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Abstract

Inspired by the ability of Markov chains to model complex dynamics and

handle large volumes of data in the successful experience of Google’s PageR-

ank algorithm, a similar approach is proposed here to model road network

dynamics. The core of the Markov chain is the transition matrix which

can be completely constructed by easily collecting traffic data. The pro-

posed model is validated by checking the same results through the use of

the popular mobility simulator SUMO. Markov chain theory and spectral

analysis of the transition matrix are shown to reveal non-evident proper-

ties of the underlying road network and to correctly predict consequences of

road network modifications. Preliminary results of possible applications of

interest are shown and simple practical examples are provided throughout

the paper to clarify and support the theoretical expectations.
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1 Introduction

Intelligent traffic management is viewed as essential in reducing both conges-
tion and harmful emissions within city limits [1]. This is recognised by both
regulatory and federal authorities, and by industry; see the IBM smart city ini-
tiative [2] and Cisco’s smart and connected communities initiative [3]. A key
enabling technology in developing traffic management strategies are accurate
traffic models that can be easily used for both prediction and control. A major
objective in developing such models is to allow the development of smart traffic
management systems that are proactive in predicting traffic flow and facilitate
taking pre-emptive measures to avoid incidents (traffic build up, pollution peaks
etc.) rather than reacting to traffic situations. Given this basic requirement,
and given the trend in the automotive industry to instrument vehicles and in-
frastructure, a key feature of such models is that they should not only accurately
model traffic flows and road dynamics, but also that they should be constructed
from real data obtained directly from the road network that is obtained in near
real-time.

Our contribution in this paper is to propose a new paradigm for modelling
road network dynamics. The ability to use cars as sensors to harvest informa-
tion in real time about the road network offers the possibility to deploy new
tools to both model and engineer road networks. One such tool is the Markov
chain, and here we propose to employ Markov chains to model congestion and
emissions in a manner analogous to how Google employs these tools to model
congestion in the Internet [4]. Markov chains offer considerable advantages over
conventional road network simulators. They can be built from real data eas-
ily; they are fast and effective simulation tools. Also, Markov chains can be
used to inform the design of control strategies that are suitable for regulating
load in transportation networks; namely the design of load balancing strate-
gies using infrastructure to shape the probabilities. Furthermore, Markov chain
models allow users to glean structural information that is usually difficult to
obtain using other modelling techniques. These include: identification of sensi-
tive links in the network; identification how connected the network actually is
(graph connectivity, sub-communities); the design of networks that are in some
sense maximally mixing; and the ability to predict the effects of failure of a
link (i.e. due to road works or an unexpected event). Such information cannot
be extracted easily from conventional simulators (most sensitive road junctions,
speed of mixing, identification of subgraphs, and degree of graph connectivity).
As such they are excellent traffic engineering tools and provide a mechanism to
respond to congestion conditions in near real time in a preemptive manner.

Our paper is organised as follows. First we give a compact overview of
road network models. Then, we review the main concepts of Markov chain
theory and spectral analysis, with a special regard for the description of the key
parameters that will be used to analyse the urban network. In section 0.4 we
build a Markov chain model of a road network using measurements from the
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road network simulator. Finally, using this model, we give several applications
in which we use our network model for prediction and control.

2 Stochastic models of road networks and re-
lated work

Our basic idea is to use tools from stochastic modelling to model road network
dynamics. Specifically, our idea is very simple. By recording average vehicle
speeds, and the average directions taken by cars when they reach a road junction,
we shall use this information to build a Markov chain representing vehicular mo-
bility patterns in an urban environment. While we believe our specific approach
is novel for this application, stochastic mobility models have been employed for
road network simulation in the past thanks to their inherent simplicity. A popu-
lar example is provided by the Constant Speed Motion model [5] where vehicles
follow casual paths over a graph representing the road topology. The speed can
be constant, or can be adjusted to take into account interactions with other
vehicles. Stochastic models however usually fail to provide a sufficient level of
realism for many applications of interest. For this reason flow models were in-
troduced to provide a more realistic modelling of urban networks. Depending on
the level of detail flow models are usually classified as microscopic, mesoscopic

and macroscopic [6]. Mesoscopic models are at an intermediate detail level, as
traffic flows are described at an aggregated level (e.g. through probability den-
sity functions), but interactions are at an individual level. Flow equations can
be expressed as Partial Differential Equations (PDEs), discrete time equations
or Cellular Automata (CA) models.

While vehicle motion patterns can be modeled as flows, it still remains to
define the path followed by each single vehicle within the flow. In the literature,
a distinction is made between a trip and a route (sometimes also called path).
A trip is defined through a starting point (origin), a destination point and the
departure time. A route is an expanded trip in the sense that also the sequence
of roads to cover must be specified. Typically, trips are defined through Origin-
Destination (OD) matrices, while ’optimal’ routes can be computed according
to Dijkstra-type graph algorithms, where optimality can be referred to shortest
path or minimum time path. This approach clearly suffers from scalability issues
when cities characterised by thousands of roads are investigated. An alternative
approach consists in introducing turning probabilities at every junction to de-
scribe the probability of choosing one subsequent road segment over the others.
This approach has advantageous scalability properties and can be made time
variant to address different traffic behaviours (e.g. week days vs week ends or
morning ingoing flows vs evening outgoing flows).

The most popular way of investigating the behaviour or the efficiency of
a road network is to use mobility simulators that implement most (or all) of
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the previously described methods to create traffic. In this paper, the software
SUMO (Simulation of Urban MObility) is used as a comparison tool [7]. SUMO
is an open source, highly portable microscopic road traffic simulation pack-
age that developed at the Institute of Transportation Systems at the German
Aerospace Center, and is licensed under the GPL.

We use SUMO here to illustrate the efficacy of our approach; SUMO is used
both to generate data to build our Markov chain, to validate the outcomes of our
modeling approach, and to illustrate other merits of the Markovian approach.

3 A Primer on Markov Chains and their Eigen-
spectra

The objective of this section is to present the mathematical tools that will be
used to investigate the road network dynamics. The first definitions are basic
and will not be described in detail, as they can be found on classic books such as
[8] or [9]. More space will be dedicated to less conventional parameters related
to Markov chains and spectral analysis that play an important role in the urban
network counterpart. In particular, we use here the same notation of [4] as the
Google’s PageRank algorithm which has inspired this work on road networks.

The traffic flow will be described through a Markov chain, which is a stochas-
tic process characterised by the important property

p(xk+1 = Sk+1|xk = Sk, xk−1 = Sk−1, . . . , x0 = S0) = p(xk+1 = Sk+1|xk = Sk),
(1)

where accordingly to conventional notation p(E|F ) denotes the conditional
probability that event E occurs given event F occurs. Equation (1) states that
the probability that the random variable x is in state Sk+1 at time step k+1 only
depends on the state of x at time step k and not on preceding values. Through-
out the paper only discrete-time, finite-state homogeneous Markov chains will
be considered. We present no theoretical justification for this model, other than
to state that Markov chains have a long history of providing compact represen-
tations of systems described by very complicated sets of dynamical equations
[10], [11]; a good example is the recent work on meta-stability in molecular sys-
tems [12]. We also note that the Internet is, in spirit, similar to a road network,
and Markov chains have been used with remarkable success in that application.

The Markov chain is completely described by the n×n transition probability

matrix P whose entries Pij denote the probability of passing from state Si to
state Sj , and n is the number of states. The matrix P is a row-stochastic non-
negative matrix, as the elements of each row are probabilities and they sum up
to 1.
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Figure 1: Example of the graph associated to a transition matrix.

Within Markov chain theory, there is a close relationship between the tran-
sition matrix P and a corresponding graph. A graph is represented by a set
of nodes that are connected through edges. Therefore, the graph associated to
the matrix P is a directed graph, whose nodes are represented by the states
Si, i = 1, . . . , n and there is a directed edge leading from Si to Sj if and only if
Pij 6= 0.

Example: Let us consider the transition matrix

P =





















0 0.5 0.5 0 0 0 0
0.5 0 0.5 0 0 0 0
0.45 0.45 0 0.1 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0.1 0 0.45 0.45
0 0 0 0 0.5 0 0.5
0 0 0 0 0.5 0.5 0





















. (2)

The associated graph is shown in Figure 1, where nodes are enumerated from
A to G and all edges are bidirectional. In this case all edges are bidirectional as
in matrix (2) Pij 6= 0 ⇔ Pji 6= 0.

A graph is strongly connected if for each pair of nodes there is a sequence of
directed edges leading from the first node to the second one. The matrix P is
irreducible if and only if its directed graph is strongly connected. In the following
some properties of irreducible transition matrices are shortly described, and
most of them derive from the well-known Perron-Frobenius theorem:

• The spectral radius of P is 1.

• 1 also belongs to the spectrum of P, and it is called the Perron root.

• The Perron root has algebraic multiplicity 1.
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• The left-hand Perron eigenvector π is the unique vector defined by πT
P =

πT , such that π > 0, ‖π‖1 = 1. Except for positive multiples of π there
are no other non-negative left eigenvectors for P.

In the last statement, by saying π > 0 it is meant that all entries of vector π

are strictly positive.

One of the main properties of irreducible Markov chains is that the ith

component πi of vector π represents the long-run fraction of time that the chain
will be in state Si. The row vector πT is also called the stationary distribution

vector of the Markov chain.

3.1 The Mean First Passage Time Matrix and the Ke-
meny constant

A transition matrix P with 1 as a simple eigenvalue gives rise to a singular matrix
III −P (where the identity matrix III has appropriate dimensions) which is known

to have a group inverse (III − P)
#

. The group inverse is the unique matrix such

that (III − P) (III − P)
#

= (III − P)
#

(III − P), (III − P) (III − P)
#

(III − P) = (III − P),

and (III − P)
#

(III − P) (III − P)
#

= (III − P)
#

. More properties of group inverses
and their applications to Markov chains can be found in [13]. The group inverse

of the singular matrix (III − P)
#

contains important information on the Markov
chain and it will be often used; for this reason it is convenient to name it Q#

for short.

The mean first passage time mij from the state Si to state Sj is the expected
number of steps to arrive at destination Sj when the origin is Si. If we denote

as q
#
ij the entries of the matrix Q#, then the mean first passage times can be

computed easily according to (see [14] for example)

mij =
q
#
jj − q

#
ij

πj
, i 6= j, (3)

where it is intended that mii = 0, i = 1, . . . , n.
The Kemeny constant is defined as

K =

n
∑

j=1

mijπj , (4)

where the right hand side is surprisingly independent of the choice of i [15].
An interpretation of this result is that the expected time to get from an origin
state Si to a destination state Sj selected randomly according to the equilibrium
measure π does not depend on the starting point Si [16]. Therefore the Kemeny
constant is an intrinsic quantity of a Markov chain, and if the transition matrix
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P has eigenvalues λ1 = 1, λ2, . . . , λn then another way of computing K is [17]

K =
n

∑

j=2

1

1 − λj
. (5)

Equation (5) emphasises the fact that K is only related to the particular matrix
P and that it increases if eigenvalues of P (and in particular the second eigenvalue
of largest modulus) are close to 1.

3.2 Spectral analysis of the transition matrix

Accordingly to the previous paragraph, the eigenvalues of the transition matrix
determine the value of the Kemeny constant. However throughout this paper,
we give to spectral analysis a broader meaning than just the spectrum of the
matrix P and we generalise the term to include the associated eigenvectors.
Eigenvectors of graph matrices are known to have good clustering properties,
and a modern active area of research is called spectral clustering. An overview
of spectral clustering algorithms is provided in [18], although most of the results
presented therein hold for undirected graphs.

The rationale behind the clustering properties of the eigenvector associated to
the second eigenvalue of largest modulus of P is now anticipated through an illus-
trative example. Suppose that we have two irreducible stochastic matrices P1, P2

of orders k and n − k, respectively. Assume that the last column of P1 and the

first column of P2 are both positive. Consider the matrix A =

[

P1 000
000 P2

]

; note

that A has 1 as an eigenvalue of multiplicity two. Suppose now that we perturb

A slightly to obtain the matrix B =

[

P1 000
000 P2

]

+ ǫ

[

−111keee
T
k 111keee

T
1

111n−keee
T
k −111n−keee

T
1

]

,

where 111m represents an all ones vector of order m, eeek is a vector of zeros with
a 1 in kth position, and ǫ is a small positive number. Positivity of the last
column of P1 and the first column of P2 guarantees that the perturbed matrix
does not have negative entries for small ǫ. It is straightforward to see then that
B is a stochastic matrix which has 1 − 2ǫ as an eigenvalue, with corresponding

right eigenvector

[

111k

−111n−k

]

. In particular, the sign pattern of this eigenvector

for an eigenvalue close to 1 corresponds to the partition of A into 2 irreducible
diagonal blocks. The idea previously outlined is formalised in the appendix,
where the concept of graph cluster is stated in mathematical terms and formal
arguments are provided as well.

4 Modelling a road network as a Markov chain

The connection between a road network and a Markov chain is straightforward
if a city map is interpreted as a directed graph, where nodes correspond to
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junctions and edges to connecting roads. In the literature related to urban
networks, this representation is sometimes called primal [19] in contrast to the
dual representation where the role of streets and junctions is reversed (i.e. in the
dual representation streets correspond to nodes and junctions to edges). The
use of graph theory to analyse urban networks was proposed in the pioneering
work of Hillier and Hanson [20] in the late eighties and further developed in
the later works [21, 22]. An important achievement of the proposed theory was
the establishment of a significant correlation between the topological accessibil-
ity of streets and urban properties like pedestrian and vehicular flows, human
way-finding, safety against microcriminality, micro-economic vitality and social
liveability [21]. The topology of the urban network is mathematically analysed
by computing the degree of the nodes, the characteristic path lengths and clus-

tering coefficients. More recently, algorithms like Google’s PageRank, have also
been used to analyse the topology of urban networks [23, 24, 25]. Although
all approaches exploit well-established mathematical tools borrowed from graph
theory, the starting point is a simple plain urban map (or its dual representa-
tion) which usually does not include quantitative data that are important to
evaluate traffic. Therefore important variables like speed limits, street lengths,
junction turning probabilities, numbers of lanes, presence of traffic lights and
priority rules are neglected. The objective of this work is propose a data-driven
model with the strong mathematical background of Markov chain theory, that
also takes into account all the previous quantitative parameters, which clearly
affect traffic flows.

4.1 From a road network to a Markov chain

This section shows how to construct the Markov chain transition matrix. Through-
out the paper a simple road network will be used as a benchmark example to
support and clarify the theoretical approach. The example is the road graph
shown in Figure 1. The network was deliberately chosen to be simple, so that
the behaviour of the proposed method can be evaluated easily. However, recall
that the proposed procedure can be applied to more realistic maps with thou-
sands of nodes, without scalability issues, as Google’s PageRank algorithm has
successfully proven. The network of Figure 1 was designed to represent (in a
stylized way) a city with two main communities connected through junction D.
This idea is consistent with cities like Dublin where the North and the South
parts are separated by a river and are connected through bridges.

The first step to pass from a road network to a Markov chain is to transform
the primal map into the dual one, where the nodes of the graph are represented
by roads, as shown in Figure 2. The nodes of the dual network have been called
XY intending that XY is the road that connects junction X to Y , where X

and Y were nodes in the primal network. The dual network is more convenient
than the primal because it includes more information:

• In the primal network some edges should be inhibited depending on the
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Figure 2: A possible example of dual network associated to the urban map
shown in Figure 1.

edge of origin. For instance from Figure 1 it seems possible to go from
node C to D and then to come back, while the more detailed dual network
of Figure 2 shows that at the end of road CD turnaround is not permitted,
and a longer route should be planned to enter road DC.

• A typical way of creating traffic flows is to exploit junction turning proba-
bilities (see section 0.2). The probability of choosing an out-going road at
a junction clearly depends on the road segment of origin. This information
is lost in the primal network.

To represent traffic flow, we assume that turning probabilities at each junc-
tion are available. From a practical point of view, this implies that at each
junction a webcam counts the number of vehicles that turn right, go straight or
turn left. The collected data are then averaged to estimate mean probabilities.
Alternatively, the same result can be obtained if each car stores its own route
and then communicates its data to a central entity that collects and analyses
data. At the end of the process, we assume that turning probabilities are avail-
able for each road. For instance, if we consider the road segment AC of Figure 2,
we assume that probabilities of going from road AC to CA, CB and CD are
available, as summarised in Figure 3.

A second step is used to take into account different travel times. In the
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Figure 3: Turning probabilities from road segment AC. Cars coming from road
AC will successively choose roads CB or CD with equal probability, while it is
more unlikely that they will turnaround to take road CA.

Markov chain framework, transitions from one node (i.e. road) to the successive
one take place in one time step. Clearly, independently of the time unit and
even neglecting traffic, the time to cover single roads is not constant and it
will generally depend on the length of the road, speed limits, conditions of the
road surface, etc... For instance, let us consider an identical junction to that
of Figure 3, with the only difference that the road AC is substituted by road
A

′

C
′

which has double length than AC and has half speed limit. Let us assume
therefore that the time to cover it is four times the time required for road AC.
A simple way to take into account the extra travel time is to include a self-loop
in road A

′

C
′

and adjust the other probabilities accordingly so that they still
sum up to 1, as it is shown in Figure 4.

In principle, it is not easy to compute the average time required to cover
a road, as it is related through unknown functions of physical quantities like
the conditions of the road surfaces and other relevant variables as for instance
the presence of pedestrian crosses, bus stops and so on. More generally, traffic
conditions have a very strong impact on average travel times. In order to include
all these variables, we assume that average travel times for each road are also
available. Again, they can be computed on-board and communicated to some
central collection point, or it could be required that two sensors at the beginning
and at the end of a road record passing times. If travel times are computed for
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Figure 4: Let us consider an identical junction to that of Figure 3, with the
difference that road A

′

C
′

requires four times the time required to cover AC

(because the length doubles and the speed limit is reduced). The problem
is solved by introducing a self-loop and adjusting the remaining probabilities
accordingly.
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all segment roads, and they are normalised so that the smallest travel time is
1, then the probability value associated to each self-loop is

Pii =
tti − 1

tti
, i = 1, . . . , n (6)

where tti is the average travel time (estimated from collected data) for the ith

road. The proof of equation (6) and its rationale are provided in the Appendix.
At this point, the off-diagonal elements of the transition matrix P can be ob-
tained as

Pij = (1 − Pii) · tpij , i 6= j, (7)

where tpij is the turning probability (estimated from collected data) of going
from road i to road j.

In conclusion of this section, we emphasise the fact that the transition ma-
trix P can be obtained after gathering the average travel times and junction

turning probabilities. The nodes of the graph associated to the matrix P (and
therefore the size of the matrix) are obtained from the dual representation of the
road network. The diagonal and off-diagonal entries of the transition matrix are
then found according to equations (6) and (7). We also note that the transition
matrix P is always irreducible, otherwise the corresponding digraph would not
be strongly connected, which implies that it would be impossible to go from one
particular road to another road. Of course, this does not occur in road networks.
Finally, we also add the following remark regarding the proposed Markov chain
model.

Remark:

In practice, according to the previous model, the vehicle is represented as a
particle following a random walk (although probabilities are given from real
data) through a directed graph. We are aware of course that vehicles do not
actually follow a random walk; however, by analogy with similar approaches
like the PageRank model already mentioned (which posits a computer user
performing a random walk on the world wide web), the underlying stochastic
process is viewed as a mechanism for obtaining useful information, rather than
a literal representation of the behaviour of a single vehicle.

4.2 Validation

The procedure previously outlined is a data driven approach and can be applied
provided that junction turning probabilities and road travel times are available.
Therefore, the road network of Figure 1 is now simulated with the software
SUMO and the required data is collected from the simulation.

Remark:

In this work, the simulated traffic scenario plays the role of the real environ-
ment, so from one point of view this corresponds to collecting data from the
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simulation rather than from the real world. From another point of view however,
a realistic simulation requires in practice the same data as the Markov chain
approach: one must decide a priori the traffic flows over the road network, and
then provide the resulting data to both the simulator and to the Markov chain
transition matrix.

In order to perform the desired simulation, four steps must be performed in
SUMO:

1. The desired network shown in Figure 1 is created in SUMO by fixing the
position of nodes and edges.

2. Several flows of cars are created inside the road network. This choice
affects the traffic load.

3. Junction turning probabilities are fixed, so that car routes around the
network can be planned.

4. SUMO provides several interesting statistics regarding average and overall
network properties. The desired output files with the associated statistics
must be chosen.

One of the main ideas of the proposed work is to substitute simulations with
the Markov chain transition matrix, therefore a comparison of the outcomes of
both approaches is required.

4.2.1 Stationary distribution of cars

The stationary distribution corresponds to the long-run fraction of time that
cars will be along a particular road. Although it does not carry information
about the traffic load (i.e. the number of cars), it is still valuable as it is possi-
ble to evaluate whether traffic is balanced and what roads are particularly busy,
and eventually crucial. One output provided by SUMO is the occupancy of each
road (measured as vehicles/Kilometers), from which it is possible to compute
the relative density. In the Markov chain approach, this information is the left
Perron eigenvector.

We assume that the following transition matrix P is extracted from the
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collected data

P =

























































0 0 0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0.8 0.1 0 0 0 0 0 0 0 0 0

0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.8 0.1 0.1 0 0 0 0 0 0 0 0 0

0.9 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.9 0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.9 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.9
0 0 0 0 0 0 0 0 0 0.1 0.1 0.8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.1
0 0 0 0 0 0 0 0 0 0.1 0.8 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.1 0 0

























































.

(8)
The nodes are the 16 roads represented in Figure 2 and are taken in alphabetical
order. The entries of the transition matrix reveal that turnarounds are unlikely
and that most cars tend to travel within the two sets of junctions A-B-C and E-
F-G and rarely pass from one set to the other; in this first example we also notice
that travel times are considered constant as the diagonal elements are all zero.
Figure 5 compares the stationary distribution obtained from the simulator with
the left Perron eigenvector of matrix (8). We also remark that the simulated
distribution is of course prone to statistical variations caused by the considered
set of cars.

4.2.2 Road clusters

In the proposed example cars tend to travel within sets A-B-C and E-F-G of
Figure 1, therefore it is interesting to evaluate the signs of the entries in the
eigenvector associated to the second largest eigenvalue, provided that it is real.
As it could be expected, the second eigenvalue is close to 1 (0.9216), and the
entries of the associated eigenvector are shown in Figure 6. It is not straight-
forward to extract the same information from the simulator. This information
is however very valuable because it can be used to find hidden communities
within an urban network more complicated than the one of Figure 1. A for-
mal definition of community from a mathematical point of view is given in the
Appendix.

4.2.3 Mean first passage times

It is very simple to compute the mean first passage times from the transition
matrix P, accordingly to equation (3). It is very complicated to compute the
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Figure 5: Comparison between the stationary distribution of cars estimated
from the Markov chain approach (below) and computed from the simulation
(above).
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Figure 6: The second eigenvector clearly separates the first 6 roads belonging
to the first cluster A-B-C, the last 6 roads of cluster E-F-G and the four roads
that connect the two clusters (CD, DC, DE, ED).
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same quantity from the simulator SUMO. For this purpose, a different simula-
tion was performed for each possible entry of the 16×16 mean first passage time
matrix M. A flow of cars was simulated to start from the origin road until the
destination road, and the average required time with respect to all the chosen
routes was computed. The two matrices are compared in Figure 7, where the
origin and destination roads are represented on the x-y axes and times are on
the z-axis. The resemblance between the two mean first passage time matrices is
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Figure 7: Mean first passage times extracted through an ensemble of simulations
(left) and computed from the Markov chain matrix (right). The x-y axes contain
the origin and destination roads, while the z-axis contains the average first
passage travel time.

further shown in Figure 8 which compares the contour lines of the two matrices
(entries of the matrices that have similar values).
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Figure 8: Contour lines of the mean first passage time matrix extracted through
an ensemble of simulations (left) and computed from the Markov chain (right).
The x-y axes contain the origin and destination roads.

4.2.4 Kemeny constant

We remind the reader for convenience that the Kemeny constant can be com-
puted as in (4) in section 0.3.1

K =

n
∑

j=1

mijπj ,
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Figure 9: The Kemeny constant computes the average time required to go from
one source road to a random destination chosen according to the stationary
distribution. Surprisingly, this quantity does not depend on the starting road,
and is a global parameter of the road network. The set of simulations show that
also in the provided example, the “Kemeny constants” are rather close to being
independent of the starting road, represented in the horizontal axis.

and the important result is that it is independent from the choice of the road of
origin i. Therefore we used the mean first passage time matrix previously ex-
tracted from the simulations to check if the Kemeny constant is indeed constant
also in practice (or, at least, in simulations). The result is shown in Figure 9.

Remark:

The mean first passage time matrix computed from SUMO simulations contains
times expressed in seconds, while, at least in principle, the entries of the same
matrix from the Markov chain are expressed in number of steps. Therefore,
also the Kemeny constants are given in seconds and steps respectively. The
multiplicative factor to convert steps to seconds can be chosen in such a way the
Markov chain Kemeny constant corresponds to the average of those computed
via simulations (shown for instance in Figure 9). Alternatively, should the
Kemeny constant from simulation (or from real data) not be available, travel
times can be used. In the proposed example, for instance, all cars coming from
road CD must continue to DE (see for instance Figure 2). Therefore the travel
time of CD corresponds directly to one step in the Markov chain framework.
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4.2.5 Comparison in presence of traffic

In this paragraph we just intend to show that the approach works also in the
presence of traffic. The main difference with the previous example is that travel
times are larger because of traffic (traffic was simply simulated in SUMO by
increasing the number of cars). The diagonal elements of the new transition
matrix are computed according to equation (6) while the non-diagonal elements
maintain the previous relative ratios. (For simplicity we assumed that traffic
only slowed cars, but did not affect junction turning probabilities. As junction
turning probabilities are collected from data, this assumption is not necessary).
According to simulation data, the new matrix becomes

P=























































































































0.168 0 0.083 0.749 0 0 0 0 0 0 0 0 0 0 0 0

0 0.621 0 0 0.038 0.304 0.038 0 0 0 0 0 0 0 0 0

0.040 0.361 0.598 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.338 0.529 0.066 0.066 0 0 0 0 0 0 0 0 0

0.345 0.038 0 0 0.616 0 0 0 0 0 0 0 0 0 0 0

0 0 0.717 0.080 0 0.203 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.049 0 0.951 0 0 0 0 0 0 0

0 0 0 0 0.469 0.469 0 0.062 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0

0 0 0 0 0 0 0 0.935 0 0.065 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.099 0 0.090 0.811 0 0

0 0 0 0 0 0 0 0 0 0 0 0.236 0 0 0.076 0.688

0 0 0 0 0 0 0 0 0 0.016 0.016 0.126 0.843 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.144 0.771 0.086

0 0 0 0 0 0 0 0 0 0.073 0.586 0.073 0 0 0.268 0

0 0 0 0 0 0 0 0 0 0 0 0 0.838 0.093 0 0.069
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where entries are rounded to three decimal places. In Figure 10 the stationary
distributions predicted by the Markov chain (above) and computed through
the simulation (below) are compared. It is interesting to note that they are
completely different from the distribution shown in Figure 5, but bear a strong
resemblance to each other.

5 Traffic Management & Control

In this section we claim that the Markov chain traffic model is particularly
suitable to control and regulate traffic, and to both engineer and investigate
road networks. In the following we give an overview of several novel control
theoretic applications that are easily realised using the Markov chain approach.
These include applications to control and regulate traffic such as the following.

(i) Novel approaches to routing based on: (a) First Mean Passage Times; (b)
Emissions based Markovian models;

(ii) Load balancing in traffic networks to improve traffic flows (e.g. timing of
traffic lights);
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Figure 10: Comparison between the stationary distribution of cars estimated
from the Markov chain approach (above) and computed from the simulation
(below).

(iii) Identification of critical links in road networks.

Further applications can be outlined to support road network designers include
designing road networks to:

(iv) Minimizing or decreasing the Kemeny constant;

(v) Control of the stationary distribution to balance traffic load;

(vi) Conditioning of the second eigenvector to improve robustness of network.

In the remainder of this section we give a flavour of how the Markov mod-
elling paradigm can be used to achieve these objectives.

5.1 Control and regulation of traffic

5.1.1 Routing

Smart routing of traffic is seen as a major enabler of reduced carbon transport [].
It enables more efficient use of the road network, and it can be used proactively
to avoid pollution peaks in certain urban areas. Currently, in practice, given a
pair of origin/destination roads, the optimal route is computed, usually in terms
of minimum time or minimum distance based on map information. On the other
hand, the Markov chain transition matrix is constructed from real traffic data,
including average travel times of each single road, and expected congestion spots
in the form of the Perron vector. This information can be easily exploited to
plan shortest time routes accordingly to popular algorithms like Dijkstra [26]
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or other dynamic programming algorithms [27]. Dijkstra’s algorithm is widely
used for routing problems and solves the shortest path problem for a graph with
nonegative edge path costs. Also notice that as travel times are taken as edge
costs, then the solution takes traffic conditions into account as well.

An alternative solution is obtained if Dijkstra’s algorithm is used to min-
imise a different cost function. Here we describe the solution obtained if the
edge costs correspond to mean first passage times and we compare it with the
minimum time solution. Although the mean first passage time matrix takes
traffic delays into account as well, the main difference is that it also includes
information related to junction turning probabilities. Therefore it also accounts
for the possibility that the driver takes a different path from the scheduled
one and for how much time is wasted due to the wrong (or alternative) choice.
Indeed, the route suggested by the mean first passage time approach and the
minimum time path coincide in the case of (0, 1) transition matrices.

The road network example shown in Figure 11 clarifies the differences be-
tween the two methods. For simplicity it is assumed that all turning probabilities
are the same, and that the same time is required to travel along each road of the
network. It is therefore obvious that the minimum-time paths from AB to DA

are AB−BC−CD−DA and AB−BI−ID−DA. On the other hand, the opti-
mal path accordingly to mean first passage times is AB−BG−GF −FD−DA.
The reason is that the time-optimal routes are more prone to mistakes that in-
crease the overall travel time.

Minimum pollution path The objective of this paragraph is to show how
the proposed Markov chain model can be easily modified to take environmental
issues into account. Let us assume that the average emissions per unit time per
road are available. Accordingly to our usual approach, this implies that average
CO2 emissions (for instance) are measured along each road. Let us denote by ej

the emission per unit time along road j, therefore the contribution of pollution
of a single car that takes ttj seconds to travel along road j is ej · ttj . We assume
that the emission coefficient ej depends on the road j because roads charac-
terised by frequent changes of speed limits or by average heavy traffic have a
stronger impact on pollution. We also consider normalised values obtained after
dividing by a scale factor, so that minj {ej · ttj} = 1.

Let us now change the nominal transition matrix P where travel times have
not been taken into account yet (i.e. with zeros in the diagonal) into a new

transition matrix P̂ that further includes emissions. With an analogous argu-
ment to that of equation (6), further detailed in the Appendix, it is sufficient
to include non-zero diagonal elements, for instance for road i we have

P̂ii =
tti · ei − 1

tti · ei
, (9)

so that the expected number of emissions before leaving the road is ei · tti. The
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Figure 11: The time-optimal routes from AB to DA are AB−BC−CD−DA and
AB−BI−ID−DA. If the sum of first mean passage times is considered as a cost
function for optimality, the best solution is the path AB−BG−GF −FD−DA,
as there are fewer chances to take wrong turns and to increase the travel time.
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off-diagonal terms of P̂ must change accordingly so that the matrix remains
row-stochastic:

P̂ij =
(

1 − P̂ii

)

Pij , ∀i, j, i 6= j (10)

Then the matrix P̂ describes a new Markov chain where the transition step is
not a unit time but a unit of pollution emissions. Accordingly, the stationary
distribution represents the long-run fraction of emissions along each single road,
while mean first passage times correspond to the mean first passage emissions.

In a similar way to section 0.5.1, Dijkstra’s algorithm can be used to compute
the minimum pollution path or the minimum mean first passage pollution path.
With an analogous argument to that of 0.5.1, the second optimal path takes into
account the possibility that pollution might increase due to deviations from the
nominal path.

5.1.2 Timing traffic lights

In this section it is shown that the Markov chain traffic model can provides sim-
ple tools to tune traffic lights (in particular the ratio of green with respect to
red times) with a view of improving traffic flow. Optimal timings are computed
accordingly to theoretical expectations and SUMO is used to confirm the traffic
improvements. As timing traffic lights directly affects all the streets involved in
the junction, in this application it is convenient to use also the primal network
representation where each node corresponds to a junction. The beginning of this
section is therefore dedicated to illustrate how it is possible to pass from a dual
representation to a primal one, while in the second part the traffic application
is illustrated.

In the primal representation nodes correspond to road intersections, thus
the stationary distribution refers to the long-run fraction of time that cars will
be at a particular junction. In the following, we will make a distinction between
π (X), which represents the stationary distribution at junction X, and therefore
in the primal network, and π (XY ), which represents the stationary distribution
along road XY from intersection X to intersection Y , and therefore in the dual
network. It is possible to derive the stationary distribution of the primal network
easily from the stationary distribution of the dual network as

π (X) =
∑

∗

π (∗X) (11)

where the symbol “∗” denotes all the roads that end at junction X. For instance,
for junction C of Figure 1 one obtains π (C) = π (AC) + π (BC) + π (DC).
Similarly, the entries of the primal transition matrix Pp can be computed from
dual data as

Pp (XY ) =

∑

∗
π (∗X) P (∗X,XY )

∑

∗
π (∗X)

. (12)
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Figure 12: Junction C from Figure 1. All connection between roads are per-
mitted except from DC to CD. The junction can be easily realised with a
roundabout where flows of cars from AC, BC and DC in turn have a green
light.

For completeness, we also remark that as the dual network is richer in infor-
mation than the primal network, it is not generally possible to compute the
transition matrix P of the dual using only information of the primal, but it is
possible to infer the stationary distribution of the dual as

π (XY ) = π (X) Pp (XY ) (13)

“Optimal” green times can be obtained from the knowledge of the number of
cars queuing at each traffic light and their next destination. This information
can be easily recovered from the dual stationary distribution (i.e. density of cars
along each road) and average junction turning probabilities. A simple method
to time traffic lights is now given through the example of junction C taken from
Figure 1. The junction is shown in Figure 12, which is a snapshot from SUMO,
and it is formed by the three in-going roads AC, BC and DC and the three
out-going roads CA, CB and CD. Note that the only impossible connection
is from DC to CD. In practice, a sensible way to implement the junction is
to build a roundabout, and to give green light in turn to flows of cars coming
from AC, BC and DC (this is also motivated by the fact that all roads have
one only lane). If no further information is considered, a first solution is to have
equal periods of green light for all the three flows. Let us denote by T this green
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period and by πAC , πBC and πDC the components of the Perron eigenvector
corresponding to the roads of interest. Then, we set the green period of each
road accordingly to this theoretical distribution, for instance the green time of
road AC becomes πAC

πC
T where πC is computed according to (11).

The same network is then simulated again in SUMO with the new traffic light
timings and improvements are measured in terms of the different stationary
density at junction C. As all the cars take exactly the same route in both
simulations, the difference in the long-run fraction of time spent at junction C

only depends on the different traffic light timings.
With the same green periods the primal stationary distribution computed from
the simulation was

πT
SUMO = [0.0696 0.0661 0.4601 0.0766 0.2525 0.0323 0.0428] (14)

while after changing the green periods, it becomes

πT
SUMO = [0.0599 0.0706 0.3278 0.0979 0.3652 0.0336 0.0450] (15)

with an evident decrease in the third entry which corresponds to junction C,
illustrating the fact that there are less cars queuing at the traffic light. We
remark that improvements are planned on the basis of theoretical data (the
Perron eigenvector) and are confirmed by SUMO simulations.
By comparing (14) with (15) it is also possible to notice that the density of cars
vanished from junction C spreads to other junctions of the network, and most
of it at the following junction E of Figure 1 (as could be easily expected by
visual inspection of the road network), which corresponds to the the fifth entry
of the stationary distribution vector. In the later section 0.5.2 it is shown that
this result could be predicted as well without performing simulations.

5.1.3 Identification of critical links

The objective of this section is to illustrate the use the Markov chain transition
matrix to find critical links within the road network. Criticality of a road can be
defined accordingly to several points of view: in this section we consider a road
critical if travel times increase when the road is missing (i.e. due to road works
or an unexpected event). This problem can be even more serious if criticality is
not expected at all, for instance because in normal traffic conditions the road is
not particularly busy.

In the usual example of Figure 1, if some of the roads are closed, connectivity
of the road network is lost. This is by far the worst scenario, as depending on the
starting point, some destinations would not be reachable any more. In realistic
and complicated road networks it is possible to predict the loss of connectivity as
a consequence of removing a road by computing the rank of the incidence matrix
C. In the directed dual network, the incidence matrix C is the (0,−1, 1)-matrix
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Figure 13: A new example of road network where connectivity is preserved if
any one of the roads is closed to traffic. The primal network is represented only
for the sake of simplicity, since the dual network consists of 49 nodes.

having [4]

cij =







1 if edge Ej is directed toward node Ni

−1 if edge Ej is directed away from node Ni

0 if edge Ej neither begins nor ends at node Ni

A directed graph with n nodes and m edges and n × m incidence matrix C is
connected if and only if rank(C) = n − 1.

A new example shown in Figure 13 is now provided where the graph remains
strongly connected no matter which link is deleted, so that another parameter
than the loss of connectivity is required to identify critical roads. Figure 13
represents the primal network, while the dual is not shown for the sake of clarity,
as it consists of 49 nodes. It is assumed that all turnarounds are prohibited,
except those required to preserve connectivity in case of closed roads. For
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Figure 14: Values of the Kemeny constant as each road of the original road
network is closed. Accordingly to visual inspection of Figure 13 the most critical
roads are IJ , JI, FM and MF . Roads are numbered according to alphabetical
order.

simplicity, equal turning probabilities and constant travel times are considered
for all the roads (therefore there is no traffic, or at least it is uniformly spread).
The Kemeny constant is computed for the whole network in the case that each
road is individually closed (so that 49 Kemeny constants are obtained). Kemeny
constants represent a global performance cost of the network and obviously it
is desired that they are as small as possible as they measure the average time
required to reach a destination chosen randomly accordingly to the stationary
distribution. In the example of Figure 13 the largest values of the Kemeny
constants are obtained if roads IJ , JI, FM and MF are deleted, as shown in
Figure 14, which is the expected outcome by visual inspection of the network.
It is interesting to remark that the result was found without taking traffic into
account, and to emphasise that critical links occupy respectively positions 32,
39, 23 and 13 in the rank of most trafficked roads in the stationary distribution,
and therefore it is not trivial to predict their criticality.

5.2 Road network engineering

In this section we use properties of the Markov transition matrix P as an indica-
tor of the quality of the road network. For the sake of clarity the properties of
P and their interpretation in the road network context are briefly summarised
in Table 1. In this section we show how road network designers can use these
properties as control variables to design networks.
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Table 1: Direct comparison of average |u|max, IAU, IADU, ISE performance
indices and convergence time T 100 random initial conditions x0.

Property Meaning

Perron Eigenvector Congested roads in the network

Second Eigenvalue (a) Rate of convergence to stationary distribution

(b) If it is real, it identifies the presence of weakly-connected sub-communities

Second Eigenvector In case (b) it associates nodes to sub-communities

First Mean Passage Times Average travel time from origin to destination

Kemeny Constant Average travel time in the network

Perron Eigenvector (Primal) Congested junctions in the network

5.2.1 What type of road network has the smallest Kemeny constant?

In section 0.3.1 we defined the Kemeny constant as a global indicator of the
network, because it depends solely on the eigenvalues of the Markov chain tran-
sition matrix. As the Kemeny constant also corresponds to the average time
to travel from an arbitrary road to a destination chosen randomly accordingly
to the stationary distribution, it suggests that networks characterised by small
values of the Kemeny constant should be more efficient in terms of traffic flow.
This section provides the intuitive interpretation of which type of road network
is characterised by the smallest Kemeny constant.

In paper [28] it is shown that given an irreducible matrix T , there exists a
matrix of minimum Kemeny constant T ∗ such that its non-zero entries are a
subset of the non-zero entries of T (and therefore it can be obtained without
adding extra links to the original graph). In particular it is also shown that
an optimal (0, 1) matrix T ∗ can be found. Following the procedure outlined
in the same paper [28], it can be found that the minimum Kemeny constant
of the road network of Figure 2 can be obtained for instance from the graph
shown in Figure 15, which corresponds to the well-known concept of ring road.
In practice, this traffic solution can be obtained from the original network by
closing all roads that do not appear explicitly in Figure 15, and by forcing all
cars to follow the only available ring path. Although this “optimal” solution
circumvents the need of junctions, it clearly has the main drawback that it
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Figure 15: The smallest Kemeny constant is achieved when roads are connected
as in a ring road. Although this solution avoids junctions, it might still be
required to drive along the whole ring road before reaching the final destination
(for instance to go from road BC to AB).

might be required to drive along the whole ring road before reaching the final
destination (for instance to go from road BC to AB). We do not discuss further
the optimality of this solution, which is only the interpretation of the minimum
Kemeny constant road network. We also note that the abstract mathematical
solution of the minimum Kemeny constant may not always be applied in prac-
tice, as depending on the original graph it might give rise to a non-connected
network. Thus, it may be desirable to decrease the Kemeny constant subject to
maintaining certain connectivity properties.

Comment: As a conclusion of this section we note that the Kemeny con-
stant can reduce if appropriate roads are closed. Indeed the optimal solution
shown in Figure 15 is a subgraph of the original network of Figure 2. It is inter-
esting to remark that this result is in agreement with a well known paradox in
road networks, also known as Braess’s paradox, which states that adding extra
capacity to a network can in some cases reduce overall performance [29, 30].
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5.2.2 Decreasing the Kemeny constant

In practice, road network designers are usually interested in finding the simple
modifications of a pre-existing road network that have positive effects in mit-
igating traffic and reducing average travel times. The first problem is that it
might not be clear which point of the network would provide the most benefits
to the overall traffic flow. We find here the best solution in terms of the Kemeny
constant again. The idea is that of computing which small modification in the
Markov chain transition matrix P provides the highest local reduction of the
overall Kemeny constant.

Mathematically, this corresponds to evaluating the derivative of the Kemeny
constant with respect to small perturbations of entries of the matrix P. Follow-
ing the same approach of [28] let us check what happens if the pth element
of the ith row of matrix P is decreased of a quantity equal to t · Pip, where

t ∈ [0, 1]. The original transition matrix P is perturbed into P̃ = P + Et, where

Et = t
Pip

1 − Pip
eeei

[

eeeT
i P − eeeT

p

]

, where eeek is a vector of zeros with a 1 in kth posi-

tion. As we have that K (P + Et) = trace
(

(Q − Et)
#

)

(where we recall that

the definition of Q was given in 0.3.1) then the derivative corresponds to

∂K
∂t

= limt → 0

t
Pip

1 − Pip

1 −
(

eeeT
i P − eeeT

p

)

Q#t
Pip

1 − Pip
eeei

·

(

eeeT
i P − eeeT

p

)

Q#Q#eeei

t =

=
Pip

1 − Pip

(

eeeT
i P − eeeT

p

)

Q#Q#eeei

(16)
Such a procedure refers to a particular entry of the matrix P, and it can be com-
puted for all (non-zero) elements of P, thus obtaining a matrix of derivatives
with the same size as P. The derivative can be assumed to be zero in positions
corresponding to zero elements of P.

The highest negative entries of the derivative matrix indicate that immediate
benefits in terms of reductions of average travel times can be obtained if the
corresponding entries of P can be decreased. A non-diagonal entry Pij can be
set to zero easily by closing the connection from road i to road j. In contrast,
the diagonal terms also include information regarding the road viability (e.g.
the length of the road) and therefore they can not be set to zero. However, they
can be decreased by raising speed limits, or by timing traffic lights or changing
priority rules appropriately.

5.2.3 Conditioning of the stationary distribution under perturba-

tions of the transition matrix

A valuable property of the Markov chain road network model is that it is possi-
ble to predict the effects of modifications of the original road network in terms

29



of road dynamics. This feature is useful for instance to plan road works or to
predict the propagation of the traffic density as a consequence of different traffic
light timings.

Mathematically this corresponds to predicting changes in the stationary dis-
tribution as some entries of the transition matrix are slightly perturbed. This
topic has been investigated for instance in references [31] and [32]. Let us denote
with P̃ = P + E the transition matrix after the perturbation E. For instance,
in the example of timing a traffic light, E has all zero rows except for the rows
corresponding to the roads involved in the junction of interest. In these roads,
the diagonal elements are positive or negative depending on whether their ratio
of green period has been decreased or increased. As the matrix P + E has to
remain row-stochastic, elements of E corresponding to off-diagonal non-zero el-
ements of P have non-zero value as well, and opposite sign with respect to the
diagonal entry of E. Then

π̃T
P + π̃T E = π̃T ⇒

⇒ π̃T E (III − P)
#

= π̃T
(

III − 111πT
)

= π̃T − πT ⇒

⇒ πT = π̃T
[

III − E (III − P)
#

]

⇒

⇒ π̃T = πT
[

III − E (III − P)
#

]−1

, (17)

where 111 is the column vector of ones of appropriate dimensions. In the last
passage the inverse exists provided that both P and P̃ are irreducible [33].

The ability of predicting the new stationary distribution was tested for the
example shown in section 0.5.1 where green times were modified to improve
traffic flow. The theoretical results were in accordance with the new stationary
distribution (15) extracted from the SUMO simulation.

6 Conclusions

Inspired by the success of Google’s PageRank algorithm, a Markov chain ap-
proach was proposed to model road network dynamics. The major difference
with conventional road traffic models is that all the network information is con-
centrated inside the transition matrix, which is constructed from collected data,
specifically road travel times and junction turning probabilities. The proposed
approach circumvents the requirement of modelling complex road dynamics and
car interactions, or the necessity of extensive Monte Carlo simulations, but at
the same time it still provides an accurate and realistic representation of the
road network dynamics.

One of the main objectives of this paper is to validate the proposed model.
Extensive simulations over several road networks of different shapes have con-
firmed the theoretical expectations, and results concerning one particular net-
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work were shown in detail throughout the paper as a benchmark example. Al-
though only initial results are reported, they are very promising for two main
reasons. The first one is that cars can be easily equipped to start collecting
real data to build the Markov transition matrix. From this point of view, val-
idation of the proposed model with real data is expected to be one of the very
next steps. The second advantage is that from the mathematical analysis of
the Markov chain it is possible to infer hidden properties of the underlying road
network which can be hardly revealed even by tailored ad-hoc simulations. In
addition it is possible to predict road dynamics, for instance the propagation
of the traffic density in consequence of different traffic light timings, or to the
closure of a road for road works.

The ability of predicting road dynamics paves the way to a wide variety
of applications, some of which have been briefly discussed. The Markov chain
model apparently correctly identifies critical links and offers a very simple and
intuitive way to optimise traffic light timings. The analysis of mean first passage
times and the use of the Kemeny constant serve to quantify the efficiency of
the road network. Although it might be argued that the “ring road” can not
obviously be always the best solution in practice, still the idea that simple and
schematic urban networks should be preferred against tangled and complicated
networks is rather intuitive and interesting. Obviously each of the outlined
applications should be further investigated, while several other applications can
be easily stated within the same framework. This is subject of current study
and will be taken into explicit account in future work.

Appendix

6.1 Clustering properties of the second eigenvector

Theorem:

Let P be an irreducible stochastic matrix and suppose that λ ∈ R is an eigenvalue

of P. Let v =
[

vT
1 − vT

2 000T
]T

be a corresponding λ eigenvector (with v1 > 0

and v2 > 0) and let us partition the matrix P conformally as





P11 P12 P13

P21 P22 P23

P31 P32 P33





and label the subsets of the partition as S1, S2 and S0 respectively. Then:

1. ρ (P11), ρ (P22) ≥ λ.

2. There are subsets S̃1 ⊆ S1, S̃2 ⊆ S2, and positive vectors w̃T
1 , w̃T

2

with supports on S̃1, S̃2 respectively such that w̃T
1 111 = w̃T

2 111 = 1 and
∑

i∈S̃1
w̃1 (i)

∑

j /∈S̃1
Pij = 1−ρ (P11) ≤ 1−λ and

∑

i∈S̃2
w̃2 (i)

∑

j /∈S̃2
Pij =

1 − ρ (P22) ≤ 1 − λ.
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3. For any j ∈ S̃2,
∑

i∈S̃1
w̃1 (i) mij ≥ 1

1 − ρ (P11)
≥ 1

1 − λ
and for any

j ∈ S̃1,
∑

i∈S̃2
w̃2 (i) mij ≥ 1

1 − ρ (P22)
≥ 1

1 − λ
, where mij are elements

of the mean first passage matrix.

In the previous theorem the third partition can be empty without affecting
the validity of the theorem; 000 and 111 are column vectors of zeros and ones of
appropriate dimensions; ρ (A) indicates the spectral radius of matrix A; the
support of a vector is the set of coordinates on which the vector is nonzero.
The theorem shows how an eigenvector corresponding to an eigenvalue close to
1 can be used to detect nearly disconnected groups of states in a Markov chain.
The clustering idea is formalised through parts 2 and 3 of the theorem in terms
of small probabilities of going from one part of the graph to the other, and with
high mean first passage times.

Proof:

1. We have P11v1 = λv1 + P12v2. Let zT be a Perron vector for P11. Then
ρ (P11) zT v1 = zT

P11v1 = λzT v1 + zT
P12v2 ≥ λzT v1. The inequality fol-

lows because all terms are positive (either because Perron vectors or be-
cause parts of the nonnegative stochastic matrix P). Therefore, comparing
the first and last term of the chain of inequalities, we obtain ρ (P11) ≥ λ.
An analogous argument applies for ρ (P22).

2. Let wT
1 be a left Perron vector for P11, normalised so that wT

1 111 = 1.
Partition S1 as S̃1 ∪ S̄1, where S̃1 is the support of wT

1 , and denote the
corresponding subvector of wT

1 by w̃T
1 . Let wT

2 , w̃T
2 , S̃2 and S̄2 denote the

analogous quantities for P22. Let us write P in partitioned form as













PS̃1S̃1
PS̃1S̄1

PS̃1S̃2
PS̃1S̄2

PS̃1S0

PS̄1S̃1
PS̄1S̄1

PS̄1S̃2
PS̄1S̄2

PS̄1S0

PS̃2S̃1
PS̃2S̄1

PS̃2S̃2
PS̃2S̄2

PS̃2S0

PS̄2S̃1
PS̄2S̄1

PS̄2S̃2
PS̄2S̄2

PS̄2S0

PS0S̃1
PS0S̄1

PS0S̃2
PS0S̄2

PS0S0













. (18)

We have

1 = w̃T
1 PS̃1S̃1

111 + w̃T
1 PS̃1S̄1

111 + w̃T
1 PS̃1S̃2

111 + w̃T
1 PS̃1S̄2

111 + w̃T
1 PS̃1S0

111 =

= ρ (P11) + w̃T
1 PS̃1S̄1

111 + w̃T
1 PS̃1S̃2

111 + w̃T
1 PS̃1S̄2

111 + w̃T
1 PS̃1S0

111

so that 1−λ ≥ 1−ρ (P11) = w̃T
1 PS̃1S̄1

111+w̃T
1 PS̃1S̃2

111+w̃T
1 PS̃1S̄2

111+w̃T
1 PS̃1S0

111
and the desired inequality follows. An analogous argument applies to
(P22).
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3. Fix j ∈ S̃2 and let P(j) be formed from P by deleting its jth row and

column. Then for any i ∈ S̃1 we have

mij = eeeT
i

(

III − P(j)

)−1
111 ≥ eeeT

i

(

III − PS̃1S̃1

)−1
111.

The last inequality follows as PS̃1S̃1
is a submatrix of P(j). Hence,

∑

i∈S̃1
w̃1 (i) mij ≥

w̃T
1

(

III − PS̃1S̃1

)−1
111 = 1

1 − ρ (P11)
≥ 1

1 − λ
. A similar argument estab-

lishes the desired inequality for j ∈ S̃1.

6.2 Motivation of equation (6)

Let us assume that all roads can be covered in the same time, therefore all
diagonal elements of the matrix P are zero and we have πT

P = πT , where πT is
the left Perron eigenvector. As in reality all roads have different travel times,
self loops will now be added accordingly.
Let us assume that the diagonal entry in the ith position is Pii, then the proba-
bility of leaving the road in exactly j steps is P

j−1
ii (1 − Pii), thus the expected

number of steps before leaving the road is

∞
∑

i

jP
j−1
ii (1 − Pii) =

1

1 − Pii
. (19)

As described in section 0.4.1, we assume that travel times for each single road
are available; if tti is the observed travel time for road i, and travel times are

normalised so that min {tti} = 1, i = 1, . . . , n, then we have 1
1 − P̂ii

= tti and

equation (6) follows. P̂ii represents the updated entry of the transition matrix
required to take different travel times into account.

Once diagonal terms are changed, off-diagonal terms have to be updated to
keep the transition matrix row-stochastic, without affecting turning probabilities
ratios. That is

P̂ij =
(

1 − P̂ii

)

Pij , (20)

where P̂ij are the updated off-diagonal terms of the transition matrix. It is
interesting to notice that the (non-normalised) Perron eigenvector π̂T associated

to matrix P̂ is related to πT of matrix P, where travel times had not been taken
into account, through π̂T = [tt1π1 tt2π2 . . . ttnπn].
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