IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. YY, 2008 1

Best Achievable Tracking Performance in
Sampled-Data Systems via LTI Controllers

Jie Chen/[ellow, IEEE, Shinji Hara,Fellow, IEEE,Li Qiu, Fellow, IEEE,Richard H. MiddletonFellow, IEEE

Abstract—In this paper we study the problem of tracking a operates in continuous time while the controller in discrete
step reference signal using sampled-data control systems. We aretime. We consider single-input, single-output (SISO), linear

interested in the tracking performance, defined as the integral ime jnvariant (LTI) plants. The reference input will be the unit
square of the tracking error response between the system’s

output and the reference input. This performance is deemed step signal. The tracking performance is defined as.th.e integral
the best achievable by a sampled-data controller with a linear Square of the error response, measured by the minimal error
time-invariant discrete-time compensator if it is the minimal achievable by all possible sampled-data stabilizing controllers
attainable by all such controllers that stabilize the system. Our with an LTI compensator. Our main objective is to investigate

primary objective is to investigate the fundamental tracking what may affect the tracking performance in this setting, and
performance limit in sampled-data systems, and to understand '

whether and how sampling and hold in a sampled-data system whether any “_m't _to this performance may exist, and if any,
may impose intrinsic barriers to performance. We consider two how and why it arises.

tracking performance measures, with one defined with respect  The tracking capability of feedback systems is an important
to the unit step signal, and another with respect to a delayed attribute and has been the subject of research for many years.

step signal and averaged over one sampling period. We derive pq, 5150 stable plants, the ability to track step signals with an
an analytical closed-form expression in each case for the best

achievable performance. The results show that a performance loss LTI controller _|s ConS|de_r_ed _|n [21], [24]. It has b_een shown

is generally incurred in a sampled-data system, in comparison to that the tracking capability is completely determined by the
the tracking performance achievable by analog controllers. This location of non-minimum phase zeros of the plant, whether
loss of performance, as so demonstrated by the expressions, isn continuous time or in discrete time. Recently, these studies

attributed to the non-minimum phase behaviors as well as the 5.6 heen extended to multi-input multi-output, unstable plants
intersample effects generated by samplers and hold devices. Thus,

sampled-data controllers do result in an additional performance with possible time_ delays [26], [10_]' [33], vyherein it was
limit, which is seen as a necessary tradeoff for other advantages found that the tracking performance is determined by the delay
offered by this class of controllers. times, as well as the location and directional properties of
Index Terms—Sampled-data systems, tracking, performance the unstable poles, and the non-minimum phase zeros in the
limit, frequency-domain lifting, discretization, non-minimum  plant, and that the effects of delays, poles and zeros can be

phase zeros, intersample effects. completely described via closed-form expressions. A similar
conclusion holds with respect to other benchmark signals than
|. INTRODUCTION the step signal, including sinusoidal and ramp signals [11],

. . o 2g].
OR a given plant, the optimal tracking ability, measureh Problems concerning tracking with sampled-data controllers
by the minimal tracking error between its output ang, e peen widely studied as well; see, e.g., [13], [14], [15],
a reference input to be tracked via a stabilizing controll 18], [19], [36] and the references therein. These problems

depends on the plant, the class of controllers, as well as:,me considerably more difficult, and closed-form expres-

the reference signal. When the plant and the reference inQifs for tracking performance are not yet available; instead,

signal are given, and the controller has been designed, {ig eyisting work addresses exclusively numerical design of

implementation mode of the controller, i.e. via an analogyima| sampled-data controllers. Among several issues which

or a digital controller, will also lead to different trackingare unique to sampled-data tracking systems, one important

performance. In this paper, we consider the tracking perffiohiem is concerned with whether the tracking performance
mance problem for sampled-data systems, in which the pl t sampled-data system may become worse than that of the
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in a more general setting where linear time-varying (LTV) [I. PRELIMINARIES

and pe_riodic controll_ers are considered [15], [38]. Despite the proplem Formulation

restriction, the consideration of LTI controllers nevertheless ) ) . _
enables us to obtain analytical results that differ considerably?Ve consider the SISO unity feedback systedepicted in
from numerical solutions. Specifically, our main results afe9uré 1. in which P™ represents the plant model with a
analytical expressions of the minimal tracking error, whereR9SSible delayl” alowpass, anti-aliasing filter, and a sampled-
the error is defined either as the integral square error ﬁiﬁ‘ta controller consists of a discrete-time compensafgy

tracking the standard unit step signal originated at the tinfl Iow_ed by a hold devicéir and preceQed by a samplgf.
Lae signalsr and y are the reference input and the system

zero, or as an averaged error in tracking a delayed st velv. Wi deal poi | q
reference. These analytical results are crucial for answerifijiPUt: respectively. We takgr as an ideal point sampler, an

the aforementioned questions, which a numerical solution

generally fails to address. First, the results show that t ,

time delay and the non-minimum phase zeros of the analu%t) e_(t) F olt i Ky uku(t P y(j)
plant continue to impose limits on the sampled-data tracking
performance, in exactly theamemanner as in using an analog
controller. Second, it is well-known that due to the induction

of samplers, the ensuing discretization of the plant is likely to
generate new non-minimum phase zeros (i.e., zeros outside,;@_el_
unit disc), despite that the original analog plant may itself be

minimum phase [2], [17], [3], [6]. The analytical expressiong;,. 5 7OH, which are synchronized and are of the sampling
obtained in this paper reveal that such zeros will also have,griod 7 > 0. Thus. the sampled sequente, 1 is given
negative effect on the tracking performance. Third, in order |§, . *.— (k7). k = 0, 1, ---, and the ZOHk;?eIds as its
contain sampling noise and prevent sampling aliases, an anaég%ut the signaki(t) ::’ uk’, for kT < t < (k + 1)T.

pre-filter is generally included in a sampled-data system; forgq, 5 given reference signal the digital compensatak’,

the same reason, discretization of this filter may also ge”er%“?designed such that it stabilizes the analog pRhtand the
non-minimum phase zeros and hence they too will affect thgntinuous-time outpus tracks the continuous-time reference

tracking performance. Finally, our results exhibit further a 1o signak := y—r represents the tracking error response.
relationship between the plant's harmonic contents and ®& taker to be the unit step signal

tracking performance, showing that the high-frequency har-
monics will have a negative effect on the tracking performance r(t) = { 1 t>0 1)
as well. In summary, it will be seen that sampling and hold as 0 <0

a whole results in undesirable “byproducts” unfound in analggssyme that the system is initially at rest. The problem then is

systems, which contribute to the degradation of the trackiRg getermine the best tracking performance achievable by all

performance. possible digital LTI compensatois; that stabilize the plant.
Here we measure the tracking performance by the energy of

. ) o the tracking error response, denoted.Jasand quantified by
The notation used throughout this paper is fairly standarghe jntegral

For any complex number, we denote its complex conjugate - -

by z. For any vectoru, we denote its transpose by’, J. ::/ |e(t)|2dt:/ ly(t) — r(t)|dt . )

and its conjugate transpose hf’. The transpose and the ) 0 0

conjugate transpose of a matrixare denoted byl” andA”, \jith the filter F and the sampling ratd given, the best
respectively. We assume that all the vectors and matrices haw@inable tracking performance by this class of sampled-data
compatible dimensions, and for simplicity, their dimensionspntrollers is

are omitted. Let the open right half plane (RHP) be denoted

by €, := {s: Re(s) > 0}, the open left half plane (LHP) Jia = Ko(o) Lnf sy

by C_ := {s: Re(s) < 0}, the imaginary axis byCy, the o )

open unit disc byD := {z : |z| < 1}, the exterior of the The minimalJ. achlevgble by an analog controller was fOI_Jnd
closed unit disc byD® := {z : |z| > 1}, and the unit I [24], [10], whos_e dlscre_te—t|mg.counterpe_lrt was obtained
circle by T := {z : |z| = 1}. We will encounter theC, N [33], both of which admit explicit expressions of the best

spacesCs(Cy), L£2(T), defined ovelly, T, the’H, spaces to- Frackjng performance ip their respectivg setting;. Our aim
gether with their orthogonal complemerits (€., ), Hi-(€,), In this paper is to derive a corresponding solution for the
Hs(D), HE (D), and theHo, spacesHo(C4), Hoo(DD), sampl_ed-data tra_cking problem, that is, an explicit expression
and RH..(ID). These spaces correspond to continuous-tingé Minimal J. achievable by sampled-data controllers. Alterna-
(Co, €,) and discrete-timeT, D) frequency responses andively, we will also study a similar performance measure which
transfer functions, an®H.. (ID) is the set of all proper stable S€€ks to average a quadratic error over a time-shifted reference

rational transfer functions in the discrete-time sense; the reader , ,
Our analysis extends readily to more general two-parameter control sys-

is referred to [13] for the definitions and properties of the%@ms. For clarity of presentation, and to highlight the fundamental limitation
spaces. issues, we choose to focus on the unity feedback structure only.

The sampled-data tracking system

J..
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signal. This alternative performance problem is deferred tespectively. We refer to the frequency randgey =

Section IV. [-wn,wn] as the baseband. A fundamental fact concerning
Unless otherwise specified, throughout this paper we shallsampled signal is that its frequency response consists of

assume infinitely many shifted copies of the original continuous-time
Assumption 1:1) P7(s) = P(s)e~ "%, wherer > 0, and frequency response:

P(s) is rational, stable, proper, and(0) # 0; -
2) F(s) is rational, stable, minimum phase, strictly proper, Ga(esT) = 1 Z G(s + jkws) -

and F(0) # 0, = (

3) K4(z) is rational and proper.
It is worth noting that these assumptions are non-restrictiVée shall write Gi(s) := G(s + jkws). ConsiderG(s) =
except the stability assumption ét(s), which can be removed G"(s)e™ "%, 7 > 0. By a direct appeal to [7], or a straightfor-
if a two-parameter controller structure is adopted and hene@rd extension of contour integral argument (see, e.g., [25],
is deemed inessentfalFor example,P(0) # 0 is a standard pp. 147) employing theJordan lemma(see, e.g., [22], pp.
requirement to ensure thdt be finite. If an anti-aliasing filter 259), one can show that the above series converges uniformly
F is included in the system, the condition th&f0) £ 0 is to Ga(e*”), under the condition tha&’(s) is the Laplace
also necessary. transform of the step response of a system whose transfer
For a one-sided signalt) with Laplace transfornd:(s), we function is strictly proper and rational. In light of this condition
denote theZ-transform of the sampled sequenggkT)};°,, and Assumption 1, we may write
by G4(z), and write it asZ{G(s)}; that is,

T jwT\ __ 1 - . T (. -
Ga(z) = Z2{G(s)} = Z{Sr {LT{G(s)}}} (FPTH)a(e™) = 7 k; Hy,(jw) B (jw) Fi(jw).-
where Z is the Z-transform operatorSy the sampling oper-

ator, and£~* the inverse Laplace transformation. Define Let R(s) be the Laplace transform of the reference inp(a:

N R(s) = 1/s. Then, the output response can be expressed in
His)— =€ the frequency domain as
(5) = ——.

. _ T( : - jwT jwT
Let (FP™H)y(z) denote the ZOH-equivalent discretization Y(jw) = PT(jw)H(jw)Sa(e’" ) Ka(e™")

oo

13], [16] of F(s)P7(s), that is, 1 ) )
3] [l of F)P7(s), thatis X7 3 Felw)Relio),
(FPTH)a(z) = Z{F(s)P"(s)H(s)} k=—o00
- (1-zYHz M . whereS;(2) := [I + Kq(2)(FP™H)q(2)]~! is the sensitivity
( )
§ function of a discretized system. Employing the parameteriza-

It is useful to note that despite the presence of deldjon (3), we obtain the error response as
(FP™H)4(z) remains to be a rational function; an explicit _ ) L _ T
construction of such a discretization can be found in, e.g., [16]E(JW) = R(jw) = PT(jw)H (jw)Q(e™™)

(pp. 171). Moreover, the stability df (s) and P(s) guarantees I & .
that (F P™ H)4() is stable. Thus, under Assumption 1, the set T Z Fr(jw) Bi(w) , (5)
of all stabilizing LTI controllers is given by h=—eo
o _ . 1 and thus the tracking performance can be expressed in the
Ks: = {Ka(2) =Q(2)[1 = (FP"H)a(2)Q(2)] " : frequency domain as
Q(2) € RHx(D)}. (3) ~ R
The optimal tracking performance achievable via an LTI Jc=/ le(t)dt = g/ |E(jw)f3 dw. (6)
controller can then be determined as 0 -
. B ) Frequency-domain lifting techniques were developed in,
Joa= ok o= it e ) eg. [, [18], [8], [37], which have been the subject of
numerous studies of sampled-data control problems (see also
B. Frequency-Domain Lifting [38] for an extension to linear, periodically time-varying

We shall tackle the optimal tracking problem from asystems). In what follows we briefly describe this procedure,

frequency-domain approach. Let the sampling frequency \%/(?ne referring to [1], [8] for much of the technical detail. Let

the Nyquist frequency be jw) € L2(Cyp). Define, on the intervafly, the sequence
27

of functions
?7

™
Wg = OJN:T, Ek(]W):E(]W"‘]kws), k:()’ ]_7

2Tracking performance with a two-parameter sampled-data controller cije may arrange the sequen{'_:é‘k (jw)}?:—oo as an infinite-
be investigated analogously as in this paper, by combining the developme#fﬁ]ensional vectoé’(jw) that is
in [1] and [10], which can be shown, as expected, to be unaffected by the ! !
plant unstable poles. Thus, in studying fundamental performance limit, the ) ) ) T
stability assumption does not pose an essential restriction. E(jw):==[ -+ Ei(jw) Eo(jw) E_1(jw) ]
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This operation can be described by the linkfing operator where
T: Lo2(Co) — L2(2n), such thatT E(jw) = E(jw), where

Lo(n) is the Hilbert space with the inner product . < 2 ~oifl
Iy : T+Zzi+TZUi_1+Jh(T),
1 o) . . 1=1 =1
< X, y>£2(QN):: 27('/91\7 ( Z Xk(jw)Yk.(]w)> dw g - Tzf A+ 1
k=—o00 f- )\i 1
and the norm =t
o 1/2 and J,(T) > 0 is defined at the top of the next page, with
IVl 2aen) = i/ Z Vi (jw)]? | dw zi € €y, i =1, ---, m, being the non-minimum phase
e 21 Jay \,Z, zeros of P(s), o; € D%, i =1, ---, m,, the non-minimum
(m) = (m)
it is known [1], [8] that phase zeros of (P RH)4(2) zZ{P _ (s)R(s)H(s)},
Ai € DY i =1, ---, my the non-minimum phase zeros
<X, Y> = <&, V>r00) of (FH)4(z) = Z{F(s)H(s)}, with all non-minimum phase
1El: = €]l am)- zeros of the discrete-time transfer functions counting the zeros
e at infinity.
Consequently, the tracking performanég can be quantified _
using the lifted version of2(jw); specifically, Proof. See Appendix A. L
) We remark that the singular integral if,(T') converges, a
Je = ||5||c2(QN)7 @) technicality that we choose to omit herein but will become
DenoteP™H (jw) self-evident in the proof of Theorem 1; alternatively, it is
o . _ . _ straightforward, though somewhat tedious, to show that the
PTH(jw) = [ -+ P(jw)Hi(jw) Fj(jw)Ho(jw) integrand has a removable singularityuat= 0.
P7,(jw)H_1(jw) ]T The quantity.J, in (10) represents the performance limit
inherent of the plant, in which the first two terms, i.e.,
It follows that
. 1 T . jw - - < 2
EGw) = |T- P H(WIQE)FT (ju)| R(jw). T2

=1

Here in the last expressiof,is the unit operator on the lifted arise due to the time delay and the non-minimum phase

signal spaceCQ(QTN), Sugh_ thatZ€ (jw) = E(jw). The COM- a0 0¢ of the continuous-time plant. This term coincides with
posite operatorP HQF is knoyvn as arFR—loperator[l], the minimal tracking error attainable by the optimal analog
[18]. In light of (7), the best achievable tracking performancg, iy jer. Thus, Theorem 1 shows that the influence on the

can then be found by solving the optimal mOdeI'matChintgacking performance by the nonminimum phase zeros and

problem the time delay remain in complete existence, in exactly the
e - H {I 17?THQ]-'T} - 2 @®) same way, when the optimal analog controller is replaced by

od = in - = R i
47 eRHo (D) T Lot a sampled-data controller. The theorem makes it clear that

with a discrete-time LTI controller, sampled-data control will
Our goal is obtain an analytical solution to this problem.  generally worsen the tracking performance, due to the presence
of the additional terms, which are all non-negative. Since
lIl. TRACKING PERFORMANCE WITHUNIT STEP the sampled-data controllers constitute a special class of LTV
Our main result is given in the following theorem, whictcontrollers, this result reinforces the previous finding in [27],
is a closed-form, analytical expression of the best trackirigat the optimal tracking performance achievable via an LTI
performance achievable by a sampled-data control scheme@iran LTV analog controller coincides. On the other hand, it
which the discrete-time controllel,; is assumed to be LTI. is also known [15] that with the sampled-data schemig,
We shall need the allpass factorization @fs), given as can be further improved if the discrete-time LTI controller is
allowed to be time-varying, which may serve as an even more

P(s) = L(s)P"™)(s) , ) fundamental measure of tracking performance.
where P(")(s) represents the minimum phase part/fs), The third and fourth terms i, are seen as the undesirable
and L(s) is an allpass factor, such that “byproduct” of the sampled-data tracking scheme, capturing
. the negative effect of the sampling and hold operations on the
L(s) = H Zi(zi — ) tracking performance. The third term is attributed to the non-
i zi(Zi + )’ minimum phase zeros of an auxiliary discretized system, with
_ . . . . (m) . . .
With z; € ©s,i =1, -+-, my, being the non-minimum phasea ZOH-equivalent discretization oP'"™)(s)R(s); a similar

effect arises with the anti-aliasing filter, represented.hy
Together with the third, the fourth term ish, manifests in a
more explicit fashion the effect of intersample behavior, an
important aspect of sampled systems, displaying an explicit
Jig=Jdp+ Js (10) dependence of the tracking performance on the high-frequency

zeros ofP(s).
Theorem 1:Let the reference input(t) be the step signal
given by (1). Then under Assumption 1,
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o0 (m) - 2
2 [P (jw)l
T2 wN 1 T kgm («f2+kws)2
Jp(T) == — log - 5 ¢ dw, (12)
2r Jo 1 —coswT S pm ()
N Jw
2(1 — coswT) kgoo ERTRRE
harmonics ofP(")(s). It is useful to note that this effect is IV. AVERAGE TRACKING PERFORMANCE
independent of the anti-aliasing filté. An alternative, complementary measure that can be used

It is well-known that sampled systems are prone t0 nofy quantify the tracking performance is tfté, performance
minimum phase zeros. In particular, it is known [2], [17], [3Lriterion that seeks to average the quadratic error in (2), over a

that for a continuous-time system with pole-zero excess greaigfe-shifted reference signal. In this formulation, we consider
than two, the sampled system with a ZOH will always result ifhe tracking error defined by

zeros outside the unit disc, provided that the sampling period ~
is sufficiently small. It is also known that a continuous-time j(g) .= / ly(t) —r(t — 0)|?dt, 0<0<T. (13)
system with pole-zero excess greater or equal to one results 0
in a discrete-time system with a zero at the point infinityyote that.J(0) = J.. The averaged tracking performance is
and hence the sampled system becomes non-minimum phasgined as
Theorem 1 shows that such discrete-time non-minimum phase
zeros, known as theampling zerosas well as the high-
frequency harmonics, are the very reason why it is difficult .
y . and the optimal average performance becomes

for a sampled-data system to retain the tracking performance
achievable by an analog controller. J¢ = inf Je.

In summary, it is clear that sampled-data controllers will Ka(z) stabilizes P(s)
in general lead to a degradation in the tracking performandaeraged H, performance measures in the spirit of (14)
A plausible question is whether with a fast sampling ratgere advocated in [20], [5], [12] for sampled-data systems,
this degradation can be made small. Toward this end, wad studied in [38] for more general periodic LTV systems.
first note that the third term inJ, will diminish, and so Our following result, a counterpart to Theorem 1, gives an
will J;. Indeed, according to [2] (see also [3], [6], [17]), foranalytical expression as well for the optimal average tracking
sufficiently smallT” > 0, the transfer functiofP(™ RH),(z) performance.
will contain zeros mapped from the zeros of the minimum
phase transfer function8(™)(s)R(s), approaching the point
z = 1 from the interior of the unit disc. The remaining
zeros of(P(™ RH),(z) will approach those of the so-called

a ,___ 1 T
J '_T/o J(0)do, (14)

Theorem 3:Let the reference input(t) be the step signal
given by (1). Let alsqA;, By, Cy) be a minimal realization
of F(s). Define

Euler polynomial As such, for sufficiently small” > 0, the Apg: = eArT,
second term irJ,, is only determined by the zeros of the Euler T
polynomial, which are always real negative. Consequently, we Bjq: = / e Bydt,
claim that for sufficiently small” > 0, 0
Soi+1 A+ 1 0
S I _om), Y S —om). Lo
o; — 1 ° Ai—1 Bs : = B
i=1 =1 fa * = ? f(t)dt
JO

More generally, it turns out that the optimal performang 1 (T .
as a whole will decrease at a linear rate to the performance g = T/O By (t)Bj (t)dt,

achievable by the optimal analog controller. We state this result 172
in the following corollary. The proof is given in Appendix B. Apr = (Ef - Bfanu) ’
Theorem 2:Under the assumptions in Theorem 1,as»  Fu1(z): = (FH)a(2) + (z — 1)Cy(2I — Ayq) "' Bta,

0, Fap(2): = (2=1)Cf (2] — Agq)~ " Ay

=T+ Z 2 +O(T). (12) Then under Assumption 1,

2
i=1 T
fd = §+JP+J?, (15)

It is then clear that the effects of sampling and hold willvhere.J, is given as in Theorem 1,
become negligible for sufficiently small > 0; in other words, ma

the performance loss due to the use of sampled-data controllers Ji. — T v+l + JM(T),
can be recovered in the limit, with an arbitrarily fast sampler. i
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T2 WN 1 Fa JwT |2 . .
JHT) = / - coszl o (1 n [ Faz (e’ )l ) dw, tracking performance achievable by a two-parameter sampled-
0 _

S 2m | Far (e797)[2 data controller will coincide with that in the present setting,
and~y; € D%, i =1, ---, m,, are the non-minimum phasel-€., & stable plant controlled by a one-parameter sampled-
zeros of F,;(z) counting the zeros at infinity. data controller. As such, our study of stable plants suffices

to expose the fundamental limit to the achievable tracking
Proof. See Appendix C. B performance, which is solely determined by the non-minimum

It is clear that the essential difference betweélj and phase behavior of the plant and the intersample effect of a
Jeq results from the use of the anti-aliasing filtéf. On  sampled system.

the other hand, the performance limit due to the plant, i.e.,

the term J, is invariant of the measures and thus appears

more fundamental to the tracking performance. Theorem 1 REFERENCES
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we have|©,4(1)]? = T - |P(0)|?. Without loss of generality,
APPENDIXA. PROOF OFTHEOREM 1 we may take
Proof. The proof of Theorem 1 requires a lengthy deriva- 04(1) = VT P(0). (A.3)

tion. Our first step is to separate the non-minimum phase S .

zeros of P(s). For this purpose, we invoke the allpas$efine the infinite dimensional vector
factorization (9). Introducing the diagonal operat@$;jw), R S g 1, jwT
LGw) : La(Qy) — Lo(Q), S0 that Mi(jw) = ZZ P H(jw)8,4 (e

L(jw): = diag(---, Li(jw), Lo(jw), L_1(jw), ---) , and the operator
Dijw): = diag(---, eImlwrtws) . [ MH (jw) }
w = v ,
R U= | 2 - MuGi) M2 o)

It is straightforward to verify thaW¥ (jw)W(jw) = Z, and
It follows that P7H (jw) = D(jw)L(jw)P™ H(jw), where  hence

m - . m)y . : m)y . . 2
]T QERH oo (D)

m), . . L2(Qn)
P (jw) H_ (jw) A
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Using the identities where Ly(z) := Ls(2)Ls(z). Since, according to (A.2-A.3),
— (m)HH)(m)(Z—l)
H, . L VT (P HH) (e 7%T) EHE ) T
M7 (jw)R(jw) = — 1~ ojoT Bale—3=T) , Od(zzli : c HQL(]D%
T ) .
fT(]CU)R(]W) = W(FH)d(e‘JWT), we Obta'n

- 2

T2 PMHE™ (=Y JT

Hy: . ——d = T

REGIRG) = T—memy@ ey’ O |
z—1

it follows from a standard, albeit tedious calculation of (A.4) 2

that P VT — La(FH)" @dQ
Jro=Jr1 4 Je1s QERH o0 (D) z—1 ,
with Furthermore, following the development in [33], we note that
oo T — | @™ HE) a7 |2 VT — Ld(FH)(m)@dQ
Joq: = Y G d z—1 z—l
sl - = 27_(_'0 ‘1_€ij|2 w, 2
m ~ 2 _ 1 (m)
(P((;%—Z(FH)d@dQ _7 1 ﬁ(FH)d ©4@Q
i inf “ ) z—1 ’
QERH oo (D) z—1 2
? and
where (P HH)3(2) == (PM™HH) (271, 05(2) = L M 1 my
©4(271). As such, we computd;, ;. Toward this end, we H d Z gi + it )
factorize z(PU™ HH ) 4(z) and (FH)4(z), respectively as - A1
Z(P(m)HH)d(Z) _ (Z)(P(m)HH) m)( ) Denote
(m) e ame |
(FH)a(z) = Ly(z)(FH){(2), | mm e VT
s2 - —
—1
where (P™ HH)™ (z) and (FH){™ () are the minimum ‘ 2
phase parts of (P HH)y(z) and (FH)4(z), respectively, P (@7 ST 2
and T s e - ;
= — - w.
mp 2T 0 eJWT —1
1-— g, zZ — 0
o - 02
“i\l—o; 1-0;z It is then clear that
my <~
11—\ z— N\ Jl—"_l Ai +1
= ! ! = T +T 51+ Js2.
Li(z) = E(l—)\i> (15\12> Jia TJrZ + Z Z)\—l 1+ Js2
) (m) (m)100 Itis also clear that the optlmal tracking performanigge can be
are the allpass factors. Writ¢(P'"™ HH), ']*(2) = achieved by the solution of the discrete-time model-matching
(P™HH)™(>7") and LY(2) := Ly(=~'). Note that problem

Ls(1) = L¢(1) = 1. Note also that 9

— 2 (FI{ (2)04(:)Q(2)

inf ,
QERHoo (D) 2—1
2

(PU™HH)q(z) = (1 -2 ") (P"™ RH)a(2).

Hence, the transfer functions(P™ HH).(z) and

(P'™ RH)4(z) share the same non-minimum phase zeros y¥hich can be solved using standékty optimal control pro-
DC. Furthermore, sincéP™ RH)4(z) is a rational function, cedures (see, e.g., [13]), or based on a cheap control approach

(P HH)4(2) € RHoo(ID). We may then write . .
The remaining part of the proof proceeds by evaluating

LI HED Lf(FH)fim)@dQ Js1 + Js2, which, by a direct calculation, is found to be

y2

o~
;.;L _ inf d ) i () (giwT
V= P o g 1 \}TRe{( e )}
2 Jsl + JsQ dw
. —wN 1 — coswT
or alternatively, . . "
Making the variable substitutiop = tan(w7'/2), we have
(m) (m)y~ 2 .
Y Ly(FH)™04Q 1 pe mHm e ()
= inf : : T eu(1%)
QERH o (D) z—1 Ja+Je2 = — / ~ dy .
9 2 J_
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2

Z P (jw)HE (jw)|

k=—o0

Introduce the function

1 (PU™MHH) ()
ﬁ. @d(HS) ' the expression (A.7), given at the top of the next page,
Since (P(™ HH) m)( )/6ulz) is analytic inDF, f(s) is glc;vl;/ss{ir&?néA.S) and (A.6). The proof is then completed
analytic inC,.. Denotef (jy) = u(y)+jv(y). Then the Hilbert

(P(rn)HH)(dm) (eij ‘

f(s) =

) 1— eij
transform [23] Hy(jw) = Tt
(yO) yO/ U(y) —U(yo) dy J ® -
™ —00 y2 - yg
holds for any real numbey,. Note from (A.2-A.3) thatf (0) = APPENDIXB. PROOF OFTHEOREM 2

u(0) = 1. Hence by invoking the Hilbert transform, we obtain Proof. In light of Theorem 1, it suffices to consider a delay-

(PU™) B ) (™) (1) free plant and assume th&(s) is minimum phase, and show
~ 1— J=Re e that the corresponding tracking performance approaches zero
04(112) p g gp pp
Js1+Js2 = / 7 dy  ata linear rate, i.e.,
—00
B _/°° u(y) — u(0) dy «a=0(T).
—0 y? We accomplish this goal using a time-domain lifting approach
— o lim v(y) [4], [36], [30], [31]. In particular, we rely on a formalism of
o y—0 Yy [13], which studied a more specialized tracking problem under
Based on this recognition, we then find an’H, criterion. , , ,
- 14 Let us first consider a generalized continuous-time plant
imd EHD () | 1 with the realization
9d(i+§2’,) VT
Jg1+Jso = —— lim
9*0 T e
{ ( <m>HH>m< )) ] "
Z) z=1 >
L4 (1 +Jy)
Sy \1T-jy
_ o les) (P EHE) >}<> | K
041 ) (P (m HH)(m)( 1)

Note thatJ,(T) = Js1 + Js2, and hence the singular integral
in J,(T) is bound to converge. To complete the proof weig. 2. Generalized feedback system
next resort to the Schwarz integral formula [23], which, when

applied to the functio®4(z)/©4(1), yields A B By
) . = D
Qu(z) 1 [*™elt 42 O4(e’t) [? G Ch 0 12
log = — , lo dt, Cs 0 0
O4(1) 4m et — z 04(1) i . N i
) o A generalized feedback system is shown in Figure 2. With
By evaluating the derivative dbg(©4(2)/0a4(1)) atz =1, 4 continuous-time plant and a sampled-data controll&f,
we obtain the system can be converted into one with a discrete-time
o,(1) 1 [ 2 O4(elt) 2 controller K; together with a generalized discrete-time plant
0.1) — T 4r)y, (A—et)(1—e) 08 0.4(1) dt ., which take the places @ and K, respectively. The state-
0u(c) |2 space realization of the discrete-time plant is given by
© log | 222
1 g‘
_ 1 ©4(1) dt (A.5) G, ay Ag B By
2r Jo 1 —cost Ga=|a" a2 = | Cua 0 Dhga |,
Similarly, dz1 da2 Cy 0 0
(m) gy (m) ity |2 81
(PU™HH) ™ (e7) with
(m) [ (m)yr x log | ———rd T
{(PHH)YQ) 1 / (POVHITW | g Agi= AT Byyim / ABy dt,
(p(m)HH)Elm (1) 2m Jo 1 —cost 0
(A.6) and
Since

Lo [Ci¢ Di2g]" [Cra Di2al:

jw 2 m)y . . T

[©a(e™ )" = T Z |Pl£ (o) Hi (), =/ e Di2]" [y Dyo] eftat,
0

k=—o0
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2

Oy(1) {(PMHH)MY() g;/” L Oe’)  (PMHEHMM)|
©4(1) (P(’m,)HH)EIm)(l) 21 Jo 1 —cost (P(m)HH)Elm)(ejt) ©4(1)

T

2

/WN ! log { T
— o
o 1 —coswT &

X IR G e

dw.

: (A7)

> P (jw)HE(jw)

k=—o0

where
A

0

By

- 0

- E

To pose the tracking problem in the above generalized,; (z)

framework, we first construct
a— 1/s —P(s)
S LF(s)/s —P(s)F(s) ]
Let (Ay, B,,C,, Dy) and (Ay, By, Cy,Dy) be the minimal
realizations ofP(s) and F(s), respectively. In the remainder

(B.2)

of this appendix, we impose Assumption 1, and assume

additionally thatP(s) is minimum phase. Hencd); = 0,
since F(s) is strictly proper. A minimal realization fof(s)
is given by

0 0

DiscretizeG(s) to obtainG4(z), as outlined above. We note
that (4, B;) is not stabilizable. However, there exisf,
that internally stabilizeP(s)F(s). The set of all stabilizing
controllers is given by

Ka= {Q(l + GdzzQ)il Qe RHDO(]D)}
The minimal tracking performance is then found to be
J ”Gdu + Gd12QGd21 ||§ .

S

0 0 0
A= |o A, 0,
By  —-BsC, Ay
1 0
B = [Bi By]=10 B, |,
0 BsD,
I e e
c=lal=b 7 &l
D = {0 _DP} (B.3)

QERH oo (D)

We refer the above discretization scheme to [13] (Chap. 12),
which was carried out therein for a similar tracking problem.

We next perform an asymptotic analys@n .J7,. Using the
asymptotic expansion

e =T+ At+O(t?),

we find that for a sufficiently small’ > 0,

[Cig Diza] =VT {[c1 D1 ] <1+ ;AT> +O(T2)] .

3This asymptotic analysis was performed in [32], which unfortunatel
contains an error and hence led to an erroneous result.

We may now calculate the transfer functioig,,, Ga,,, and
Gq,,. It is immediate to find from the realization (B.3) that
Cra(zI — Ag)™' By

VT [211 + O(TQ)] :

Co(zI — Ag) ™' By
Cy (2] — Aga)”" Bya

1
(FH)a(2)—
Cira(zI — Ag) "' Boq + Di2g
VT [C,, (21 — Apa) " Bpa + Dy + O(T?)

—VT [(PH)a(2) + O(T?)].

Gdzl (Z)
1

z—1

Gy, (2)

Here we have takerl,y = e, Apy = e T,

T T
Bpq = / eApthdt, Byg = / eAfthdt,
0 0

and the fact thaB,; = O(T'), Byq = O(T'). Thus, we find
that
|Gd11 + Gdlz QGd’n ‘2

1— [(PH)q+ O(T?)] (FH)4Q
z—1

2

+0(T?)

SelectQ* € RHo.(ID) so that

|

1— (PH)4(FH).Q* |

z—1 9
_ o P PEa(FH)Q ?
QERH (D) z—1 9
== T . o'i + 17
ool

where o; € ID° are the non-minimum phase zeros of
(PH)4(z)(FH)q(z), which, according to [2], [17], [3], will
approach to the zeros of the Euler polynomial. For this to
be possible, however, it is necessary th&tH),(FH),Q*
possesses an ordér(1) whenT — 0; in other words, the
order of @* cannot be lower tha®(1/7?). We are thus led
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to Denote
2 _
< i H = (PH)AFH)Q|" | 2y My(2): = Cp(el =Ap) ' [ I (=1 ],
QERH oo (D) z—1 9 Bya
gy 41 NO =] By |
_ i 2
= TZ@_ﬁO(T). ) -
i=1 N: = T/ N(6)db
which, along with the recognition from Theorem 1, thigy > 0.
O(T), establishes the claini?;, = O(T). This completes the A — l/ N(O)NT(6)do — NNT.
proof. ]
Then, a direct calculation yields the expression given in the
APPENDIXC. PROOF OFTHEOREM 3 next page. Furthermore,
Proof. We first note that for any € [0, T), J(T — 6) can 0 0 0 AT
be expressed as at the top of the next page, whéig) = =lo - BfaB?a = Ay [ 0 Ay ] .

F(s)e=(T=%s_1t follows as in the proof of Theorem 1 that __
Since

L2(Qn) My (=) [ g;z } = Fu(z), M;(z) { Af } = Fya(2),

Note that for6 € [0, T'), a proper rational ZOH-equivalentwe obtain

2

J(T—0)=0+ H {I - %PTHej‘“TQ (ﬂ)T} R

discretization exists fofF? see, e.g., [16], pp. 175), given A 2 R 2
as ) (oee o0 BB P A0 L o ‘\/T—QFM [z
T - _ _
(FOH)a(z) = Oy (=1 — Agq) ™" (rz + 1) TJo SO PO L |
~ 2
[\/T 0]_Q[Fa1 Fa2}
where =
z—1
T 2
r: = /9 7' Bydt = Bya — By(0) Consequently, we have
0 . T
I'y: = / 6Afthdt:Bf(0) sd:§+‘]P
0 2
In view of the convergence condition alluded to in Section +  inf [ VT 0]-04Q Far Far ]
I1.B, we have QERH o (D) z—1 ,
1 CWT -, . Conduct then the spectral factorization
7 (Fw) Rjw) = = Z ¥ (jw) R (jw) o o -
g Os(e™*N)Os (/") = [Far(e’7) " + [[Faa (™7 )I3,
6 jwT
= %, and solve theé/{, problem in the above equation, we obtain
— e~ w
w 2
Following the proof of Theorem 1, we are led to T T2 ws 1— %
&= —+J+— ———dw
_— sd 2 P ot o |e]wT _ 1|2
JT=0)=0+7+) —+T —|—Jh T)+ J;(0), 2= ?
Z Z ! \/“Eu( _1) G)d(Z)Q(z)
+ inf
where QERMH o (ID) z—1
2
2
f—z@d( )Q(2)(FPH)y(2) Note that|F,;(1)/©;(1)] = 1, and that with no loss of
z—1 generality, we may také,;(1)/60,(1) = 1. Following the
S 2 steps in evaluating*,, (cf. Appendix A), we find that
ince
T T Fa( 1 2
/ J(6)do = / J(T — 6)df, - VTG — 04(2)Q(2)
0 0 QERH (D) z—1
we have 2
T T Bz ) _ T Ea)
77/ (T — 6)d +J + 1/ J(0)do. - ‘ IC) ©/@)
T 0 Zz — 1

Write Q(z) = ©4(2)Q(z), and note that ’

z—1 ’
2

VIS - T
Vit O(2)
AFPH)a(2) = Cp(z1-Aga) ' [ 1 <z—1>f][ Jrd ] T;% H
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1 > . —3(T—-0)w T (5 - jw 1 — - - —3(T—-0)(w+kw
HT=0) = o [ RGO - PTG HG)QET) 5 Y File) Rijw)e Tk P
- k=—o00
1 - ; jOw jwT pT (. . jwT 1 = 0. . 2
= 5 [ |RG)e™ = TP (jw)H(jw)Q(e™T) 7 D FY(jw)Ri(jw) P dw,

k=—oc0

T e
21 0

7/ VE- @) -

(T = VTQMT)My(T)N ~ VTNQ(e™*T)MF (e77+7)

+ QT )M(e?T) (A + NNT) Qe 7“T)MF (7947 | duw.

where Fé’f)(z) is the minimum phase part of,;(z). In

summary, we have shown that

. me e |
a 77+ Oy (z) B
o= —+J,+T T
sd g Tt - o T z—1

=1 9

Fa (eij) 2
+T2/ws - ’@:(7 de
2m Jo |edwT — 1|2

v+ 1
vi—1

T <
3 + I+ Ty
=1

Fa eng
N T2 ws 1 — Re{%}d
27 J 1 — coswT v

Mimicking the steps in calculating,; + J42, we obtain

ws 1 — Re{%}
/ O (ed¥T) dw
0

1 — coswT

wWN 1
= —1 1
/0 1 —coswT og( *

The proof is thus completed.

|[Far(e7<T)]2

JwT\||2
LEale )1 o,
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