
String Instability in Classes of Linear Time

Invariant Formation Control with Limited

Communication Range

Richard H. Middleton, Fellow, IEEE and Julio H. Braslavsky, Member, IEEE

Abstract

This paper gives sufficient conditions for string instability in an array of linear time-invariant

autonomous vehicles with communication constraints. The vehicles are controlled autonomously and

are subject to a rigid or semi-rigid formation policy. The individual controllers are assumed to have

a limited range of forward and backward communication with other vehicles. Sufficient conditions

are given that imply a lower bound on the maximum peak of the frequency response magnitude

of the transfer function mapping a disturbance to the leading vehicle to a vehicle in the chain.

This lower bound quantifies the effect of spacing separation policy, intervehicle communication

policy, and vehicle settling response performance. These results extend earlier works to the case of

heterogeneous, non-nearest neighbor and semi-rigid formation situations.

Index Terms

Performance limitations, string stability, formation control, bullwhip effect, distributed systems.

I. INTRODUCTION

There has recently been extensive interest in a range of cooperative control problems,

including those of controlling the formation of a large number of autonomous vehicles;
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see for example [22], [7], [21]. In general, these can include three, or even six degrees of

freedom in some spacecraft attitude and position control problems. In such systems, it is

often desirable to achieve tight (that is, rigid) formation control whilst moving at constant

velocity. The simplest case of such formations is one dimensional systems, with one of the

main examples being the control of intelligent vehicle highway systems [11].

As early as [17], a difficulty known as ‘string instability’ has been observed in tight

formation control of long strings of vehicles based on local information. Here we use the

term ‘String instability’ to describe the amplification along the string of the response to a

disturbance to the lead vehicle. Different measures of disturbance amplification have been

proposed in the literature. For example, [17] uses a frequency domain (effectively an H∞)

definition, whilst a more complete discussion in [23] gives more formal definitions and uses

the norm induced by the L∞ norm in the definition of string stability. Discussions in an H∞

setting are presented in [10], where the authors use the terminology of ill-conditioning and

non-scalability, used in more general settings of networked dynamic systems, to describe

similar phenomena. In this paper, we use the term ‘string stability’ to denote the situation

where an appropriately defined H∞ norm is bounded independently of the string length.

Although the problem setting above has been described for formation control of au-

tonomous vehicles, very similar network structures and dynamics have been described in

other application domains. For example, in the area of irrigation flow control (see for example

[13]), a series of ‘pools’ connected by gates with local control laws is studied with the same

phenomena being present. Another example of closely related dynamics occurs in supply

chain, or production and inventory control systems [18]. These are often modeled in discrete

time (see for example [4, Figure 1]) and use feedforward to achieve the equivalent of type II

servo response (zero steady state error to ramp references), in some cases1. In this context,

concepts similar to string instability are sometimes known as the ‘bullwhip effect’, or the

‘Forrester effect’ [5].

String instability is clearly undesirable2 and has lead to a number of analyzes of the

difficulties and proposed solutions. Some of the main solutions proposed to string instability

and non-scalability issues include:

1In terms of [4], type II servo response occurs when the average estimate of the production lead time is correct, which

is required to ensure inventory levels ’lock-on’ to their target values.
2However, in some applications, where it is known a-priori that the length of the string is bounded, it may be possible

to tolerate string instability for sufficiently small rates of amplification.
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• Extended Information Flow The most obvious examples of string instability occur

when each vehicle only has access to its relative position error to the preceding vehicle. In

[17], [19] and other related references, control laws are designed so that both separation

from the preceding and succeeding vehicles (sometimes called ‘bidirectional’ control

[10]) in the platoon are used in computing a vehicle’s actions. One extension of this

idea is ‘multi-look ahead’ control, see for example [3]. In other cases, transmission

of some global information is used in individual control calculations. Such schemes

include ‘leader following’ control [19] where each has access to information from the

lead vehicle. Analysis and discussions in [8] also point to the need for some global

information in the problem formulation and control.

• Relaxing Formation Rigidity It is also known that maintaining a strict formation

position separation exacerbates string stability problems. For example, in [23], weak

coupling (which relaxes formation rigidity) is shown to give string stability. Other

approaches that relax formation rigidity include both a position headway, and a time

headway in the tracking error definition (see for example [24], [2]).

• Heterogeneous Controller Tuning The concatenation of identical transfer functions,

implicit in some homogeneous strings, implies that any magnitude peak above 0dB in

the transfer function will result in unbounded amplification as the string length grows.

This suggests that by having non-uniform controller tuning in different vehicles, it may

be possible to avoid string stability issues. This approach is pursued in, for example, [2,

Remark 4], [24, §3.E], [9], and [1].

• Nonlinear Controllers A range of different controller nonlinearities (for example [2],

[24] including some cases of switched or hybrid elements [12]) have been proposed to

improve stability properties in strings of vehicles.

A key question therefore is to analyze general underlying causes and remedies for string

instability problems. We wish to extend the work of [19] where some specific classes of

Linear Time Invariant (LTI) feedback control systems are analyzed. In particular, an analysis

of the implications of the complementary sensitivity integral ([14]) can be used to establish

conditions under which ‖T (.)‖H∞ > 1 (where T (.) denotes the closed loop transmission from

one vehicle in the string to the next). Certain types of control strategies (namely homogeneous

controller tuning with nearest neighbor only communication) give rise to these conditions

on the transfer function T (s) and thereby dictate that sequential disturbance amplification
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must occur. The authors in [16] analyze a generalization of the Bode Sensitivity integral

to circulant systems of asymptotically infinite dimension, that satisfy a spatial invariance

assumption. However, the authors of [16] do not analyze the specific impact on stability and

scalability issues discussed in the present paper.

The particular extensions to [19] studied in the present paper are the analysis of cases

including:

1) Heterogeneous individual feedback loop dynamics, that is, non-uniform vehicle or con-

troller dynamics. Here, we require a uniform bound on the high frequency behavior (see

Assumption 7) of the feedback loops, and a bound on the settling response behavior of

the closed loop system (see Assumption 8).

2) Much more general information structures, with the only restriction being that commu-

nications are restricted to be between vehicles within a limited range of each other.

3) A slightly broader class of spacing policies. In particular, we show that relaxing the

constant spacing policy to allow a sufficiently small time headway (semi-rigid formation)

does not qualitatively alter the results.

The paper is organized as follows. Section II defines the system considered and presents

some preliminary results. Section III presents the main result of the paper: a lower bound

on the peak gain from a disturbance at the leading vehicle to the last vehicle in the platoon.

Section IV provides interpretations and implications of the main result, which are illustrated

by examples in Section V. Conclusions and final remarks are given in Section VI.

An earlier version of these results was presented in [15].

Terminology

Most of the notation used is fairly standard in the systems and control literature. the

Laplace transform and inverse Laplace transform operators are denoted by L and L−1. The

Laplace transform complex variable is s ∈ C, and Laplace transforms will typically be

denoted by an upper case letter, that is: L{u(t)} = U(s), and L−1 {U(s)} = u(t). The

notation P (s) ∗ u(t) is used to denote the time response (with zero initial conditions) of a

linear time invariant system with transfer function P (s) and input u(t). The relative degree

r of a rational transfer function is the difference between the degrees of its denominator and

numerator polynomials. A transfer function is proper if r ≥ 0, and strictly proper if r > 0.

A real scalar-valued function of time x : R → R is denoted x(t) ∈ C. Similarly, a complex

scalar-valued function of s X : C → C is denoted X(s) ∈ C. Vector and matrix-valued
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functions are denoted x(t) ∈ R
n and C(s) ∈ C

n×n. Given a number x ∈ R, the notation �x�
represents the smallest integer no smaller than x. We extend the standard product notation∏

to include matrices as follows:
∏n

i=1 Mi � MnMn−1 . . .M2M1. The imaginary unit is j,

that is, j2 = −1.

II. PRELIMINARIES

A. System Definition

We consider a one-dimensional array of vehicles as depicted in Figure 1. In this diagram,

each vehicle, 1, 2, . . . n is traveling in the positive X direction, and the i vehicle has x-

coordinate denoted by xi(t) ∈ R.

Fig. 1. Diagram depicting a vehicle platoon

The dynamics for the i-vehicle are assumed to be linear time invariant with a scalar transfer

function Pi(s) ∈ C, and scalar input ui(t) ∈ R. The vehicle dynamics are then given by

xi(t) = Pi(s) ∗ ui(t); i = 1, 2, . . . , n. (1)

In vector form, let x(t) =
[
x1(t) x2(t) . . . xn(t)

]T
, and similarly define the vector

control variable u(t) =
[
u1(t) u2(t) . . . un(t)

]T
. We further define the multivariable

plant transfer function, P (s) = diag{Pi(s)} ∈ C
n×n, and therefore rewrite (1) as

x(t) = P (s) ∗ u(t). (2)

The vehicle dynamics are typically modeled as a second order system including damping

(see for example [17], [8]), in which case Pi(s) = gi/s(s + μi). Other references such as [2]

use a double integrator model, sometimes augmented with first order actuator dynamics [19].

Here we shall not be concerned directly with the details of the vehicle dynamics and make

the following initial assumption on the plant whilst later assumptions deal with the overall

dynamics of the system.
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Assumption 1 (Plant): Each of the n individual vehicle transfer functions, Pi(s), for i =

1, . . . n, is strictly proper, has no unstable hidden modes, and has no zeros at s = 0.

Key aspects of the performance of the platoon are to regulate the vehicles relative positions

whilst maintaining a target velocity generated by the first vehicle. Therefore, we introduce

as ‘performance’ variables the vehicle separations ei(t) defined for i = 1, . . . , n, by

ei(t) �

⎧⎪⎨
⎪⎩

d1(t) − x1(t), for i = 1,

δi(t) + xi−1(t) − xi(t), for i = 2, 3, . . . , n,
(3)

where d1(t) ∈ R denotes the desired position for the string lead vehicle, and δi(t) ∈ R for

i > 1 denotes the target separation (negative) for the i-vehicle. In vector form, using the

notation e(t) =
[
e1(t) e2(t) . . . en(t)

]T
and δ(t) =

[
0 δ2(t) . . . δn(t)

]T
, we rewrite

(3) as

e(t) = δ(t) − Mx(t) + V n
1 d1(t), (4)

where V n
1 ∈ R

n is the first elementary basis vector, V n
1 =

[
1 0 . . . 0

]T
, and M ∈ R

n×n

denotes the coupling matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0

0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Note that in the most general case the vehicles separation e(t) could be permitted to be a

general function of both position in the platoon, and also time (which permits constant time

headway policies). Here, we restrict attention to the following class of separation policies.

Assumption 2 (Vehicle separation policy): The target vehicle separations δi(t), with i =

2, 3, . . . , n, are either constant or increase linearly with the vehicle’s own velocity. That is,

δ(t) = δ0 − H
dx(t)

dt
, (6)

where H ∈ R
n×n, defined as H = diag{hi} ≥ 0, is the matrix of time headways, and

δ0 ∈ R
n is a vector of constant reference spacings.

We shall see that, as might be expected, using negative time headways (equivalently,

deliberately introducing ‘negative damping’) aggravates the frequency domain constraints
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described later. Thus, negative headways would seem to offer no benefit in the control design,

and we therefore consider only the case of positive time headways.

Also, because of the above definitions, under normal circumstances δ0 will consist of

negative elements, and hi ∈ R will be positive, indicating that at higher speeds increased

spacing is desired. If H = 0, then the vehicle separation policy is termed a constant spacing

policy; otherwise, (6) is referred to as a constant time headway policy.

Subject to Assumption 2, the vehicle separation vector e(t) from Equation (4) can be

expressed as

e(t) = δ(t) − Mx(t) + V n
1 d1(t)

= −(M + sH) ∗ x(t) + V n
1 d1(t) + δ0. (7)

Assumption 3 (Control policy): We assume that the control is linear time invariant, possi-

bly multivariable (depending on the communications range to be defined in Assumption 4),

and based on error measurements, e(t) as defined by Equation (7). That is,

u(t) = C(s) ∗ e(t), (8)

where C(s) ∈ C
n×n.

Remark 1 (On more general control structures): Note that more general linear time in-

variant control structures could be considered. For example, we could permit the local control

actions, ui(t) to depend on the local state variable, xi(t) as well as the error variables in the

form

u(t) = C(s) ∗ (e(t) − CX(s) ∗ x(t)) , (9)

where CX(s) is a diagonal transfer function matrix.

In the case of (9), the derivations below follow except that the loop transfer function

becomes L(s) = P (s)C(s)(M + sH + CX(s)). In this case, unless CX(0) = 0, the closed

loop system will have an unbounded steady state error in response to a ramp input. It would

then seem reasonable to restrict attention to the case where we can factor CX(s) = sHX(s),

in which case the analysis that follows is identical except: (i) H is replaced by H + HX(s);

and, (ii) the effective time headway for the ith vehicle is hi+HXi(0). Therefore, for simplicity

of exposition, we restrict attention to control laws of the form (8).
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If the controller of each vehicle uses exclusively information about the separation from

the vehicle immediately ahead, we say that the control communication range of the string

is limited to one vehicle forward. This situation is represented by a diagonal control matrix

C(s).

To model communication range more generally, we shall use properties of banded matrices

(see for example [6]): Given integers k, �, a matrix A ∈ R
n×n is called (k, �)-banded if aij = 0

for all i > j + k and aij = 0 for all j > i + �. For example, the coupling matrix M in (5) is

(1, 0)-banded, or bidiagonal matrix.

We make the following structural assumption on the controller C(s), based on the banding

inherent in providing for limited range communications.

Assumption 4 (Communication ranges): There are fixed natural numbers, cr, cf ∈ N (in-

dependent of the string length, n), with cf ≥ 1, which we term the reverse and forward

communication ranges, such that the control transfer function matrix C(s) is (cf − 1, cr)-

banded. We will refer to the integer �r = �cr/cf� as the communication range ratio.

The forward communication range cf in Assumption 4 specifies the number of vehicles in

front of the i-vehicle that are permitted to communicate with the i-vehicle. Conversely, the

reverse communication range cr specifies the number of vehicles behind the i-vehicle that

are permitted to communicate with the i-vehicle.

Using Equations (1), (4), and (8), the state variables x may be related to the target separation

variables δ0 and the lead vehicle target position d1(t) by the expression

x(t) = (I + L(s))−1P (s)C(s) ∗ (δ0 + V n
1 d1(t)), (10)

where L(s) ∈ C
n×n is the multivariable loop transfer function matrix

L(s) = P (s)C(s)(M + sH). (11)

With the above notation, the vehicle string is represented by the multivariable feedback loop

illustrated in Figure 2. For further reference, we also introduce from (10) the closed-loop

multivariable transfer function matrix Hxd(s) ∈ C
n×n

Hxd(s) = (I + L(s))−1P (s)C(s)

=
(
I − (I + L(s))−1

)
(M + sH)−1, (12)

which represents the frequency response from inputs d(t) to vehicle positions x(t) in Figure 2.
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V n
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C(s) P (s)
u(t)

−
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e(t)+ d(t)

δ0

x(t)

Fig. 2. Multivariable feedback loop representation of the vehicle string

In broad terms, we shall be interested in examining conditions on the feedback loop

dynamics, and the communications structure, such that the closed loop behavior captured

in Hxd, including that represented by Equation (10), cannot be made ‘well behaved’ for

arbitrarily large n.

To ensure that we can achieve asymptotically zero tracking error with a constant speed

reference signal δ1(t) = δx+δvt in the case of a constant spacing policy (H = 0) we require a

multivariable type-II servomechanism controller. This, along with other standing assumptions

on the loop dynamics, are described in the following.

Assumption 5 (Feedback loop): The loop transfer function L(s) in Equation (11) satisfies:

(a) L(s) is strictly proper. In other words, every element of L(s) has relative degree r ≥ 1.

(b) L(s) is free of unstable hidden modes.

(c) When restricted to a constant spacing policy, H = 0, L(s) gives a multivariable type-II

servomechanism. In other words, for general spacing policies of the form in Assump-

tion 2, we can factor P (s)C(s) = s−2L̄(s), where L̄(0) is non-singular.

B. Basic Loop Properties

Assumption 5(c) allows us to establish some initial properties of the low frequency portion

of the closed loop response matrix, Hxd.

Lemma 1 (Values of Hxd at s = 0): Consider Hxd as defined in (12). Then subject to

Assumption 5 we have

Hxd(0) = M−1 (13)

Hxd
′(0) = −M−1HM−1. (14)
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Proof: From the definition of Hxd in (12) we have

Hxd(s) = (I + P (s)C(s)(M + sH))−1 P (s)C(s)

=
(
M−1(P (s)C(s))−1 + I + sM−1H

)−1
M−1

=
(
I + sM−1H + s2M−1L̄−1(s)

)−1
M−1 (15)

where the last line in (15) follows from Assumption 5(c). Evaluating (15) at s = 0 gives (13)

since L̄(0) is assumed to be invertible. Similarly, differentiating (15) at s = 0 gives (14).

The analysis that follows makes use of the Bode Complementary Sensitivity integral (see

for example [20, Theorem 3.1.5]) in a similar fashion to that in [19]. We restate this theorem

here for completeness.

Lemma 2 (Bode integral for the Complementary Sensitivity Function): Let T (s) be a real

rational scalar function of the complex variable s. Suppose that T (0) = 1 and also that T (s)

is stable (that is, it is analytic in the closed right half complex plane). Then under these

conditions: ∫ ∞

0

loge |T (jω)| dω

ω2
≥ π

2
T ′(0) . (16)

Proof: This result follows immediately from [20, Theorem 3.1.5], where we have equality

if T (s) has no zeros in the closed right half complex plane.

The lower left element of Hxd describes the response of the state of the last vehicle to a

disturbance at the first vehicle. ‘String Instability’ has been observed in this response, and

we are therefore interested in analyzing this particular component3 of the overall closed loop

response. We shall be particularly interested in applying Lemma 2 to the lower left element

of Hxd, namely the scalar transfer function

Hxnd1(s) = (V n
n )T HxdV

n
1 (17)

where V n
1 , V n

n ∈ R
n are the 1st and nth canonical basis vectors respectively. This application

is described in the following result.

3Note that since we are considering only one component of the closed loop response, we can only make precise statements

about conditions under which the overall response is not well behaved. The reverse implication, determining conditions

under which the complete response is well behaved would require more extensive analysis.
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Lemma 3 (Bode integral for Hxd): Consider Hxnd1 as defined in (17). Then subject to

Assumption 5 we have ∫ ∞

0

loge |Hxnd1(jω)| dω

ω2
≥ −nπ

2
h̄ (18)

where h̄ is the average time headway

h̄ =
1

n

n∑
i=1

hi. (19)

Proof: Note from the definition of M in (5) that

M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1
. . . ...

... . . . . . . . . . 0

1 · · · 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Using (20) in Lemma 1 yields

Hxnd1(0) = 1

Hxnd1

′(0) = −nh̄. (21)

The result then follows by using (21) in Lemma 2.

We now turn to the analysis of feedback systems of the form described above. In particular,

we derive conditions for broad classes of systems under which it is not possible to retain

certain ‘well behaved’ closed-loop properties for large platoon sizes. These are described in

terms of a set of seemingly reasonable specifications and objectives that dictate a lower bound

on the achievable performance. In addition, we will be able to show that some combinations

of performance specifications and assumptions are infeasible.

III. LOWER BOUNDS ON ACHIEVABLE PERFORMANCE

From Assumption 4 and (11) we note that L(s) is (cf , cr)-banded. For simplicity, consider

n to be divisible by cf , that is, n = Ncf . Then L(s) is a block matrix of the form

L(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,1(s) L1,2(s) L1,3(s) . . . 0

L2,1(s) L2,2(s) L2,3(s) . . . 0

0 L3,2(s) L3,3(s)
. . . ...

... . . . . . . . . . LN−1,N(s)

0 . . . 0 LN,N−1(s) LN,N(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)
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where each block element Li,j(s) is a cf × cf dimensional transfer function matrix, and

Li,j(s) = 0 for j > i + �r, where �r = �cr/cf� is the communication range ratio introduced

in Assumption 4.

It follows that I + L(s) can be conveniently factorized in a block LU form [6].

Lemma 4 (Block LU factorisation of L(s)): Under Assumption 4, let L(s) be the (cf , cr)-

banded transfer function matrix defined in (22). Then, there exist block lower and upper

triangular transfer function matrices ML(s) and MU(s) such that

(I + L(s)) � ML(s)MU(s) . (23)

Proof: The proof is constructive. Define MU as

MU(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I U1,2(s) U1,3(s) . . . 0

0 I U2,3(s) . . . 0

0 0 I
. . . ...

... . . . . . . . . . ...

0 0 . . . 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

and ML(s) as

ML(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̃−1
1,1(s) 0 0 . . . 0

L2,1(s) S̃−1
2,2(s) 0 . . . 0

0 L3,2(s) S̃−1
3,3(s)

. . . ...
... . . . . . . . . . 0

0 . . . 0 LN,N−1(s) S̃−1
N,N(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

where S̃k,k(s), Uk,j are defined recursively by

S̃11(s) = (I + L11(s))
−1

U1,j(s) = S̃11(s)L1,j(s) : j = 2, 3 . . . , N

S̃kk(s) = (I + Lk,k(s) − Lk,k−1(s)Uk−1,k(s))
−1 : k = 2, 3, . . . , N

Uk,j(s) = S̃k,k(s) (Lk,j(s) − Lk,k−1(s)Uk−1,j(s)) : 1 < k < j ≤ N. (26)

By computing the product ML(s)MU(s) from (24) and (25), it can be verified after some

algebra that (23) holds.

Remark 2 (Forward communications case): Note that in the case where we permit only

forward communications, the loop transfer function is lower triangular and therefore also
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lower block triangular, in which case, MU(s) = I . This case is therefore a simpler special

case of the general situation discussed below.

From (22)-(26) it follows that the multivariable loop sensitivity function S(s) =
(
I +

L(s)
)−1 can be written as product of upper and lower block triangular matrices

S(s) = M−1
U (s)M−1

L (s)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I ∗ . . . ∗
0 I

. . . ...
... . . . . . . ∗
0 . . . 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

S̃1,1(s) 0 . . . 0

S̃2,1(s) S̃2,2(s)
. . . ...

... . . . . . . 0

S̃N,1(s) . . . S̃N,N−1(s) S̃N,N(s)

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

where ‘*’ denotes non-zero transfer function blocks within the matrix M−1
U (s) and from (25)

we have that for all j > i

S̃j,i(s) = −S̃j,j(s)Lj,j−1(s)S̃j−1,i(s) (28)

Then selecting j = N in (28), and recursively using this equation gives

S̃N,i(s) = S̃N,N(s)
N−1∏
k=i

(−Lk+1,k(s)S̃k,k(s)) (29)

In view of (27) and (29), the bottom block row of S(s) satisfies

SN,i(s) = S̃N,i(s) = S̃N,N(s)
N−1∏
k=i

(−Lk+1,k(s)S̃k,k(s)) (30)

Note from (30) that S̃k,k(s) is precisely the lower right hand block of the multivariable

sensitivity function that results from a string of k vehicles. Therefore, if (for example) the

individual controllers are not permitted to reconfigure themselves based on information about

their position in the string, it would seem reasonable to restrict each S̃k,k(s) for all k =

1, 2, . . . , N as in the following assumption.

Assumption 6 (Uniform bound on S̃k,k): There exists a finite number σ > 0 such that

N∏
k=1

∥∥∥S̃k,k(s)
∥∥∥
H∞

≤ σN . (31)

We now proceed to give a tighter analysis of the high frequency response of the system.
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A. High Frequency Bounds on Hxnd1

Using block notation, and letting (Hxd)N,1 denote the lower leftmost cf × cf block of Hxd,

then we can also write the transfer function from lead disturbance to the nth vehicle as

Hxnd1(s) = (V
cf
cf )T (Hxd)N,1 V

cf

1 (32)

where V
cf

1 , V
cf
cf ∈ R

cf are the 1st and cf th elementary basis vectors. We then have the

following result giving a bound on the frequency response of the state of the last vehicle in

the platoon to a disturbance at the leading vehicle.

Lemma 5 (Pointwise high frequency bound on Hxnd1): Suppose that for some given ω ∈
R

+, that ‖Lk,�(jω)‖ ≤ γ < 1 for all k, � ∈ {1 . . . N}. Then subject to Assumption 6

|Hxnd1(jω)| ≤ (γσ)N (1 + �r)
√

cf (33)

Proof: Note from (32) that Hxnd1 is one element of the lower left block of the trans-

fer function, Hxd. Then from (12), (23) and Assumption 5(c), Hxnd1 is one element of

(Hxd(s))N,1 V
cf

1 = (S(s)(PC)(s))N,1 V
cf

1 , where (PC)(s) � P (s)C(s).

Note that because of the banded structure of (PC)(s) it follows that

(S(s)(PC)(s))N,1 V
cf

1 = (SN,1(s)(PC)1,1(s) + SN,2(s)(PC)2,1(s)) V
cf

1

= SN,1(s)(PC)1,1(s)V
cf

1

= S̃N,1(s)(PC)1,1(s)V
cf

1 (34)

where the second equality in (34) follows since (PC)2,1 is strictly upper triangular, and the

third equality follows from (30).

Also, since (PC)(s)(M + sH) = L(s) (see (11)), then

(PC)�,1(s) =
N∑

k=1

L�,k(s)
(
(M + sH)−1

)
k,1

(35)

Note that each element of (M + jωH)−1 is either zero or a term of the form
∏j

�=i(1 +

jωh�)
−1 and therefore has magnitude less than unity. Therefore, since L1,k(s) = 0 for k >

1 + �r, ∥∥(PC)1,1(jω)V
cf

1

∥∥ ≤ (1 + �r)γ
√

cf (36)
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Combining (34), (35) and (36) we obtain

|Hxnd1(jω)| ≤
∥∥∥S̃N,1(jω)(PC)1,1(jω)V

cf

1

∥∥∥
≤

∥∥∥S̃N,1(jω)
∥∥∥ (1 + �r)γ

√
cf

≤ (γσ)N(1 + �r)
√

cf (37)

where we use (30) and various bounds in the last inequality in (37).

We make use of the results in Lemma 5 to bound the high frequency behavior of Hxnd1

in terms of the high frequency behavior of the loop transfer functions, Lk,�. To do so, we

make the following assumption, which refines Assumption 5(a), on the behavior of the loop

transfer functions.

Assumption 7 (Loop high frequency bound): The loop block transfer functions, Lk,�(s),

with k, � ∈ {1, 2, . . . , N}, obey the uniform high frequency bound

‖Lk,�(jω)‖ ≤
(ωH

ω

)r

, for all ω > ωH , (38)

for some ωH > 0 and r ≥ 1 and all k, � ∈ {1, 2, . . . , N}.

We then have the corollary below.

Corollary 6 (High frequency bound on Hxnd1): Under Assumption 7, we have for all ω ≥
ωH :

|Hxnd1(jω)| ≤
(ωHσ

ω

)rN

(1 + �r)
√

cf . (39)

Furthermore, let ω̃H � ωHσ. Then,∫ ∞

ω̃H

log |Hxnd1(jω)| dω

ω2
≤ 1

ω̃H

(
log((1 + �r)

√
cf ) − nr/cf

)
. (40)

Proof: The bound (39) follows immediately by using (38) in Lemma 5. Then using (39)

we have ∫ ∞

ω̃H

log |Hxnd1(jω)| dω

ω2
≤
∫ ∞

ω̃H

(
log((1 + �r)

√
cf ) + Nr log

(
ω̃H

ω

))
dω

ω2

=
log((1 + �r)

√
cf )

ω̃H

+

[
Nr

ω

(
1 − log

ω̃H

ω

)]∞
ω̃H

=
log((1 + �r)

√
cf )

ω̃H

− Nr

ω̃H

and (40) follows.
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B. Time Domain Performance Specifications

We now consider a set specifications based on the response at the last vehicle to a

ramp input as the target trajectory for the first vehicle. This is governed by the transfer

function Hxnd1(s) as defined previously in (17). We impose an integral absolute error (IAE)

specification on the response of the vehicle separations to a ramp disturbance to the first

vehicle.

Assumption 8 (IAE specification on transient response): For k = 1, 2, . . . , n, let ξk(t) be

the separation response of the kth vehicle to a ramp d1(t) = t. We assume that for all n the

average integral of the absolute value of ξk(t) is bounded as
n∑

k=1

∫ ∞

0

|ξk(t)|dt ≤ nᾱ(n) =: α(n), (41)

for some positive function ᾱ(n).

Clearly, if possible we would prefer a uniform bound in Assumption 8, that is, ᾱ constant.

However, this may be incompatible with other performance and robustness as we shall see

later in Section IV. The following example illustrates the bound (41).

Example 1 (Transient behavior): Consider the simple case of a non-type II, homogeneous

control policy with a communication scheme that uses only preceding vehicle information.

Let the time headway be H = 2I and P (s)C(s) = I/s2. In this case,

Hxd(s) =
(
(P (s)C(s))−1 + M + sH

)−1

=
(
s2I + M + 2sI

)−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(s+1)2

0 0 . . . 0

1
(s+1)4

1
(s+1)2

0 . . . 0

1
(s+1)6

1
(s+1)4

1
(s+1)2

. . . 0
... . . . . . . . . . ...
1

(s+1)2n . . . . . . 1
(s+1)4

1
(s+1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

From (42) it follows that the two lower left hand corner elements are

Hxn−2d1(s) =
1

(s + 1)2n−2
, Hxnd1(s) =

1

(s + 1)2n
. (43)
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From (3) and (6) we have (assuming the response is due only to d1(t) = t, and δ0 = 0)∫ ∞

0

e−stξn(t)dt = L{ξn(t)} = L
{
−2

dxn(t)

dt
+ xn−1(t) − xn(t)

}

=

( −2s

(s + 1)2n
+

1

(s + 1)2n−2
− 1

(s + 1)2n

)
1

s2

=
1

(s + 1)2n
. (44)

From (44), en(t) = t2n−1

(2n−1)!
e−t and

∫∞
0

|ξn(t)|dt = 1 for all n, which implies that Assumption 8

is satisfied with ᾱ(n) = 1. The time responses ξk(t) for k = 1, . . . , 10 are shown in Figure

3.

0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(sec)

ξ k

Example error responses to lead vehicle ramp

1st Vehicle

20th Vehicle

Fig. 3. Illustration of transient behavior for the system in Example 1

One immediate consequence of Assumption 8 follows.

Lemma 7 (Low frequency bound on Hxnd1): Let Assumption 8 hold. Then, for all ω ∈ R

|Hxnd1(jω)| ≤ 1 + α(n)ω2. (45)

Furthermore, for any ωL > 0,∫ ωL

0

log |Hxnd1(jω)| dω

ω2
≤ − 1

ωL

log(1 + α(n)ω2
L) + 2

√
α(n) tan−1(

√
α(n)ωL)

� η(α(n), ωL) (46)
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Proof: From the definition of vehicle separations (7) and the expression (12) for Hxnd1(s),

we have

e(t) = (I − (M + sH)Hxd) V n
1 ∗ d1(t). (47)

By letting d1(t) = t (that is, L{d1(t)} = 1/s2), and taking the kth row of (47) we obtain∫ ∞

0

e−stξk(t)dt = V n
k

T (I − (M + sH)Hxd) V n
1

1

s2

=
(
(1 + hks)Hxkd1(s) − Hxk−1d1(s)

) 1

s2
. (48)

Following the recursion in k in (48) yields

Hxnd1(s) =
n∏

�=1

(1 + h�s)
−1 +

n∑
k=1

(
n∏

�=k

(1 + h�s)
−1

) (
s2

∫ ∞

0

e−stξk(t)dt

)
. (49)

By evaluating (49) at s = jω we obtain the bound

|Hxnd1(jω)| ≤ 1 + ω2

n∑
k=1

∫ ∞

0

|ek(t)|dt,

from which (45) follows.

Finally, using (45) we have∫ ωL

0

log |Hxnd1(jω)| dω

ω2
≤

∫ ωL

0

log(1 + α(n)ω2)
dω

ω2

=

[
− 1

ω
log(1 + α(n)ω2) + 2

√
α(n) tan−1(

√
α(n)ω)

]ωL

0

(50)

and (46) follows immediately.

We are then in a position to establish our main theorem. This result gives a lower bound

on the worst-case disturbance amplification in terms of the communication constraints, high

frequency behavior and transient behavior.

C. Main Theorem - Lower Bound on Disturbance Amplification

Theorem 8: Consider a system subject to Assumptions 1 4, 7 and 8. Then for any ωL ∈
(0, ω̃H),

max
ω∈[ωL,ω̃H ]

log |Hxnd1(jω)| ≥
(

ωLω̃H

ω̃H − ωL

)
× (β(n) − η

(
α(n), ωL

))
, (51)

with α(n) as in Assumption 8, ω̃H = ωHσ as in Corollary 6, and

β(n) = n

(
r

ω̃Hcf

− πh̄

2

)
− log((1 + �r)

√
cf )

ω̃H

. (52)
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Proof: We establish this result by splitting the interval of integration in Lemma 3. In

particular, from (18)

∫ ω̃H

ωL

log |Hxnd1(jω)| dω

ω2
≥ −

∫ ωL

0

log |Hxnd1(jω)| dω

ω2

−
∫ ∞

ω̃H

log |Hxnd1(jω)| dω

ω2
− nπ

2
h̄ (53)

Then using (53) together with Lemma 7 and Corollary 9 we obtain

∫ ω̃H

ωL

log |Hxnd1(jω)| dω

ω2
≥ −η(α(n), ωL) +

1

ω̃H

(
nr

cf

− log((1 + �r)
√

cf )

)
− nπ

2
h̄. (54)

Also, we can derive the following inequality for the left hand side of (54)∫ ω̃H

ωL

log |Hxnd1(jω)| dω

ω2
≤ max

ω∈[ωL,ω̃H ]
{log |Hxnd1(jω)|}

∫ ω̃H

ωL

dω

ω2

=

(
ω̃H − ωL

ωLω̃H

)
max

ω∈[ωL,ω̃H ]
log |Hxnd1(jω)| . (55)

The result then follows by combining (54) and (55).

We now turn to consider various consequences and interpretations of Theorem 8.

IV. CONSEQUENCES OF THEOREM 8

A. Sufficient Conditions for Exponential Growth in Disturbance Amplification

Exponential growth in disturbance amplification for some classes of distributed control

problems has been observed by a number of authors (e.g. [17], [19]), though this has

generally been restricted to homogeneous platoons, with nearest neighbor communications,

and no time headway. Here we extend these results by obtaining sufficient conditions for

exponential growth that include heterogeneous strings, with limited range communications

(not just nearest neighbor), and with sufficiently small time headway.

Corollary 9: Suppose in Theorem 8 that ω̃Hα(n) > β(n) > 0. Then

sup
ω

|Hxnd1(jω)| ≥ exp

(
β2(n)

2α(n)

)
. (56)

Furthermore, if ᾱ ≤ α1, with α1 >
(

r
ω̃Hcf

− πh̄
2

)
then

sup
ω

|Hxnd1(jω)| ≥ exp

(
n
(ρ1

2

)( r

ω̃Hcf

− πh̄

2

))
, (57)

where ρ1 �
(

r
ω̃Hcf

− πh̄
2

)
α−1

1 < 1.
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Proof: Firstly, we note from the definition of η (see (46)) that

η(α(n), ωL) ≤ α(n)ωL. (58)

Using (58) and (52) in Theorem 8 gives

sup
ω

log |Hxnd1(jω)| ≥
(

ωLω̃H

ω̃H − ωL

)
(β(n) − α(n)ωL) (59)

for all ωL ∈ (0, ω̃H). Under the conditions of Corollary 9, we can substitute ωL = β
2α

< ω̃H

2

in (59) and with some simple algebra obtain (56).

The case where the condition ω̃Hα(n) > β(n) > 0 is not satisfied is covered later in

Corollary 10.

Remark 3 (Alternative bounds): Other bounds may be obtained with differing degrees of

complexity in the expressions. For example, given the inequality (58), the tightest bound

may be found as log |Hxnd1(jω)| ≥ α(n)ω̃2
H

(
1 −

√
1 − β(n)α−1(n)ω̃−1

H

)2

by taking ωL =

ω̃H

(
1 −

√
1 − β(n)α−1(n)ω̃−1

H

)
.

B. Infeasible Specifications

It turns out that in some cases, demands for certain types of high frequency and transient

performance may be incompatible with communication and time headway constraints. This

incompatibility can be demonstrated by proving that in certain cases, the lower bound on the

frequency response peak is infinite. We refer to cases where the performance specifications in

Assumptions 1, 4, 7 and 8, are sufficient to guarantee an unbounded peak in the closed loop

transfer function, Hxnd1(s), as infeasible specifications. The following corollary examines

this situation.

Corollary 10: Suppose that

β(n) > η(α(n), ω̃H). (60)

Then the performance specifications in Assumptions 1, 4, 7 and 8 are infeasible in the sense

that any closed loop stable system subject to the assumptions of Theorem 8 satisfies

sup
ω

|Hxnd1(jω)| = +∞. (61)

Proof: Note that (51) applies for all ωL ∈ (0, ω̃H). Under the condition (60) it follows

that

lim
ωL→ω̃−

H

{(
ωLω̃H

ω̃H − ωL

)
× (β(n) − η (α(n), ωL))

}
= +∞ (62)
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and (61) follows.

We can add further interpretations on this result in special cases, as indicated in the

following corollary.

Corollary 11: Suppose that for all n the average IAE transient specification (41) satisfies

ᾱ(n) ≤ α2n + α1 (63)

for some non-negative constants α1 and α2 where

√
α2 <

(
r

πω̃Hcf

− h̄

2

)
. (64)

Then for sufficiently large n, the closed loop specifications are infeasible in the sense of

Corollary 10.

Proof: Note that from the definition of η(α(n), ωL) in (46) that for any ωL

η(α(n), ωL) < π
√

α(n) (65)

where we have used the assumption that h̄ = 0. Then using (65) and (63) we obtain

(β(n) − η(α(n), ω̃H)) >

(
n

(
r

ω̃Hcf

− πh̄

2

)
− nπ

√
α2 − log n

ω̃H

)
(66)

Under the condition (64) the RHS of (66) is positive for sufficiently large n and therefore

by Corollary 10 the specifications are infeasible.

Thus we see from Corollary 11 that for a constant spacing policy the transient specification

of Assumption 8 must grow at least quadratically with n, with minimum rate determined by

the high frequency limit, ωH , the permitted sensitivity peak, s̃max, and the communications

range, cf , if infeasibility for sufficiently large n is to be avoided. Note that qualitatively

similar though algebraically much more complicated results can be derived in the case where

a small time headway, h̄, is permitted.

C. Interpretations and Discussion

In this section we discuss several interpretations that may be drawn from the analysis

above.
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1) Sufficient time headway may avert string instability: Note that regardless of the transient

specification, if the time headway satisfies

h̄ >
2r

πω̃Hcf

(67)

then none of the results above demand growth in the disturbance response (or infeasibility

of the specifications) with large n. In particular, (67) guarantees that the condition β(n) > 0

in Corollary 9 is false. Similarly, the condition (60) in Corollary 10 is false regardless of

η > 0. Furthermore, the condition (64) in Corollary 11 is never satisfied.

Therefore, (67) is an important benchmark for time headway allowance in the design of

distributed controllers for strings of dynamics systems.

2) With zero time headway, the average transient performance specification, ᾱ(n) may need

to grow at least linearly with n: Clearly from Corollary 11, under the other assumptions, to

avoid string stability problems, we will require that for large n

ᾱ(n) ≥
(

r

πω̃Hcf

)2

n + O(1) . (68)

One of the implications of this result is that requiring a uniform bound on the average IAE

of the error response to a ramp may not be feasible for large strings, under the conditions

discussed in Theorem 8. Note also that a qualitatively similar conclusion holds for small time

headways.

3) Factors that may improve string stability properties: Apart from increasing the time

headway as noted above, we can also identify a range of factors that the analysis indicates

may allow improved string stability properties. These include:

(a) Improved Communications Range - Particularly Forward Communications. Note that

larger forward communications, cf , directly reduces the rate of exponential growth (see

for example Corollary 9) and indeed, may avert conditions that guarantee string instability.

Reverse communications, on the other hand, appear to have a much weaker, if any, direct

affect on the results. Note however, that in some cases, reverse communications have been

observed to give rise to very long transient responses and in such cases, would demand

relaxed time domain specifications, and therefore may indirectly avoid string stability

problems.

(b) Increased loop high frequency response. Improvements in both the high frequency roll-

off, ω̃H , and reductions in the loop relative degree, r, are both seen to be beneficial in

reducing the lower bound on performance.
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(c) Relaxing the requirements on the low frequency transient performance. Increasing the

permissible integral absolute error specification on transient performance, that is, increas-

ing α, reduces the demands imposed by the ‘waterbed effect’ and thereby may permit

improved string stability properties.

(d) System Nonlinearities. The analysis above requires the formation of a single closed

loop transfer function, and this is clearly not possible for many systems incorporating

nonlinear control elements. Several schemes proposed in practice for distributed vehicle

control incorporate a number of non-linear elements (see for example [24]) which may

circumvent some of the difficulties described above. Of course, if the nonlinearities are

sufficiently smooth, then local approximation by linear behavior may predict small-signal

string instability using the above analysis.

Note however, that there is no indication in any of the results presented above that

heterogeneous system design is advantageous. This is in contrast to some earlier results, where

in the context of the results here, the heterogeneous designs demand gains that increase (in

fact exponentially) with string length, and thereby demand rapidly increasing high frequency

response.

V. EXAMPLES

A. String Instability with Decentralized Control

We present a simple example illustrating string instability in a string of vehicles with

constant spacing policy (H = 0 in Assumption 2) and homogeneous, fully decentralized (no

communication between vehicles) control.

Consider a string of N identical vehicles defined by the plant transfer functions

Pi(s) =
100

s(s + 100)
, for all i = 1, . . . , N. (69)

We assume a separation policy with no time headway; that is, H = 0 in Assumption 2. We

select φ = 1 and the homogeneous PI control

Ci(s) =
5s + 1

4s
, for all i = 1, . . . , N. (70)

The control policy for each vehicle is given fully decentralized,

ui(t) = Ci(s) ∗ ei(t), for i = 2, . . . , N, (71)

that is, C(s) = Ci(s)I .
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Figure 4 (top) shows the evolution of the peak in sensitivity to a disturbance at the lead

vehicle with respect to the position in the string. Clearly the peak grows fast with i, indicating

string instability. Figure 4 (bottom) shows the step transient response, which also deteriorates

very fast with i.
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Time (sec)

e(
t) 1st Vehicle

20th Vehicle

Fig. 4. String sensitivity peak (top) and transient performance (bottom), decentralized control, no time headway

B. Forward Communications

We now examine the effect of allowing forward communication between controllers in

the string introduced in Section V-A. The example shows that forward communication can

reduce the exponential growth of the disturbance sensitivity peak with N , although in this

example string instability still arises.

Consider again the string defined in Section V-A, but this time the control communication

ranges are cf = 2 and cr = 0. That is, we allow communication from one vehicle forward;

no reverse communication. The control policy for each vehicle is

ui(t) = Ci(s) ∗ ei(t) + φ ∗ ei−1, for i = 2, . . . , N, (72)

which means that the separation of the two vehicles immediately forward is used (although

without integral action, which proved in simulations to be the best choice).

Figure 5 (top) shows the frequency response magnitude from a disturbance to the leading

vehicle to the i-vehicle position, with i = 1, . . . , N = 30. Note that the growth of the peak
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with i is reduced with respect to decentralized case in V-A, but string instability is still

evident. Figure 5 (bottom) shows the transient step responses, which display peaks that also

increase with i.

Table I compares the peak growth with i in Bode and transients for the decentralized

control string in Section V-A (cf = 1) and the 1-step forward control string in Section V-B.
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Fig. 5. String sensitivity peak (top) and transient performance (bottom), forward communication, no time headway

TABLE I

PEAK GROWTH IN THE EXAMPLES IN SECTIONS V-A,V-B

Forward range cf Peak growth in Bode Peak growth in transients

1 0.8827 dB 1.0576

2 0.3090 dB 1.0214

C. Bidirectional Control

In this section, we consider an example where the ith control, ui, is based on both

the predecessor error ei and the successor error ei+1. In this case, it does make sense to

include integral action on the successor error, and the control policy for each vehicle can be

represented as

ui(t) = Ci(s) ∗ (ei(t) − ei+1) , for i = 1, . . . , N − 1. (73)
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The behavior of this scheme for a fixed number of vehicles is illustrated in Figure 6. Note

that in this case, although not obvious from the figures, the responses do not show unbounded

growth with string length. This can be attributed to a rapid increase in the integral absolute

error of the transient response, described in Assumption 8. This increase happens as a result

of both larger, and much longer transients in the string dynamics, as illustrated in Figure 7.
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Fig. 6. String sensitivity peak (top) and transient performance (bottom), no time headway, N = 20, for bidirectional

control

Note that other bidirectional control schemes have been examined, though clearly from the

analysis presented in Section IV, it is not possible to both have well behaved string dynamics,

and a transient response that has an average transient integral absolute error performance that

is uniformly bounded with n.

VI. CONCLUSIONS

This paper reexamines and expands the string instability analysis presented in [19]. The

analysis in the present paper includes heterogeneous, non-zero time headway, limited com-

munication range systems, and shows that:

1) System heterogeneity, within reasonable confines of bounded high frequency response

and integral absolute error, does not circumvent string stability problems.

2) Extra, though limited, forward communication range does not avoid string stability

problems in a qualitative sense. It does, however, significantly reduce the rate of growth

of transient disturbances.
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Fig. 7. Transient error performance of last vehicle, ξn(t), versus string length, n for bidirectional control

3) Relaxing a rigid formation control policy, to allowing a small time headway, does not

qualitatively alter the string instability results, though it does reduce the rate of growth.

A sufficiently large time headway may permit string stability.

4) Bidirectional control, or reverse communication, appears to offer an advantage in terms

of string stability mainly by virtue of the fact that it can generate very long transients as

string length grows. More specifically, all else being equal, the average integral absolute

value of the error in response to a ramp grows at least linearly with string length, if

bidirectional control is to be used to avoid string instability.

These conclusions naturally raise a number of questions for future research, including

potential advantages of non-linear and/or time-varying control schemes. In addition, there

is a need to extend the analysis to much more general graph structures, with high order

dynamics at each node.
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