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Abstract

In this note we consider the stability preserving properties of diagonal Padé ap-
proximations to the matrix exponential. We show that while diagonal Padé ap-
proximations preserve quadratic stability when going fromcontinuous-time to
discrete-time, the converse is not true. We discuss the implications of this result
for discretizing switched linear systems. We also show thatfor continuous-time
switched systems which are exponentially stable, but not quadratically stable, a
Padé approximation may not preserve stability.
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1. Introduction

The Diagonal Padé approximations to the exponential function are known to map
the open left half of the complex plane to the open interior ofthe unit disk [3]. This
gives rise to a correspondence between continuous-time stable LTI (linear time
invariant) systems and their discrete-time stable counterparts (a fact that is often
exploited in the systems and control community [6]). Perhaps the best known map
of this kind is the first order diagonal Padé approximant (also known as the bilinear
or Tustin map [3]). The bilinear map is known not only to preserve stability, but
also preserve quadratic Lyapunov functions. That is, a positive definite matrixP
satisfyingA∗

cP+PAc < 0 will also satisfyA∗
dPAd−P< 0 whereAd is the mapping

∗Corresponding Author
Email address:surya.sajja.2009�nuim.ie (S. Sajja)
URL: http://www.hamilton.ie/ (S. Sajja)

1The Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare, Ireland.
2School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.

Preprint submitted to Systems and Control Letters November16, 2010



of Ac under the bilinear transform [6] with some sampling timeh [1]. This makes
it extremely useful when transforming a continuous-time switching system:

ẋ= Ac(t)x, Ac(t) ∈ Ac (1)

into an approximate discrete-time counterpart1,

x(k+1) = Ad(k)x(k), Ad(k) ∈ Ad (2)

because, the existence of a common positive definite matrixP satisfyingA∗
cP+

PAc < 0 for all all Ac ∈ Ac implies that the sameP satisfiesA∗
dPAd−P< 0 for all

Ad ∈ Ad. Thus quadratic stability of the continuous-time switching system im-
plies quadratic stability of the discrete-time counterpart. This property is useful
in obtaining results in discrete-time from their continuous-time counterparts [6],
and in providing a robust method to obtain a stable discrete-time switching system
from a continuous-time one.

Our objective in this present note is to determine whether this property is pre-
served by higher order (more accurate) Padé approximants. From the point of
view of discretization, low order approximants are not always satisfactory, and
one often chooses higher order Padé approximations in real applications. Later we
present an example of a exponentially stable continuous-time switching system for
which a discretisation based on a first order Pade approximation is unstable, but,
discretizations based on second order approximations are stable for any sampling
time. Also, it is well known that the first order Padé approximation (the bilinear
approximation) can map a negative real eigenvalue to a negative eigenvalue if the
sampling time is large. In such situations, while stabilityis preserved, qualita-
tive behavior is not preserved even for LTI systems; a non-oscillatory continuous
mode is transformed into an oscillatory discrete-time mode. In this context we
establish the following facts concerning general diagonalPadé approximations.

(i) Consider an LTI systemΣc : ẋ= Acx and letΣd : x(k+1) = Adx(k) be any
discrete-time system obtained fromΣc using any diagonal Padé approxima-
tion and any sampling time. IfV is any quadratic Lyapunov function forΣc

then,V is a quadratic Lyapunov function forΣd.

(ii) The converse of the statement in (i) is only true for firstorder Padé approx-
imations.

1Discretization error is zero, only at sampling instants.
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(iii) Consider a switched systemΣsc : ẋ = Asc(t)x, Asc(t) ∈ {Ac1, ...,Acn} and
let Σd : x(k+ 1) = Asd(k)x(k), Asd(k) ∈ {Ad1, ...,Adn} be a discrete-time
switched system obtained fromΣsc using any diagonal Padé approximations
and any sampling times. IfV is any quadratic Lyapunov function forΣsc

then,V is a quadratic Lyapunov function forΣsd.

(iv) The converse of the statement in (iii) is only true for first order Padé ap-
proximations.

(v) Consider an exponentially stable switched systemΣsc : ẋ=Asc(t)x, Asc(t)∈
{Ac1, ...,Acn}. Let Σd : x(k+1) = Asd(k)x(k), Asd(k) ∈ {Ad1, ...,Adn} be a
discrete-time switched system obtained fromΣsc using ap’th order diagonal
Padé approximation. Then,Σds may be unstable, even whenp= 1.

These results are quite subtle, but we believe that they are important for a number
or reasons. Discretization of switched systems is a relatively new research direc-
tion in the control systems community. To the best of our knowledge, few papers
exist on this topic; for example see [7]. In the context of such studies, our results
say that quadratic stability is robust with respect to diagonal Padé approximations.
That is, quadratic stability is always preserved, even whenthe sampling time is
poorly chosen. This is an important fact when building simulators of switched
linear systems. Our results also indicate that Padé approximations do not, in gen-
eral, preserve the stability properties of exponentially (but not quadratically) stable
systems. In such cases, building a (stability preserving) discrete-time simulation
model of such systems that preserve stability is non-trivial and remains an open
question.

The consequences of our observations go beyond numerical simulation. In many
applications one converts a continuous-time switched system to a discrete-time
equivalent before embarking on control design. Our resultsindicate that one must
exhibit extreme caution in discretizing a continuous-timeswitched system model.
In particular, care is needed in assuming that properties ofthe original continuous-
time problem are inherited from properties of the-discretetime approximation [4].
In fact, stability of the discrete-time model does not necessarily imply stability of
the continuous-time one:even for discrete-time systems that are quadratically sta-
ble. Our results also pose questions for model order reduction of switched linear
systems. Again this is a relatively new area of study of considerable interest in the
VLSI community. In such applications, where the ultimate objective is numeri-
cal simulation, stability may be preserved in the reductionof the continuous-time
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model to another lower order continuous-time model, only for it to be lost in the
discretization step.

2. Mathematical Preliminaries

The following definitions and results are useful in developing the main result,
Theorem 1, which is given in Section 3.

Notation : A square matrixAc is said to beHurwitz stable if all of its eigenvalues
lie in the open left-half of the complex plane. A square matrix Ad is said to beShur stable if all its eigenvalues lie in the open interior of the unit disc. The no-
tationM∗ is used to denote the complex conjugate transpose of a general square
matrix M; M is hermitian ifM∗ = M. A hermitian matrixP is said to be positive
(negative) definite ifx∗Px> 0 (x∗Px< 0) for all non-zerox and we denote this by
P> 0 (P< 0). In all of the following definitions,P= P∗ > 0.

A matrix P is aLyapunov matrix for a Hurwitz stable matrixAc if A∗
cP+PAc <

0. In this case,V(x) = x∗Px is a quadrati Lyapunov funtion (QLF) for the
continuous-time LTI system ˙x(t) = Acx(t). A matrix P is a Stein matrix for a
Schur stable matrixAd if A∗

dPAd−P< 0. In this case,V(x) = x∗Px is aquadratiLyapunov funtion for the discrete-time LTI systemx(k+1) = Adx(k).

Given a finite set of Hurwitz stable matricesAc a matrixP is aommon Lyapunovmatrix (CLM) for Ac if A∗
cP+PAc< 0 for all Ac in Ac. In this case, we say that the

continuous-time switching system (1) isquadratially stable (QS) with Lyapunov
functionV(x) = x∗Px andV is aommon quadrati Lyapunov funtion (CQLF)
for Ac.

Given a finite set of Schur stable matricesAd a matrixP is aommon Stein ma-trix (CSM) for Ad if A∗
dPAd −P < 0 for all Ad in Ad. In this case, we say that

the discrete-time switching system (2) isquadratially stable (QS) with Lyapunov
functionV(x) = x∗Px andV is aommon quadrati Lyapunov funtion (CQLF)
for Ad.

Our primary interest in this note is to examine the invariance of quadratic Lya-
punov functions under diagonal Padé approximations to the matrix exponential.
Recall the definition of the diagonal Padé approximations tothe exponential func-
tion.
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Definition 1. (Diagonal Padé Approximations)[3][12]: The pth order diagonal
Padé approximation to the exponential function es is the rational function Cp de-
fined by

Cp(s) =
Qp(s)

Qp(−s)
(3)

where

Qp(s) =
p

∑
k=0

cks
k and ck =

(2p−k)!p!
(2p)!k!(p−k)!

. (4)

Thus thepth order diagonal Padé approximation toeAch, the matrix exponential
with sampling timeh, is given by

Cp(Ach) = Qp(Ach)Q
−1
p (−Ach) (5)

whereQp(Ach) = ∑p
k=0ck(Ach)k.

Much is known about diagonal Padé maps in the context of LTI systems. In par-
ticular, the fact that such approximations map the open lefthalf of the complex
plane to the interior of the unit disc is widely exploited in systems and control.
This implies the well known fact that these maps preserve stability of LTI systems
as stated formally in the following lemma.

Lemma 1. [3] ( Preservation of stability)Suppose that Ac is a Hurwitz stable
matrix and, for any sampling time h> 0, let Ad = Cp(Ach) be a diagonal Padé
approximation of eAch of any order p. Then Ad is Schur stable.

A special diagonal Padé approximation is the first order approximation. This is
also sometimes referred to as the bilinear (or Tustin) transform.

Definition 2. (Bilinear transform)[3][12]: The first order diagonal Padé ap-
proximation to the matrix exponential with sampling time h is defined by:

C1(Ach) =

(

I +Ac
h
2

)(

I −Ac
h
2

)−1

. (6)

This approximation is known to not only preserve stability,but also to preserve
quadratic Lyapunov functions [1, 2, 6]; namely ifP is a Lyapunov matrix forAc

then it is also a Stein matrix forAd =C1(Ach). The converse statement is also true.
Actually, we have the following known result which is a special case of Lemma 3
below.
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Lemma 2. [2] (Preservation of Lyapunov functions )Suppose that Ac is a Hur-
witz stable matrix and, for any sampling time h> 0, let Ad = C1(Ach) be the
first order diagonal Padé approximation (bilinear transform) of eAch. Then P is a
Lyapunov matrix for Ac if and only if P is a Stein matrix for Ad.

As we shall see, bilinear transforms play a key role in studying general diagonal
Padé approximations. In particular, acomplexversion of this map that inherits
some of the above properties will be very useful in what follows.

Lemma 3. (The complex bilinear transform)Let Ac be a Hurwitz stable matrix
and for any complex numberλ with Re(λ )> 0, define the matrix

Ad = (λ I +Ac)(λ ∗I −Ac)
−1 . (7)

Then P is a Lyapunov matrix for Ac if and only if P is a Stein matrix for Ad.

Proof : Consider any matrixP = P∗ > 0. WhenAd is given by (7), the Stein
inequalityA∗

dPAd−P< 0 can be expressed as

(λ ∗I−Ac)
−∗(λ I+Ac)

∗P(λ I+Ac)(λ ∗I−Ac)
−1−P< 0.

Post-multiplication byλ ∗I−Ac and pre-multiplication by(λ ∗I−Ac)
∗ results in the

following equivalent inequality

(λ I+Ac)
∗P(λ I+Ac)− (λ ∗I−Ac)

∗P(λ ∗I−Ac)< 0,

which simplifies to
(λ +λ ∗)(PAc+A∗

cP)< 0.

Sinceλ + λ ∗ > 0 this last inequality is equivalent to the Lyapunov inequality
PAc+A∗

cP < 0. ThusP is a Lyapunov matrix forAc if and only if it is a Stein
matrix forAd. �

The final basic result that we shall need concerns common Stein matrices for
discrete-time systems. A proof of this (well known) lemma isgiven in the Ap-
pendix.

Lemma 4. If P is a CSM for A1, · · · ,Am then P is a Stein matrix for the matrix
product∏m

i=1Ai.

6



3. Main Result

We now present the main result of the paper: Theorem 1. A main consequence of
this result is that common quadratic Lyapunov functions arepreserved by all diag-
onal Padé discretizations for all sampling times. Thus, quadratic stability is pre-
served under all diagonal Padé discretizations of a quadratically stable continuous-
time switched system. This result is stated formally in Corollary 1.

Theorem 1. Suppose that Ac is a Hurwitz stable matrix and Ad is any pth order
Padé approximation to eAch for any h> 0. If P is a Lyapunov matrix for Ac then,
P is a Stein matrix for Ad.

Proof: Consider any matrixP which is a Lyapunov matrix forAc. Recall that
Ad = Qp(Ach)Q−1

p (−Ach). Since the coefficients of the polynomialQp are real,

Qp(sh) = khp
n

∏
j=1

(

α j +s
)

m

∏
i=1

(λi +s)(λ ∗
i +s)

for somek 6= 0, where 2m+n = p, the real numbers−hα j , j = 1, · · · ,n are the
real zeros ofQp and the complex numbers−hλi ,−hλ ∗

i , i = 1, · · · ,m are the non-
real zeros ofQp. Since all the zeros ofQp have negative real parts ([3][12]) we
must haveα j > 0 for all j andRe(λi) > 0 for all i. It now follows thatAd can be
expressed as

Ad =

(

n

∏
j=1

(

α j I +Ac
)

)(

m

∏
i=1

(λi I+Ac)(λ ∗
i I+Ac)

)(

m

∏
i=1

(λi I−Ac)(λ ∗
i I−Ac)

)−1( n

∏
j=1

(

α j I −Ac
)

)−1

which, due to commutativity of the factors, can be expressedas

Ad =

(

n

∏
j=1

(α j I +Ac)(α∗
j I −Ac)

−1

)(

m

∏
i=1

(λi I+Ac)(λ ∗
i I−Ac)

−1

)(

m

∏
i=1

(λ ∗
i I+Ac)(λi I−Ac)

−1

)

.

HenceAd is a product of bilinear terms of the form(λ I +Ac)(λ ∗I −Ac)
−1 where

Re(λ )> 0. SinceP is a Lyapunov matrix forAc, it follows from Lemma 3 thatP
is a Stein matrix for each of the bilinear terms. ThusAd is a product of a bunch
of matrices each of which haveP as a Stein matrix. It now follows from Lemma
4 thatP is a Stein matrix forAd. �

The above theorem is illustrated in Figure 3. If we denote theconvex cone of all
positive definite matrices satisfyingAT

c P+PAc < 0 byLAc, and the convex cone
of all positive definite matrices satisfyingAT

d PAc−P < 0 by SAd, this theorem

7



SAd

LAc

Figure 1: Illustration of Theorem 1.

establishes the fact thatLAc ⊆ SAd. In other words, our main theorem states that
if Ad is a diagonal Padé approximation ofeAch for anyh> 0 then a Lyapunov ma-
trix for Ac is also a Stein matrix forAd. Lemma 2 tells us that the converse of this
statement is true forp= 1; namely forp= 1 we have thatLAc = SAd . However,
the converse of this statement is not necessarily true forp≥ 2; that is, forp≥ 2,
a Stein matrix forAd is not necessarily a Lyapunov matrix forAc, and in general
LAc is strictly contained inSAd . This is demonstrated in the following example.

Example 1: Consider the Hurwitz stable matrix:

Ac =

[

1.56 −100
0.1 −4.44

]

Now consider the matrixAd obtained under the 2nd order diagonal Padé approxi-
mation ofeAch with the discrete time steph= 2:

Ad =

[

−0.039 0.4205
−0.0004 −0.0138

]

The matrix

P=

[

2.3294 −0.0138
−0.0138 2.7492

]

is a Stein matrix forAd but is not a Lyapunov matrix forAc.

The following corollary is easily deduced from the main theorem. This is probably
the most useful result in the paper. It says that quadratic stability is preserved
under all diagonal Padé discretizations of a quadraticallystable continuous-time
switched system.
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SAd1

LAc1

SAd2

LAc2

Figure 2: Two Padé approximations.

Corollary 1. Suppose that P= P∗ > 0 is a CLM for a finite set of matricesAc.
Then P is CSM for any finite set of matricesAd, where each Ad in Ad is a
diagonal Padé approximation of eAch of any order for some Ac in Ac and h> 0.

Proof : If P is a CLM forAc then,P is an Lyapunov matrix for everyAc in Ac. It
now follows from Theorem 1, thatP is a Stein matrix for everyAd in Ad. Hence
P is a CSM forAd.

The last corollary shows that the diagonal Padé approximations preserve quadratic
stability for switching systems. Thus, quadratic stability of a continuous-time
switching system implies quadratic stability of a corresponding discrete-time switch-
ing system obtained via a diagonal Padé discretization. This is easily deduced by
extending the situation in Figure 3 to multiple matrices, (see Figure 3).
However, it is very important to note that the corollary doesnot imply the con-
verse. Namely, intersection of the discrete time setsSAd1 andSAd2 does not imply
the intersection of the corresponding continuous time sets. In fact this converse is
not true in general as the following example illustrates.

Example 2: Consider the Hurwitz stable matrices:

Ac1 =

[

1.56 −100
0.1 −4.44

]

, Ac2 =

[

−1 0
0 −0.1

]

.

Since the matrix productAc1Ac2 has negative real eigenvalues it follows that there
is no CLM [9] for {Ac1,Ac2}. Now consider the matricesAd1,Ad2 obtained under
the 2nd order diagonal Padé approximation ofeAcih with the discrete time step
h= 2:

Ad1 =

[

−0.039 0.4205
−0.0004 −0.0138

]

, Ad2 =

[

0.1429 0
0 0.8187

]

.
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These matrices have a CSM

Pd =

[

2.3294 −0.0138
−0.0138 2.7492

]

.

Comment : Example 1, together with Corollary 1, illustrate the following facts.
Let Ac be a finite set of Hurwitz stable matrices andAd the corresponding finite
set of Schur stable matrices obtained under diagonal Padé approximations for
fixed p andh. If P is a CLM for Ac then P is a CSM forAd. However, as
the example demonstrates, the existence of a CSM forAd does not imply the
existence of a CLM forAc.

4. A Converse Result

We have seen that ifP is a Lyapunov matrix forAc then, for any positive integer
p, P is a Stein matrix for thepth order Padé approximation ofeAch for all h> 0
that is,

Ad(h)
∗PAd(h)−P< 0 for all h> 0,

whereAd(h) is a diagonal Padé approximation (of any fixed order) toeAch. The
next lemma tells us that to achieve a converse result we need the following addi-
tional condition to hold,

lim
h→0

Ad(h)∗PAd(h)−P
h

< 0. (8)

Lemma 5. Suppose that, for all h> 0, the matrix Ad(h) is a Padé approximation
(of any fixed order) to eAch. Then P is a Lyapunov matrix for Ac if and only if P is
a Stein matrix for Ad(h) for all h > 0 and (8) holds.

Proof: In view of our previous results, we can prove this result if weshow that

lim
h→0

Ad(h)∗PAd(h)−P
h

= PAc+A∗
cP. (9)

To demonstrate this limit, first recall thatAd(h) = Qp(Ach)Qp(−Ach)−1 and

Qp(Ach) = I +
1
2
(Ach)+h2Dp(Ach)
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whereDp is a polynomial. Hence

lim
h→0

Qp(−Ach) = I

and

lim
h→0

Qp(Ach)∗PQp(Ach)−Qp(−Ach)∗PQp(−Ach)

h
= PAc+A∗

cP

Since

Ad(h)
∗PAd(h)−P= Qp(−Ach)

−∗ [Qp(hAc)
∗PQp(hAc)−Qp(−Ach)

∗PQp(−Ach)]Qp(−Ach)
−1

we obtain the desired result (9).�

5. Implications of Main Result

The starting point for our work was the recently published paper [6]. One of
the main results of that paper was the fact that the bilinear transform preserves
quadratic stability when applied to continuous-time switched systems. We have
shown that this property also holds for general diagonal Padé approximations (al-
though the converse statement is not true). This is an important observation due
to the fact that while the bilinear transform is stability preserving, it is not always
a good approximation to the matrix exponential. Our result says that “more ac-
curate" approximations are also stability preserving whengoing from continuous-
time to discrete-time.

Two potential applications of this result are immediate. First, stable discrete-
time LTI systems can be obtained from their continuous-timecounterparts in a
manner akin to that described in [6]. Secondly, our results provide a method to
discretize quadratically stable linear switched system ina manner that preserves
stability; see [7] for a recent paper on this topic. That is, given a quadratically
stable switched linear system, a discrete-time counterpart obtained using diagonal
Padé approximations to the matrix exponential, will also bequadratically stable.
Since this property is true for all orders of approximation,and for all sampling
times, then our main result says thatquadratic stability is robustly preserved un-
der Padé discretizations or any order.

In the context of the previous comment, it is important to realize that the ro-
bust stability preserving property of Padé approximationsis a unique feature of
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quadratically stable systems. It was recently shown that non-quadratic Lyapunov
functions may not be preserved under the bilinear transformwith sampling time
h = 2. This fact was first demonstrated in [6], where it was proventhat unlike
quadratic Lyapunov functions,∞-norm and 1-norm type Lyapunov functions are
not necessarily preserved under the bilinear mapping withh= 2. In fact the situ-
ation may be worse as the following example illustrates.

Example 3: Consider a continuous-time switching system described by (1) with
Ac = {Ac1,Ac2,Ac3} where

Ac1 =





−19.00 0 0
0 −9 0
0 0 −0.10



 , Ac2 =





−19 0 0
−10 −9 0

−18.75 0 −0.10



 , Ac3 =





−19.00 0 18.75
0 −9 8.75
0 0 −0.10



 .

Using the ideas in [8] (also see Theorem 2 in the next section)it can be shown
that this continuous-time switching system is globally exponentially stable. It
follows from the results of Dayawansa and Martin [5] that this switching system
has a Lyapunov function (though this is not necessarily quadratic). Now consider
a discrete-time approximation to the above system. We assume that switching is
restricted to only occur at multiples of the sampling timeh= 0.25. Using the first
order Pad’e approximation, we obtain a discrete-time switching system described
described by (2) withAd = {Ad1,Ad2,Ad3} where

Adi = (I −
1
8

Aci)
−1(I +

1
8

Aci), i = 1,2,3.

that is,

Ad1 ≈





−0.40 0 0
0 −0.06 0
0 0 0.98



 , Ad2 ≈





−0.40 0 0
−0.35 −0.06 0
−1.37 0 0.98



 , Ad3 ≈





−0.40 0 1.37
0 −0.06 1.01
0 0 0.98



 .

We now claim that the discrete-time switching system is unstable. To see this we
simply consider the incremental switching sequenceAd3 → Ad2 → Ad1; then the
dynamics of the system evolve according to the product

Ad = Ad1Ad2Ad3.

Since the eigenvalues ofAd are approximately{−0.002,−0.060,−1.035}, then
with one eigenvalue outside the unit disc, this switching sequence, repeated peri-
odically results in an unstable system.
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Clearly, by selecting a smaller sampling time one obtains a better approximation
to the continuous-time system. However, selecting an appropriate sampling time
is difficult for switched systems since sampling time is usually related to solution
growth rates. While this is simple to calculate for an LTI system, bounds on the
solution growth rates are usually very difficult to calculate for a switched system.
On the other-hand, were the original system quadratically stable, then our main re-
sult implies that stability can never be lost by a bad or unlucky choice of sampling
time.

5.1. A further comment on the counter example

Example 3 in the previous section indicates that our main result and its corollary
do not, in general, extend to switched systems which are exponentially stable,
but which do not have a quadratic Lyapunov function. An interesting question
therefore to ask is how one discretizes a general, exponentially stable, switching
system. In this section we give a preliminary result in this direction. Specifically,
we take a closer look at Example 3, and ask the question as to how one might
discretize the system in the example so that exponential stability is preserved irre-
spective of choice of sampling time. Our results can be summarised as follows:

(i) Even ordered Padé discretizations preserve exponential stability for the sys-
tem class illustrated by Example 3. This is true for any even ordered ap-
proximation, and for any sampling time.

(ii) Odd ordered Padé discretizations preserve exponential stability provided the
sampling time is smaller that a computable bound.

The above items say that even ordered Padé discretizations preserve stability in a
robust manner; odd ordered ones do not. Example 3 is an example of a switching
system of the form (1) where every matrixAc in Ac has real negative eigenvalues
and every pair of matrices inAc haven−1 common eigenvectors (namely all such
matrix pairs are pairwise triangularizable). It is shown in[8] that such systems are
exponentially stable. This result follows from the following theorem in [8] which
we give here to aid our discussion.

Theorem 2. [8] SupposeV = {v1, . . . ,vn+1} is a set of vectors inRn with the
property that any subset of n vectors is linearly independent. Let

M = {Mi : i = 0,1· · · ,n}
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where M0 = [v1 · · · vn] and

Mi = [v1 ... vn+1 vi+1 ... vn] for i = 1,2, · · · ,n, (10)

that is, Mi is obtained by replacing the i-th column in M0 with the vector vn+1. Let
Ac be any finite subset of the following set of matrices:

{MDM−1 : M ∈ M and D is diagonal negative definite} (11)

Then the continuous-time switching system (1) is globally exponentially stable.

Recently a discrete-time version of this result was obtained [10]. Namely a discrete-
time switching system is exponentially stable if every pairof matrices inAd share
n−1 common eigenvectors, and if all eigenvalues are real, inside the unit circle,
and positive [10] (i.e. there is no oscillatory behavior).
In both the discrete-time case and the continuous-time case, the same type of Lya-
punov function is used to prove stability. Since Padé approximations are eigen-
vector preserving, it immediately follows that any approximations that map real
negative eigenvalues to positive ones, will, by invoking the above result, preserve
exponential stability.

Using the above observations we obtain our next result. To describe this result,
consider any positive integerp and let

ᾱp =

{

largest real zero ofQp

−∞ if Qp has no real zeros

Since all real zeros ofQp must be negative, we must havēαp < 0. Whenp is
odd,Qp must have at least one real zero; henceᾱp is finite. Whenp is even, we
show later thanQp does not have any real zeros; henceᾱp = −∞ for evenp. To
illustrate,

Q1(s) = 1+
1
2

s, Q2(s) = 1+
1
2

s+
1
12

s2 ;

hence
ᾱ1 =−2, ᾱ2 =−∞ .

Theorem 3. Suppose thatAc is set of matrices satisfying the hypotheses of The-
orem 2 and let

α = min{α : α is an eigenvalue of Ac and Ac ∈ Ac} .
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Consider any positive integer p and define

h̄p =

{

ᾱp/α if Qp has a real zero
∞ if Qp has no real zeros

(12)

LetAd be any finite subset of

{Cp(hAc) : Ac ∈ Ac and0< h< h̄p}

Then the discrete-time switching system (2) is globally exponentially stable.

Proof : We first show that all the eigenvalues of the matrices inAd must be posi-
tive, real and less than one. So, consider any matrixAd in Ad. This matrix can be
expressed asAd = Cp(Ach) whereAc is in Ac andh< ᾱp/α. From the descrip-
tion of Ac we haveAc = MDM−1 whereD is diagonal with negative diagonal
elements,α1, · · · ,αn. Consider anyi = 1, · · · ,n. Sinceαi is an eigenvalue ofAc,
it follows from the definition ofα that αi ≥ α; hencehαi ≥ hα. Recalling the
requirement thath< ᾱp/α and noting thatα < 0 we must havehα > ᾱp; hence

hαi > ᾱp

SinceQp(s) 6= 0 for s> ᾱp whereᾱ)p< 0 andQp(0) = 1> 0, it follows from the
continuity ofQp thatQp(s)> 0 for s> ᾱp; henceQp(hαi)> 0. Since−hαi > 0,
we also haveQp(−hαi) > 0. HenceCp(hαi) = Qp(hαi)/Qp(−hαi) > 0. Since
hαi < 0 andCp maps the open left half plane into the open unit disk, we must also
haveCp(hαi)< 1. SinceAd =Cp(Ach) andAc = MDM−1, we have

Ad = MΛM−1

whereΛ is diagonal with diagonal elements

Λii =Cp(hαi) , i = 1, · · · , p

HenceCp(hα1), . . . ,Cp(hαp), are the eigenvalues ofAd and these eigenvalues are
positive, real and less that one.

We will now show that
Ad = {eÃc : Ãc ∈ ˜Ac} (13)

where ˜Ac is a set of matrices which satisfy the hypotheses of Theorem 2. This
will imply that the continuous-time switching system

ẋ= Ãc(t)x(t) Ãc(t) ∈ ˜Ac (14)

15



is globally exponentially stable. Relationship (13) tellsus that the state of the
discrete-time system (2) corresponds to the state att = 0,1,2· · · of the continuous-
time system (14) switching at these times; this will imply that the discrete-time
switching system is globally exponentially stable. To achieve the above goal,
consider anyi = 1, · · · , p and we letα̃i = ln[Cp(hαi)] . Thenα̃i is negative real and

Cp(hαi) = eα̃i . (15)

Now considerÃc = MD̃M−1 whereD̃ is the diagonal matrix with negative diago-
nal elements̃α1, · · · , α̃p. SinceÃc = MD̃M−1 we also haveeÃc = MΛ̃M−1 where
Λ̃ is diagonal with diagonal elements

Λ̃ii = eα̃i , i = 1, · · · , p.

It follows from (15) thatΛ̃ = Λ; hence

Ad = eÃc .

SinceAc is a finite set of matrices satisfying the hypotheses of Theorem 2, it now
follows thatAd can be expressed as (13) wherẽAc is a finite set of matrices satis-
fying the hypotheses of Theorem 2. As explained above this now implies that the
discrete-time switching system is globally exponentiallystable.�

Note thatα is the most negative eigenvalue of the matrices inAc. In the example
of the previous section,α =−19 whereas̄αp = ᾱ1 =−2; hencēhp =−2/−19=
0.1053. In this example,h = 0.25> h̄p and so the hypotheses of the above the-
orem are not satisfied. It is easily verified that had we, in Example 2, discretized
with h< 0.1053, the corresponding discrete-time switching would be have been
exponentially stable.

Before proceeding to the next result, we briefly digress to show that for p even,
the polynomialQp has no real zeros (hencēhp = ∞ wheneverp is even). This
conclusion is evident from the following theorem. Throughout the paper, the order
of a diagonal Padé approximation ‘p’ has been defined the order of the polynomial
Qp. But for a more general case,R(z) is a rational approximation toez of order
‘q’, if ez−R(z)=Czq+1+O(zq+2) with C 6= 0. Theorem 4 provides the maximum
attainable order of such rational approximations under some conditions.

Theorem 4. [11] Suppose that a rational approximation to the exponential func-
tion is given by R(z)=Pk(z)/Q j(z), where the subscripts k and j denote the orders
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of the polynomials Pk and Qj respectively. Let Qj have only m different complex
zeros. If in addition Qj has a real zero then, the order q of R satisfies

q≤ k+m+1.

If Q j has no real zeros then,
q≤ k+m.

A Padé approximationPk/Q j is a special case of the rational approximations con-
sidered in the above theorem and its order isq= j +k [11], wherek and j denote
the orders of the polynomialsPk andQ j . Hence, ifQ j has onlym different com-
plex zeros and at least one real zero, it must satisfyj +k≤ k+m+1, that is,

j ≤ m+1.

If Q j had a real zero whenj is even, it must have two real zeros and, sinceQ j has
at leastm complex zeros, this yields the contradiction thatj ≥ m+2. Hence, for
a Padè approximationPk/Q j with j even,Q j has no real zeros.

Comment: The above results tell us that for even order Padé approximations we
haveh̄p = ∞. This yields the next result.

Theorem 5. Suppose thatAc is a finite set of matrices satisfying the hypotheses
of Theorem 2 and p is any even positive integer. Then, for any sampling time,
the discrete-time switching system (2) obtained under the pth order diagonal Padé
approximation is globally exponentially stable.

The key point in the proof of the last theorem is that even ordered Padé polyno-
mials do not have real zeros. It immediately follows that stability is preserved
for any choice of sampling interval. Odd ordered Padé polynomials, on the other
hand, have some real zeros, and these zeros can cause difficulties in ensuring that
negative real eigenvalues map to positive ones. To preservestability in this case
one must select a sampling time that is small enough. To illustrate this point let
us consider again the Example 3. We assume that switching is restricted to only
occur at multiples of the sampling timeh = 1 (which is chosen to illustrate the
assertions in Theorem 3). As can be seen from the Table 1, the first two odd order
approximations lead to an unstable discrete time switchingsystem.
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Order λmax(Ad1Ad2Ad3) Comment
1 2.5819 Unstable
2 0.5957 Stable
3 1.0710 Unstable
4 0.6539 Stable

Table 1: Stability of some even and odd approximations for Example 3

Comment : The results of this section indicate that the selection of stable Padé
discretizations is guided strongly by the knowledge of the Lyapunov function for
the original switched system. This suggests the following interesting open ques-
tion. Namely, to determine if in choosing a discretization method for exponen-
tially stable continuous-time switched systems, knowledge of a Lyapunov func-
tion for the original continuous-time system is required.

6. Conclusions

In this paper we have shown that diagonal Padé approximations to the matrix ex-
ponential preserves quadratic Lyapunov functions betweencontinuous-time and
discrete-time switched systems. We have also shown that theconverse is not true.
Namely, it does not follow that the original continuous-time system is quadrati-
cally stable even if the discrete-time system has a quadratic Lyapunov function.
Furthermore, it is easily seen that such approximations do not (in general) pre-
serve stability when used to discretize switched systems that are stable (but not
quadratically stable). Our results suggest a number of interesting research direc-
tions. An immediate question concerns discretization methods that preserve other
types of stability, see for example [13, 14]. Since general Padé approximations
can be thought of as products of complex bilinear transforms, an immediate ques-
tion in this direction concerns the equivalent map for othertypes of Lyapunov
functions. Namely, given a continuous-time system with some Lyapunov func-
tions, what are the mappings from continuous-time to discrete-time that preserve
the Lyapunov functions. A natural extension of this question concerns whether
discretization methods can be developed for exponentiallystable switched and
nonlinear systems but which do not have a quadratic Lyapunovfunction.
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Appendix 1: Proof of Lemma 4

Suppose thatP is a common Stein matrix for two matricesA1 andA2, that is,

A∗
1PA1 < P and A∗

2PA2 < P

Pre-multiply the first inequality byA∗
2 and post-multiply it byA2 and use the sec-

ond inequality to obtain

A∗
2A∗

1PA1A2 ≤ A∗
2PA2 < P,

that is,
(A1A2)

∗P(A1A2)< P,

which implies thatP is a Stein matrix for the productA1A2. This shows that the
statement of the lemma is true form= 2. Now assume that it is true form= k
and then letMk = ∏k

i=1Ai . SinceMk+1 = MkAk+1, it follows from the result for
two matrices thatP is a Stein matrix forMk+1. Hence by induction the proposed
lemma is true for allm. So it can concluded that if all the constituent matrices of
a product have a CSMP thenP is a Stein matrix for the product.�
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