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Abstract   

 

In this chapter we propose a new method of modelling urban pollutants arising 

from transportation networks. The efficacy of the proposed approach is demon-

strated by means of a number of examples. Our models give rise to a number of 

surprising observations that are relevant for the regulation of pollution in urban 

networks: Different actions are required for the control of different pollutants and 

low speed limits do not necessarily lead to low pollution. 

1  Introduction 

The issue of Green Control is likely to become a major research topic over the 

next decade. Roughly speaking, this term refers to the development of control 

strategies for deployment in large scale networks that can be used to regulate, 

share and optimize the use of quantities related to “green systems”. Generally 

speaking, these “green variables” might include atmospheric pollutants, carbon 

emissions, energy usage and reuse. One area, in which activity in “green control” 

is already underway, is in the regulation of pollution and emissions in urban trans-

portation networks.  In the automotive industry, public awareness of the link be-

tween greenhouse gasses and road transportation is great. While C02 emissions are 

ultimately harmful to humans through ozone depletion, road transportation is also 

very harmful to humans in a direct manner. According to a UK study (FoE 1999), 

road transportation’s percentage contribution to air pollution in 1999 was: 80% in 

the case of CO; 75% in the case of benzene; 50% in the case of NOx; 40% for hy-

dro carbons (producing ozone); and 25% of particulates, all of which are ex-

tremely harmful to humans. See (Levy et al. 2010) for details of established side-

effects of these pollutants. It is also important to note recent advances in health 
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science where the link between heart attack triggers and urban pollution is hy-

pothesized (Nawrot et al. 2011). 

Traditionally, researchers have advocated two approaches to reducing air pollu-

tion: the production of greener cars; and an overall reduction in road transporta-

tion. These involve not only introducing laws that produce ever more stringent 

regulations on engine manufacturers, but also some cities are trying to regulate 

pollution in certain areas through control policies. The city of Berlin, Germany, is 

one such example, where strict open-loop control policies based on clean engines 

are implemented.  

An alternative approach is to investigate advances in ICT for the automobile 

sector to control and regulate emissions and pollution in our cities. This latter ap-

proach builds on three policy directions coming from regulatory bodies (such as 

the EU and the US government) aimed at (1) reducing greenhouse gasses, (2) re-

ducing pollution peaks in our cities, and (3) developing instrumentation, coopera-

tive control strategies, and modelling techniques to enable the development of 

proactive traffic management systems, i.e. systems that predict traffic flow and 

take pre-emptive measures to avoid incidents (traffic build up, pollution peaks 

etc). It is also consistent with strategic developments in the automotive and net-

working industry where the control and regulation of large scale systems is seen as 

a priority objective in company roadmaps. Initiatives in this direction include the 

IBM smarter city initiative and the CISCO smart and connected communities pro-

gramme, as well as the many initiatives underpinning vehicle to vehicle communi-

cations and vehicle to infrastructure communications.  

Our objective in this work is more modest. While our ultimate objective is con-

trol and optimization, we are motivated by the fact that underpinning every good 

control strategy is an appropriate model. Our starting point is a recently proposed 

Markovian approach to modelling road network dynamics (Crisostomi et al. 

2011). As discussed in (Crisostomi et al. 2011), a Markovian framework is par-

ticularly appealing since it makes important information regarding the road net-

work available in a convenient form to the road network designer (congestion, av-

erage travel times, sensitive links in the road network). It is also useful for control 

and optimization applications. Our objective in this work is to demonstrate how 

this model can be extended to build emissions models, and to use this model to in-

form what might and might not be possible in a control setting. As we shall see, 

inference from the models will give rise to counter intuitive facts that must be 

taken into account when developing policy to reduce air pollution and emissions.  

2  Macroscopic models and Markov Chains 

Our approach, to be described later, is based on using Markov chains to model a 

large scale and highly complicated dynamic system. At a first glance this approach 

may seem strange and overly optimistic.  However, using Markov chains to model 
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highly complex dynamic systems has been successful in the Mathematics and En-

gineering communities. To give the reader a flavour of this prior work we now de-

scribe briefly two applications. 

 

As a first example, we consider a problem from astrophysics; namely, of a pla-

nar circular restricted three-body problem. This is a special case of the three body 

problem which has inspired a lot of advances in dynamic systems. Here two of the 

three bodies are assumed to have significantly more mass than the third and of 

these two bodies - the lighter one - is orbiting the heavier one on a circular trajec-

tory. The third body is free to move around the state space and it is assumed to be 

without mass. The movement of all three bodies is assumed to be restricted to a 

plane. We can imagine this as a planet that has a moon on a circular orbit and the 

third body is an asteroid whose motion is restricted to the plane in that the moons 

orbit lies. In (Koon et al. 2000,2002) the planar circular restricted three-body 

problem is analysed by partitioning the state space into three regions: an interior 

and an exterior region with respect to the moon, and a region close to the moon, 

where the asteroids motion is governed by the moon’s gravitational force. The au-

thors show that for any sequence of these regions they can find a possible orbit of 

the asteroid that will move through the regions in the given sequence. This is done 

by identifying a number of important system equilibria and corresponding invari-

ant manifolds. The existence of homoclinic and heteroclinic orbits is discussed. 

Chains of these orbits can be constructed such that solutions close to these chains 

visit the regions in the given sequence. This requires advanced methods from dy-

namic systems theory. In (Dellnitz et al. 2005) it is shown how the results can be 

refined using a much simpler approach using Markov chains. 

 

Another example is what is known as the transfer operator approach to model-

ling dynamic systems. Given a Markov process on some state space and some 

probability distribution on it, the Frobenius-Perron operator determines the evolu-

tion of the probability measure in time. Invariant measures of the system can be 

identified with eigenfunctions of the Frobenius-Perron operator to the eigenvalue 

1. In (Dellnitz and Junge 1999) the spectrum of the Frobenius-Perron operator is 

numerically approximated by analysing the spectrum of discrete approximations 

to the Frobenius-Perron operator. This is successfully applied to model the dynam-

ics of complex bio molecules, see (Huisinga 2001) and (Schütte and Huisinga 

2003). The idea here is to cut the state space into a finite number of regions. The 

importance of these regions for the system dynamics can be assessed by creating a 

Markov chain with the regions as states and to determine the transition probabili-

ties one uses a transfer operator. This operator does not depend on the choice of 

the partition. Moreover analysing the operator’s spectrum and the eigenspaces for 

a certain range of eigenvalues yields information about almost invariant sets and 

allows one to find a clever way of partitioning the state space. Almost invariant 

sets are subsets of the state space where solutions stay for a long time and can of-

ten be identified with important properties of the modelled system. Insight can be 



4  

 

gained by using a Markov chain that models these almost invariant sets and the 

transition rates between them. 

 

A very good and compact introduction to modelling complex dynamic systems 

as Markov chains can be found in (Froyland 2001). A lot of the information about 

ergodic systems is contained in the distribution of a typical long trajectory, also 

called the system’s natural measure. It is shown how this natural measure can be 

approximated using Markov Chains. 

 

In our specific case, traffic in an urban network is a highly complicated dy-

namical system that can, more often than not, be accurately modelled only by us-

ing equally complicated models. However, the network planner is usually inter-

ested in aggregation effects (pollution, congestion, travel times etc.). We believe 

that we have found a way to use a very simple Markov chain model, that allows us 

to compute important properties of such a network with high accuracy and very 

high speed. This was first described in (Crisostomi et al. 2011), and is further de-

veloped here to model pollution dynamics. 

3  A primer on Markov chains 

The objective of this section is to present the mathematical tools that will be used 

in the rest of the chapter. The preliminary definitions are standard and can be 

found in classic references like (Meyn and Tweedie 2009) or, in a short summary, 

given in (Langville and Meyer 2006, Chapter 15). Here we give only the most ba-

sic concepts that are needed for our discussion. 

 

    Recall that a Markov chain is a stochastic process characterised by the equation  

( ) ( )
kkkk ikikiikik SxSxpSxSxSxp ======

++ ++ |,...,|
101 101  (1) 

where ( )E|Fp  denotes the conditional probability that event E occurs given that 

event F occurs. Equation (1) states that the probability that the random variable x 

is in state 
1ki

S
+

 at time step k+1 only depends on the state of x at time step k and 

not on preceding values. Throughout the chapter only discrete-time, finite-state, 

homogeneous Markov chains will be considered. We present no theoretical justifi-

cation for our model, other than to state that Markov chains have a long history of 

providing compact representations of large scale systems described by very com-

plicated sets of dynamical equations, as already illustrated in the previous section.  

 

The Markov chain is completely described by the nn ×  transition probability 

matrix P whose entries Pij denote the probability of passing from state iS  to state 
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jS , and n is the number of states. The matrix P is a row-stochastic non-negative 

matrix, as the elements of each row are probabilities and they sum up to 1. Within 

Markov chain theory, there is a close relationship between the transition matrix P 

and its corresponding graph. A graph is represented by a set of nodes that are con-

nected through edges. Therefore, the graph associated with the matrix P is a di-

rected graph, whose nodes are represented by the states n,...,i,S i 1=  and there is 

a directed edge leading from iS  to jS  if and only if 0ij ≠P . 

A graph is strongly connected if and only if for each pair of nodes there is a se-

quence of directed edges leading from the first node to the second one. The matrix 

P is irreducible if and only if its directed graph is strongly connected. Let us now 

state the well-known Perron-Frobenius theorem (Langville and Meyer 2006), 

which summarises important properties of irreducible transition matrices: 

• The spectral radius of P is 1  

• 1 also belongs to the spectrum of P, and it is called the Perron root 

• The Perron root has an algebraic multiplicity of 1 

• The left-hand Perron eigenvector π  is the unique vector defined by 
TT
πPπ = , such that 1π0,π

1
=> . Except for positive multiples of π  there 

are no other non-negative left eigenvectors for P. 

 

In the last statement, by saying that 0π > , it is meant that all entries of vector 

π are strictly positive. One of the main properties of irreducible Markov chains is 

that the i
th

 component iπ  of the vector π  represents the long-run fraction of time 

that the chain will be in state iS . The row vector T
π  is also called the stationary 

distribution vector of the Markov chain.  

 

 

3.1  Mean first passage times and the Kemeny constant 

A transition matrix P with 1 as a simple eigenvalue gives rise to a singular matrix 

I-P (where the identity matrix I has appropriate dimensions) which is known to 

have a group inverse ( )#
PI − . The group inverse is the unique matrix such that 

( )( ) ( ) ( )PIPIPIPI
##

−−=−− , ( )( ) ( ) ( )PIPIPIPI
#

−=−−−  and 

( ) ( )( ) ( )###
PIPIPIPI −=−−− .  More properties of group inverses and their ap-

plications to Markov chains can be found in (Meyer 1975). The group inverse 

( )#
PI −  contains important information on the Markov chain and it will be often 

used in this chapter. For this reason, it is convenient to denote this matrix as #
Q . 
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The mean first passage time mij from the state iS  to jS  is the expected number 

of steps to arrive at destination jS  when the origin is iS . If we denote #
ijq  as the 

ij entry of the matrix #
Q , then the mean first passage times can be computed eas-

ily according to the equation below (see Cho and Meyer 2001)  

 

ji
qq

m
j

ijjj

ij ≠
−

= ,

##

π
 (2) 

 

where it is intended that n1,...,i0,mii == . The Kemeny constant is defined as 

∑
=

=
n

j
jijmK

1

,π  (3) 

where the right hand side is (surprisingly) independent of the choice of i (Kemeny 

and Snell 1960). Therefore the Kemeny constant K is an intrinsic measure of a 

Markov chain, and if the transition matrix P has eigenvalues n1 ,...,, λλλ 21=  then 

another way of computing K is (see (Levene and Loizou 2002))  

∑
= −

=
n

j j

K
2 1

1

λ
. (4) 

Equation (4) emphasizes the fact that K is only related to the particular matrix P 

and that it increases if one or more eigenvalues of P is real and close to 1.  

 

4  From a road network model to a pollution model 

The use of Markov chains to model road network dynamics has been described in 

detail in (Crisostomi et al. 2011).  The resulting networks are fully characterized 

by a transition matrix P, which has the following form:  
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The matrix P is a square matrix whose size is given by the number of road 

segments. The off-diagonal elements 
ji SSP → are related to the probability that one 

passes directly from the road segment Si to the road segment Sj. They are zero if 

the two road segments are not directly connected (i.e. at the end of road Si it is im-

possible to take directly road Sj). The diagonal terms are proportional to travel 

times; namely, they are close to 1 if it takes a long time to cover the corresponding 

road while they are closer to 0 if travel times are short. The diagonal terms take 

into account several factors that affect travel times; such as speed limits, road sur-

face conditions, presence of priority rules or traffic lights, weather conditions, 

heavy traffic, etc. The diagonal elements can be computed from average travel 

times through the following equation  

nj
tt

tt
P

j

j

SS jj
,,1,

1
K=

−
=→ , (6) 

where ttj indicates the average travel time along the j
th

 road.  

 

The main idea of this work is to use the same framework to model pollutants, 

This can be achieved by replacing time in the original chain described above, by a 

unit of pollutant (e.g. benzene, NOx, etc…). In this framework, a car is moving in 

the same road network, and changes (or remains in the same) state anytime a unit 

of pollutant is released, according to the entries of a second transition matrix PP, 

where the subscript P stands for pollution. The quantity of emissions released 

along a particular road Sj does not only depend on travel times, but also on other 

quantities like the length of the road, speed profile along the road (i.e. number of 

times the car accelerates or decelerates) and average types of car in the particular 

road (fuel type, engine capacity, etc).  As a consequence, the main difference be-

tween the chain described in (Crisostomi et al. 2011) and the chain here are the di-

agonal entries of matrix PP.  

 

It is important to note that we are proposing a new paradigm for pollution mod-

elling that captures large scale (macroscopic) effects. For the purpose of construct-

ing a model, and its evaluation, a microscopic model to describe microscopic ef-

fects is required. There are of course several models to evaluate pollution at 
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microscopic level, at very different levels of accuracy and complexity (Jaaske-

lainen and Boethius 2009). A first basic model is the so-called aggregated emis-

sion factor model, where a single emission factor is used to represent a particular 

type of vehicle and a general type of driving, with a usual distinction between ur-

ban roads, rural roads and motorways. This model is rather rudimentary and is not 

realistic for small scale networks, as it omits several phenomena, such as conges-

tion, which are known to significantly affect emissions. In this work, we shall 

make use of more refined average-speed models to build our macroscopic 

Markov model, where emission factors are calculated as a  function of average 

speed (Barlow et al. 2001) and (Boulter et al. 2009). The average-speed approach 

is described in the UK Design Manual for Roads and Bridges (DMRB) (Highways 

Agency et al. 2007) and the European Environment Agency’s COPERT model 

(Gkatzoflias et al. 2007).  

 

Although the average-speed model has been extensively used for many applica-

tions, it suffers from a drawback that very different vehicle operational behaviours 

(in terms of accelerations, decelerations, maximum speed, gear-change pattern), 

and therefore different emission levels, can be characterized by the same average 

speed. A more realistic model is for instance the comprehensive modal emissions 

model (CMEM) described in reference (Barth et al. 2000). According to this 

model,  second-by-second exhaust emissions and fuel consumption are predicted, 

for a wide range of vehicle categories and ages. For the sake of simplicity, in this 

work the average-speed model is employed. However, the same proposed meth-

odology can be applied in combination to any other (more accurate) vehicle emis-

sions model.  

4.1  Construction of the Markov chain transition matrix 

The emissions model is completely determined by a transition matrix PP, whose 

diagonal terms indicate how many units of pollution a fleet of vehicles releases 

along a road segment, and by off-diagonal terms that indicate the next road seg-

ment chosen by a unit of pollution. These entries are computed as follows. 

 

Diagonal terms: According to average-speed models, the emission factor f(t,p) is 

computed as 

 

( )
( )

v

gvfvevdvcvbvak
ptf

65432

,
++++++⋅

= , (7) 

 

where t denotes the type of vehicle (and depends on fuel, emission standard, cate-

gory of vehicle, engine power), p denotes the particular type of pollution of inter-
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est (e.g. CO, CO2, NOx, Benzene), v denotes the average speed of the vehicle, and 

the parameters a, b, c, d, e, f, g and k depend on the type of vehicle. For the pur-

pose of this work, the values of the parameters are taken from Appendix D, in ref-

erence (Boulter et al. 2009). In Equation (7) it is assumed that speeds are meas-

ured in km/h and emission factors in g/km. Therefore, by assuming that the 

average speed of a fleet of vehicles along a road segment is v, and the length of the 

road segment is l, then the diagonal terms are given by  

 

( )

( )
nj

lptf

lptf
P

jj

jj

SS jj
,,1,

,

1,
K=

⋅

−⋅
=→ , (8) 

by analogy with Equation (6).  For simplicity we first normalize all terms f(t,p)jlj 

so that the minimum one has unit value. In Equation (8) note that the emission fac-

tor depends on the road segment as its primary dependence is on the average speed 

along the particular road segment. 

 

Off-diagonal terms: The Markov chain models an average car that travels in the 

urban network while releasing units of pollution. Therefore, it is necessary to 

measure the average junction turning probabilities to build the off-diagonal terms.  

4.2  The role of Information Technology in the model  

The proposed emission model requires the following items to be useful:  

• The categories and types of vehicles present in each road of the network, as 

they are required to use the appropriate parameters in Equation (7). 

 

• The average travel times of the vehicles along each road of the network; once 

travel times are known, by using the knowledge of the length of the road seg-

ments, it is possible to compute the average speeds to be used in Equation (7). 

 

• The junction turning probabilities, which are required to build the off-

diagonal terms of matrix PP. 

 

• Centralized (or decentralized) number crunching ability to calculate properties 

of the large scale matrix.   

 

There are two possible ways of obtaining the information required for the 

Markov chain: 
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1. All cars are instrumented to behave as mobile sensors and store the data 

relative to their travelling history. At regular times, they communicate 

their data to a central database that collects all the important information. 

 

2. Urban networks are equipped with loop detectors that are positioned at 

each junction, and they measure the required information to build the 

Markov transition matrix. 

 

We emphasise here that most of the required information can be easily col-

lected (when it is not already available) by the cars themselves, and all that is re-

quired is to collect and integrate such information to construct the model. Current 

vehicles are memory-less. However, given the widespread penetration of vehicle 

positioning systems (GPS), it is easy to imagine geospatial tagging of vehicle 

route information, and storing this information locally in vehicle memory. It is 

also possible to obtain information of the type required from special classes of ve-

hicles (buses, taxis etc.) – though this probably contains less useful information. 

Note such instrumented fleets already exist in cities such as Stockholm (Biem et 

al. 2010).  Furthermore, recent advances in the development of Vehicular Adhoc 

NETworks (VANET) (Hartenstein and Laberteaux, 2010) are expected to further 

facilitate the proposed emissions model, as it is very easy to collect the informa-

tion required to build the transition matrix.  

 

Remark: CMEM (see Section 4) is one of the most accurate microscopic emis-

sion models, as it takes into account the instantaneous speed and the engine opera-

tional mode. The proposed Markovian approach can easily integrate such an emis-

sions model. However, a high price must be paid in terms of communication 

between vehicles and infrastructure, as the whole speed profile of individual vehi-

cles is required to be transmitted.  

5  Green interpretation of the Markov chain quantities 

Once the transition matrix has been constructed, it is very easy to infer several 

quantities of potential interest to the designer of a road network. These include the 

Perron eigenvector, the mean first passage time matrix and the Kemeny constant. 

The proposed model has the property that it is driven by a unit of pollution rather 

than by a unit of time as in conventional Markov chains. For ease of exposition in 

the present discussion we use a generic unit of pollutant, while in the simulation 

examples we will compute CO, CO2, NOx and Benzene. We remind the reader 

that the difference between the models is in the choice of the parameters in Equa-

tion (7). The next table summarises the interpretation of the Markov chain quanti-

ties in the emission framework. 
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Table 1  Interpretation of Markov chain quantities in the emission framework 

Markov chain quantity Green interpretation 

 

 

Left-hand Perron Eigenvector 

 

This vector has as many entries as the number of road 

segments. Each entry represents the  long run fraction 

of emissions that a fleet of vehicles will emit along the 

corresponding road segment. It can be used as an indi-

cator of pollution peaks.   

Mean first passage emissions  This is a square matrix with as many rows as the num-

ber of the road segments. The entry ij represents the 

expected quantity of emissions that a vehicle releases 

to go from i to j. The average is with respect to all pos-

sible paths from i to j. 

Kemeny constant This number is the average number of emissions re-

leased in a random route. It is an indicator of pollution 

in the entire network. 

 

 

There are other quantities that can be computed within the proposed framework: 

 

Density of emissions along each road (g/km): They can be easily computed from 

Equation (7): it is only required to know the average fleet of vehicles and the av-

erage speed along the road. 

 

Emissions along each road (g): They can be easily computed by multiplying the 

density of emissions along a road by the length of the road. 

 

Total Emissions (g): It is sufficient to sum the emissions along each road for all 

the roads inside the area of interest (e.g. the urban network). 

6  Examples 

In this section the proposed approach is described in detail through several simula-

tions. The information required to build the Markov transition matrix is recovered 

from simulating traffic within an urban network using the well-known mobility 

simulator SUMO (Simulation of Urban MObility) (Krajzewicz et al. 2006). 

SUMO is an open source, highly portable microscopic traffic simulation package 

that was developed at the Institute of Transportation Systems at the German Aero-

space Center, and is licensed under the GPL. Simulations are required to extract 

junction turning probabilities and average travel times along the road segments 

composing the urban network. Three steps must be performed to achieve this goal: 
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1. Creation of the urban network: this includes the topology of the network, 

the use of traffic lights or priority rules, fixing speed limits, choosing the 

number of lanes, etc. 

 

2. A random pair of origin/destination roads is assigned to each car. The car 

will travel toward its destination according to the minimum length path. 

 

3. Traffic statistics, namely junction turning probabilities and average travel 

times, are collected from the urban network and used as the data from 

which we build the Markovian emissions model. 

 

 

We now give two examples of road networks to demonstrate the usefulness of 

our approach. 

 

 

Fig. 1  Graphical representation of a simple urban network. Nodes and edges correspond to junc-

tions and road segments respectively. Bidirectional arrows show that both travelling directions 

are allowed. 

Consider the road network depicted in Figure 1. Here the road network is repre-

sented as a graph with nodes corresponding to road intersections and edges corre-

sponding to streets between the intersections, we will call this representation the 

primal graph (Porta et al. 2006). To use the analytical tools as described in Sec-

tion 3, we need a different representation of the network called the dual graph. In 

the dual graph the nodes correspond to streets and there is an edge between two 

nodes if it is possible to continue from the first road to the second road. The dual 

graph thus contains information that is not accessible from the primal graph. As an 

example, a dual representation of the primal graph shown in Figure 1 is illustrated 

in Figure 2. Unless stated otherwise all road segments have a length of 500 meters. 
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Fig. 2  Dual representation of the primal network shown in Figure 1. For instance, the road seg-

ment AB is the (directed) road that goes from junction A to B in the primal network. 

SUMO is now used to create traffic inside the urban network described in Fig-

ures 1 and 2, in two different operating conditions. In the first case the number of 

cars in the road network is small, and cars are allowed to travel freely at maximum 

allowed speed; in the second case heavy congestion is artificially simulated by in-

creasing the number of cars, so that actual speeds are slower than the maximum 

allowed by speed limits.  The computation of emissions is performed according to 

Equation (7), using the data corresponding to Euro 4, Engine Capacity < 1400 cc 

petrol cars and minibuses with weight below 2.5 tonnes (Code R005/U005 from 

Boulter et al. 2009). 

 

Figure 3 shows that if the emissions are computed using speed-independent 

emission factors, then they are not affected by different levels of congestion. This 

is clearly absurd. In fact, the stationary distribution of emissions is the same, both 

in the figure on the left (no congestion), and in the one on the right (congestion). 

On the other hand, the stationary distribution of cars along the roads (represented 

with the solid line) changes completely in the case of congestion.  
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Fig. 3  Stationary distribution of cars (solid line) and all pollutants. Pollutant factors are constant 

with speed. No congestion on the left, congestion on the right. All emission factors coincide be-

cause of density normalisation (their sum is 1). 
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Fig. 4  Stationary distribution from simulation and model for time and all pollutants. Pollutant 

factors are dependent on speed. In this example, the pollutants density follows the car density 

both in the non-congested scenario (left) and in the congested one (right). 

 

In Figure 4 the pollution factors are assumed to depend on velocity, and there-

fore the stationary distribution of emissions changes from the non-congested (left) 

to the congested scenario (right), and it remains consistent with the distribution of 

cars. In both Figures 3 and 4, and in both scenarios, the junction turning probabili-

ties are the same. Clearly, it is not sensible that the distribution of pollutants does 

not change with traffic load. Therefore, this simple simulation suggests that speed-

dependent emission factors should be used to obtain realistic results. In Figure 4, 

we can also see that the manner in which pollutants are influenced by the traffic 
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volume is not homogeneous with respect to congestion (i.e. different pollutants 

have different density). 

 

A new simulation is now performed to establish optimal speed limits. Optimal-

ity is with respect to minimum emissions. The results are shown in Table 2.  

Within each simulation we varied the speed limit uniformly over all streets from 

20 to 120 km/h and calculated the corresponding Kemeny constant. As previously 

described, the Kemeny constant can be interpreted as an efficiency indicator, in 

terms of emissions, of the overall road network.   

Table 2  Kemeny Constants for Different Global Speed Limits. 

Speed [km/h] Time [sec] CO [g] CO2 [kg] NOx [g] Benzene [g] 

20 1304 2674 1241 395.9 2.89 

40 631 2350 875 243.4 2.05 

60 437 2830 812 207.8 1.44 

80 352 3758 815 197.2 1.03 

100 311 4888 833 194.6 0.91 

120 291 6065 853 194.9 1.07 

 

Two lessons can be observed from Table 2.  

 

(i) Too low, and too high a speed limit, both lead to high levels of pollution 

(although travel times are reduced with high speed limits, as ex-

pected) 

 

(ii) Different pollutants have different corresponding optimal speed limits.  

 

To better interpret the results shown in Table 2, Figure 5 shows how the Ben-

zene (left) and CO (right) emission factors depend on the average speed. The 

speeds corresponding to minimum Benzene emissions in Figure 5 and Table 2 do 

not coincide. This is caused by the fact that the average speed of a car is not equal 

to the speed limit (e.g. due to acceleration and breaking entering and leaving the 

road). In this example, high speed limits helped the car to accomplish an average 

speed closer to the optimal value for minimum emissions. 
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Fig. 5  Dependence of emission factor on average speed for Benzene and CO (based on data 

from Boulter et al. 2009). 

The above experiment was repeated with one minor change. Now we vary the 

speed limit at certain important points in the network, and observe the correspond-

ing global change in pollution. Specifically, we vary the speed limit of the roads 

CD, DC, DE and ED from Figures 1 and 2. In spirit, this corresponds in consider-

ing the urban network of Figures 1 and 2 as composed of two clusters of roads, 

one on the left and one on the right, connected through some “bridging” roads. 

Here we changed the length of the bridging roads from 500m to 5 km - to reduce 

the gap between the actual average speed from the actual speed limit. Then, we 

vary the speed limit on the bridge from 20 to 120 km/h while keeping the other 

speed limits constant.  

Table 3  Kemeny Constants for Different Speed Limits on the Bridge. 

Speed [km/h] Time [sec] CO [g] CO2 [kg] NOx [g] Benzene [g] 

20 1929 5104 2109 637.4 4.76 

40 1126 4746 1673 455.7 3.73 

60 876 5606 1605 412.0 2.87 

80 756 7831 1635 401.2 2.29 

100 686 12119 1710 403.0 2.77 

120 640 20045 1811 411.1 5.51 

 

Again we can see that both high and low speed limits on the bridge correspond 

to high overall pollution levels and that optimal speed limits differ for different 

pollutants. 
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Remark: The last two simulations correspond to a realistic road engineering prob-

lem, where the optimal speed limits for a subset of roads must be established to 

minimise emissions of interest. 

 

As a further example, we now demonstrate the scalability of our approach 

through a significantly larger network. We generated the road network in Figure 6 

using SUMO random network generation facilities. 

 

 

 

Fig. 6  A more complicated realistic road network. 

 

Figure 7 shows the density of pollutants in the road network, together with the 

distribution of cars resulting from the SUMO simulation. While the road network 

of Figure 6 is composed of 618 road segments, only the subset of roads with ID 

between 250 and 300 was randomly chosen to be displayed in Figure 7, to im-

prove readability of the result; qualitatively the distribution is the same for any se-

lection of streets. In Figure 7 we see again that the distribution of pollutants is het-

erogeneous, but it is related to the distribution of cars. This is in accordance with 

common knowledge that congestion should affect emissions.  
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Fig. 7  Stationary distribution of time and pollutants in the more complicated example with 

heavy congestion. Only a selection of streets is shown to improve readability of the figure. 

7  Suggested further applications 

The primary focus of this work has been modelling. However, our principal objec-

tive remains the control of large scale urban networks. From the perspective of the 

road engineer, information in the Markov chain can be used for this purpose.  For 

example, identification and avoidance of pollution peaks is a major concern in our 

cities. The existence of peaks can in “some sense” be identified from the Perron 

eigenvector of the chain, and one may reengineer the network through adjusting 

speed limits, traffic light sequencing, etc., so as to keep peaks away from certain 

sensitive spots (hospitals etc.). One may also use this information to route vehicles 

along low (expected) emissions paths.  

 

Other areas to be investigated include balancing of emissions, identification of 

critical roads (if they close they have a bad effect on the emissions profile of the 

city), and the effect of fleet mixing (electric vehicles) and priority zones on the 

emissions profile of the urban area. Interesting observations from our model are 

that different pollutants require different control strategies, that low speeds do not 

necessarily imply low emissions, and that high speeds do not always correspond to 

high emissions. Future work will investigate how the conflicting objectives of  

low emissions for all pollutants and low congestion can be addressed in a unified 

framework so as to facilitate control and optimisation strategies. 
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8  Conclusions 

In this chapter we have proposed a new method of modelling urban pollutants 

arising from transportation networks. The efficacy of the proposed approach is 

demonstrated by means of a number of examples. Future work will investigate 

control and optimization over Markov chains (with application to road network 

engineering), experimental evaluation of the proposed methods, and extension of 

the ideas to modelling city energy profiles (with respect to routing of electric and 

hybrid vehicles). 
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