obtained from skew-adjacency matrices. But it turns out
that there are only two: x4 + 6x2 + 1 and x4 + 6x2 + 9.

Also, if G is the complete bipartite graph K3,3, then G has 9 edges,
all cycles in G are even and a spanning tree has 5 edges. Thus at most
29−5 = 16 distinct characteristic polynomials are obtained from the skew-
adjacency matrices of G. It turns out that there are only three: x6 + 9x4,
x6 + 9x4 + 16x2 and x6 + 9x4 + 24x2 + 16.

It would be interesting to obtain good estimates on the numbers of skew-
adjacency matrices with distinct spectra for all Kn and Kn,n.
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Recent related work. The independent papers [13] and [18] (submitted
shortly after our original submission in December 2010), overlap ours in
places. In particular, both contain expressions for sk. In this revised sub-
mission, formula (7) for sk has been modified to resemble that in [13].

Acknowledgements. This paper contains research begun by the authors at
the workshop on Theory and Applications of Matrices Described by Patterns,
held at the Banff International Research Station (BIRS), Alberta, Canada,
January 31 - February 5, 2010. We thank BIRS and the agencies that sponsor
it: the National Science and Engineering Research Council (Canada), the Na-
tional Science Foundation (United States), el Consejo Nacional de Ciencia y
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