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Abstract: In this paper we consider the in�mal signal-to-noise ratio (SNR) required for stabilisation of a
linear time invariant (LTI) scalar unstable plant over a class of additive colouredGaussian noise channels.
We apply recent results in the literature to obtain the feedback capacity of such a class of channels. We
prove that the in�mal SNR constrained LTI solution, when dealing with a scalar unstable plant, does
achieve a channel feedback capacity equal to the in�mal rate of transmission required for stability. The
optimality of such channel feedback capacity is a non trivial result since we consider additive 1st order
moving average (MA) and autoregressive moving average (ARMA) coloured noise.

1. INTRODUCTION

The study of control over networks has been a growing area of
research in recent years; see for example Antsaklis and Baillieul
(2004); Nair et al. (2007) and references therein. Communi-
cation channels can impose additional limitations to feedback,
such as constraints in data-rate and bandwidth, and effects of
noise and time-delay. A recent line of research has studied
stabilisability under a signal to noise ratio (SNR) constraint
Braslavsky et al. (2007). These papers obtained the in�mal
SNR required to stabilise an unstable plant over a memory-
less additive white Gaussian noise (AWGN) channel, whilst in
Rojas et al. (2006) we addressed the case of additive coloured
Gaussian noise channels with memory, see Figure 1. 1 As in
Rojas et al. (2006) in the present paper we consider the channel
to be located in the measurement path. The noise process n(k) in
Figure 1 is a zero-mean i.i.d. Gaussian white noise process with
variance given by �2 and the channel input satis�es a power
constraint E{s2}<P. The capacity of a communication channel,
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Fig. 1. Additive coloured Gaussian noise (ACGN) channel with
memory.

de�ned as the maximum of the mutual information between
the channel input and output (see (Cover and Thomas, 1991,
1 The use of the term memory as terminology in the present paper is restricted
to the case of F(z)�=1 in Figure 1. Thus for example: an ACGN channel with
memory presumes F(z)�=1 and H(z)�=1; an ACGN channel presumes F(z)=1 and
H(z)�=1; an AWGN channel with memory presumes F(z)�=1 and H(z)=1 and a
memoryless AWGN channel presumes F(z)=1 and H(z)=1.

p. 241)), is also a useful quantity describing a communication
channel. For an AWGN channel this is given by

Cchannel= 1
2 log2

(
1+ P

�2

)
bits/trans., (1)

and is thus completely determined by its SNR. As observed by
Shannon (1956), the presence of feedback does not increase the
capacity of a memoryless channel. On the other hand, when
the channel model has memory, the expression for the channel
capacity, (1), does not apply. Furthermore for a channel with
memory, the capacity with feedback, Cfb, is greater or equal to
that without feedback (see Cover and Pombra (1989)).

In order to address the issue of channel capacity when the
additive noise is coloured and feedback is present, we consider
a recent result in Kim (2006b) and a conjecture from Kim
(2005). The main result in Kim (2006b) yields a procedure to
obtain the channel feedback capacity for F(z)=1 and the channel
additive noise n(k) coloured by an order 1 moving average
(MA(1)) �lter

v(k)=n(k)+� n(k−1), (2)
with � in [−1, 1]. The noise variance, without loss of generality
Kim (2006b), is �2=1.

A conjecture for a similar result yields a procedure to obtain the
channel feedback capacity for F(z)=1 and the channel additive
noise n(k) coloured by an order 1 autoregressive moving average
(ARMA(1)) �lter

v(k)+�v(k−1)=n(k)+� n(k−1), (3)

with � in [−1, 1], � in (−1, 1) and unitary noise variance �2=1.

We show in the present paper that for a scalar unstable plant,
the in�mal SNR for stabilisability (or equivalently the in�mal
channel input power constraint for stabilisability, since �2=1),
achieves an in�mal channel feedback capacity equal in value to
the in�mal channel rate of transmission required for stabilisa-
tion, as in Freudenberg et al. (2006).

The rest of the paper is organized as follows: Section 2 intro-
duces some preliminary concepts. Section 3 presents a water-



�lling argument to obtain a non-tight lower bound for the
ACGN channel feedback capacity. Section 4 analyses the feed-
back capacity of an ACGN channel when the noise is coloured
by a MA(1) �lter with �2=1. In this case, the in�mal SNR
for stabilisability by LTI feedback imposes a demand on the
power in the transmitted signal. The additive Gaussian MA(1)
noise channel feedback capacity corresponding to this power
demand is equal to the in�mal feedback capacity required for
stabilisation by any causal feedback. Section 5 focuses on the
conjecture for a similar result involving the additive Gaussian
ARMA (1) noise channel. Section 6 presents the conclusions
and �nal remarks for this work.

Related results have been submitted for journal publication, see
Middleton et al. (2007), where we discuss in detail the linear
minimal SNR stabilisation for an additive Gaussian MA(1)
noise channel, but omit the additive Gaussian ARMA (1) noise
channel feedback capacity conjecture.

2. PRELIMINARIES

Consider the plant model, G(z), the controller, C(z), and �lters
F(z) and H(z) to be transfer functions. Furthermore we assume,
unless stated otherwise, that the transfer functions F(z) and H(z)
composing the ACGN channel with memory model are both
stable, biproper and minimum phase. We also assume that C(z)
is such that the closed-loop system is stable in the sense that,
for any distribution of initial conditions, the distribution of all
signals in the loop will converge exponentially rapidly to a
stationary distribution.

As mentioned in the introduction we consider the channel to be
located in the measurement path, thus the plant output y(k) is
equal to the channel input s(k).

The channel input power is then de�ned by ‖s‖2Pow�E{y2}, where
E denotes expectation, is required to satisfy an imposed power
constraint

P>E{y2}, (4)
for some predetermined power level P. Under reasonable sta-
tionarity assumptions ( �Aström, 1970, §4.4), the power in the
channel input may be computed, in the disturbance free case,
as

E{y2}= 1
2�

∫ �
−� |Tyn(e j� )|2�2d�,

where
Tyn(z)=− C(z)G(z)H(z)

1+C(z)G(z)F(z) , (5)

is the transfer function that relates y(k) with n(k). Since the
feedback system is stable, we have that the power constraint
(4) at the channel input translates into the SNR bound on the H2

norm of Tyn(z)
P
�2 >‖Tyn(z)‖2

H2
. (6)

From (6) we observe that a fundamental limitation in the SNR
of the ACGN channel with memory will be given then by the
minimum of its RHS. Thus

P
�2 >minC(z) stab.‖Tyn‖2

H2
, (7)

we have the basis for stating the SNR in�misation problem for
stabilisability.

Problem 1. (LTI Stabilisation with in�mal SNR). Find a
proper rational stabilising controller C(z) such that the feedback
control loop is stable and the transfer function in (5) achieves
the least restrictive constraint (7) imposed on the admissible
channel SNR.

A well known result on mean square stabilisability for �nite-
dimension linear systems obtained in Nair and Evans (2004)
calls for the rate of transmission of the communication channel,
R, to satisfy

R>�mi=1 log2 |�i| bits/trans. (8)

For the memoryless AWGN channel the presence of feedback
does not increase the channel capacity, Shannon (1956). From
Braslavsky et al. (2007) we have that, also for a memoryless
AWGN channel, the in�mal SNR for stabilisability of a plant
with m unstable poles |�i|>1, ∀i=1,··· ,m, minimum phase and with
relative degree one, is given by

P
�2 >(	m

i=1 |�i|2)−1. (9)

By replacing (9) directly into (1) we regain the lower bound on
the rate of transmission of the communication channel required
for stabilisation as in Nair and Evans (2004).

Cchannel>�mi=1 log2 |�i| bits/trans. (10)

The main interpretation of (10) is that an LTI controller can
be optimal in terms of data rate transmission requirement for
stabilisability when using a memoryless AWGN channel. In the
next sections we wish to �nd conditions under which an LTI
controller is optimal, in the sense just described, when dealing
with an ACGN channel.

3. NON-TIGHT LOWER BOUND FOR THE COLOURED
NOISE FEEDBACK CAPACITY
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Fig. 2. ACGN channel in feedback con�guration.

To compute the capacity of an ACGN channel with feedback,
see Figure 2, we consider in a �rst approach a water-�lling
argument (Cover and Thomas (1991), Gallager (1968)).

We start by reformulating the ACGN channel as an equivalent
(in terms of SNR required for stabilisability) AWGN channel
with memory, see Figure 3. We obtain this by invoking the LTI
single input single output (SISO) condition of all the systems
involved in the feedback loop. Since the difference between G̃(z)
and the original G(z) does not introduce any unstable pole, NMP
zero nor different relative degree, the in�mal SNR required for
stabilisability will be the same for both plants G̃(z) and G(z).

As initially proposed, we can now deal with the memory
element in the AWGN channel without feedback by means of
a water-�lling argument. The channel power constraint must
satisfy

P=
∫
�∈WB

[
B− 1

|H−1(e j� )|2

]
d�
2� , (11)

Given P and H(z) known, it is possible, from (11), to obtain WB

and as a consequence B (where WB is the range of frequencies
for which 1/|H−1(e j� )|2≤B). The capacity of the channel is then
given by

Cchannel=
∫
�∈WB

1
2 log2[|H−1(e j� )|2B] d�2� bits/trans., (12)



and the power spectral density for the input signal that achieves
Cchannel is given by

Ss(�)=

{
B− 1

|H−1(e j� )|2 , �∈WB ,

0, � /∈WB .
(13)

For more details on water-�lling see, for example, (Gallager,
1968, pp. 388-389). Notice, although, that the water-�lling ar-
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Fig. 3. Equivalent AWGN channel with memory con�guration.

gument just presented is in open loop and that the channel feed-
back capacity, Cfb, is greater or equal to the channel capacity
without feedback, Cchannel (see Cover and Pombra (1989)). Thus,
what we obtained in this section is ultimately a non-tight lower
bound on Cfb

Cfb >Cchannel (14)
with Cchannel as in (12).

4. TIGHT LOWER BOUND FOR THE COLOURED NOISE
FEEDBACK CAPACITY: FIRST ORDER MOVING

AVERAGE CASE

Consider the case of an ACGN channel and a scalar unstable
plant de�ned as G(z)=1/(z−�) with one unstable pole � satisfying
�>1.

We recall from Cover and Pombra (1989) that the channel
capacity in the presence of feedback , Cfb, (see for example
(Cover and Thomas, 1991, §8.12)) can be determined from
the limiting solution (in the length of the message) of an
optimisation problem. On the other hand, as noted in Kim
(2006b) before, it can be very dif�cult in general to �nd a
closed form solution for Cfb. Nonetheless an expression for Cfb

in closed form is presented in Kim (2006b), but for a speci�c
class of channels. The particular class of channels considered
are additive white Gaussian noise channels, coloured by a
MA(1) �lter and, without loss of generality, unity channel
noise variance. The result from Kim (2006b) is stated next for
convenience.
Theorem 2. Consider the additive Gaussian MA(1) noise chan-
nel in (2). The channel feedback capacity Cfb, under a power
constraint P and a zero-mean i.i.d. Gaussian white noise n(k)
with variance �2=1, is then given by Cfb=− log2 xo bits/trans., where
xo is the unique positive root of the fourth-order polynomial

Px2=(1−x2)(1−|� |x)2. (15)

Proof. See Kim (2006b).

The following theorem applies the above result to show that for
a minimum phase relative degree one plant with one unstable
pole �, we can again regain a channel capacity equal to the data
rate required for stabilisation, as in Nair and Evans (2004). We
can observe in Figure 4 the proposed setting to achieve this. The
element 
� (k) is de�ned as


� (k)=

{
1 , if sign(�)�= sign(�) ,

(−1)k , if sign(�)= sign(�),
(16)

and plays the role of encoder and decoder.

The present result is more restrictive than that for the memory-
less AWGN channel in (10), since at present we can only state
it for the case of scalar unstable plant dynamics.
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Fig. 4. Additive Gaussian MA(1) noise channel with feedback
and explicit consideration of encoder and decoder.

Theorem 3. Suppose we restrict E{s2k}<P. Let Cfb be the feed-
back capacity of the channel as given in Theorem 2. Assume
G(z) to be minimum phase, with relative degree 1 and a single
unstable pole at z=�. Then a decoder and encoder that stabilise
the feedback system subject to the power constraint exist if
and only if Cfb>log2|� | bits/trans.. Furthermore, the SNR limited
stabilisation can be achieved by a linear time invariant encoder
and decoder.

Proof.

(i) Necessity: from Proposition III.1 in Freudenberg et al.
(2006) or equivalently Theorem 2.1 in Nair and Evans
(2004).

(ii) Suf�ciency: see the Appendix.

An example follows next in which we consider � to span
the all range [−1,1]. We expect the in�mal SNR solution to
achieve a channel feedback capacity equal to the in�mal rate of
transmission required for stabilisation, as in Freudenberg et al.
(2006).
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Fig. 5. Unstable pole at 2, minimum phase and relative degree
1. Channel feedback capacity obtained with in�mal SNR
, solid line. Channel capacity obtained by water-�lling
argument, dashed line.

Example 4. Assume that G(z) is minimum phase, has an unsta-
ble pole �=2 and relative degree 1. Also consider an additive



Gaussian MA(1) noise channel with �∈[−1, 1] and �2=1. The
channel input power constraint accordingly to Theorem 3 is
given by P=3(1−0.5|� |)2 (see the Appendix for details). In Fig-
ure 5 we have the channel feedback capacity as a function of
�. It can be seen that the channel feedback capacity is 1 bit/trans.

and constant over all the range of �. Therefore, it is possible
to perceive the optimality of the LTI SNR constrained solution,
in terms of Freudenberg et al. (2006), for a �rst order unstable
plant and an additive Gaussian MA(1) noise channel with �2=1.

The channel capacity obtained by the water-�lling argument is
always below the value of the channel feedback capacity (as
stated by Pinsker (1969), Ebert (1970) and mentioned in Cover
and Pombra (1989)), with the exception of �=0. 2 Note that
when �=0, the additive Gaussian MA(1) noise channel becomes
a memoryless AWGN channel for which the channel feed-
back capacity matches the channel capacity without feedback,
(Shannon (1956)). Moreover, for this example, we can observe
from Figure 5 that the feedback capacity satis�es

Cchannel≤Cfb≤2Cchannel bits/trans., (17)

and
Cchannel≤Cfb≤Cchannel+ 1

2 bits/trans., (18)
as proven in Cover and Pombra (1989).

5. TIGHT LOWER BOUND FOR THE COLOURED NOISE
FEEDBACK CAPACITY: FIRST ORDER

AUTOREGRESSIVE MOVING AVERAGE CASE

In the present section we analyse the case of channel feedback
capacity when the channel noise is described by an additive
Gaussian ARMA(1) noise as in (3). The present section is
resting on a conjecture presented in Kim (2005) and attributed
to Yang et al. (2004). The objective of the present section is
not to prove the validity of such conjecture, but to test what
feedback capacity can be achieved by the in�mal LTI solution
for the stabilisation SNR requirement. We reproduce next, from
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Fig. 6. Additive Gaussian ARMA(1) noise channel with feed-
back and explicit consideration of encoder and decoder.

(Kim, 2006a, p.37), the conjecture at the core of the present
discussion.

Conjecture 5. Consider the additive Gaussian ARMA(1) noise
channel in (3). The channel feedback capacity Ccon jf b , under a
power constraint P and a zero-mean i.i.d. Gaussian white noise
n(k) with variance �2=1, is given by Ccon jf b =− log2 xo bits/trans., where
xo is the unique positive root of the fourth-order polynomial

Px2= (1−x2)(1+��x)2

(1+��x)2
, (19)

2 As can be observed from the Appendix the element 
� (k) in Figure 4 imposes
two different scenarios depending on the sign of � and �. Nonetheless, in both
cases there is an equivalent transfer function H(z) that can be examined as in
Section 3.

and

�=sgn(�−�)=

⎧⎪⎨
⎪⎩

1, �>� ,

0, �=� ,

−1, �<� .

(20)

Proof. In Kim (2005) it is argued that the above conjecture
is due to Yang et al. (2004). A proof sketch of Conjecture 5
can be found in Kim (2005). A more detailed version can be
found in Kim (2006a). To the knowledge of the authors of
the present paper no peer-reviewed proof of Conjecture 5 is
currently available.

In a similar fashion as in the previous section we follow with a
theorem that applies Conjecture 5 to prove that for a minimum
phase plant with relative degree one and one unstable pole �,
we can again regain a channel capacity equal to the data rate
required for stabilisation, as in Nair and Evans (2004). We can
observe in Figure 6 the proposed setting to achieve this. The
element 
�−� (k) is de�ned as


�−� (k)=

{
1 , if sign(�)�= sign(�−�) ,

(−1)k , if sign(�)= sign(�−�),
(21)

and plays the role of encoder and decoder. Notice that if �=0 we
regain the situation discussed in the previous section.
Theorem 6. Suppose we restrict E{s2k}<P. Let Ccon jf b be the feed-
back capacity of the channel as given in Theorem 5. Assume
G(z) to be minimum phase, with relative degree 1 and a single
unstable pole at z=�. Then a decoder and encoder that stabilise
the feedback system subject to the power constraint exist if
and only if Ccon jf b >log2|� | bits/trans.. Furthermore, the SNR limited
stabilisation can be achieved by a linear time invariant encoder
and decoder.

Proof.

(i) Necessity: from Proposition III.1 in Freudenberg et al.
(2006) or equivalently Theorem 2.1 in Nair and Evans
(2004).

(ii) Suf�ciency: see the Appendix.

We conclude the section by exposing an example related to the
result of Theorem 6.
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Fig. 7. Unstable pole at 2, minimum phase and relative degree
1. Channel feedback capacity obtained for an additive
Gaussian ARMA(1) noise with in�mal SNR, solid line.
Channel capacity obtained by a water-�lling argument,
dashed line.



Example 7. Assume that G(z) is minimum phase, has an unsta-
ble pole � at 2 and relative degree 1. Also consider an addi-
tive Gaussian ARMA(1) noise channel with �∈[−1, 1], �=0.5 and
�2=1. In Figure 5 we have the channel feedback capacity as a
function of �. It can be seen that the channel feedback capacity
is 1 bit/trans. and constant over all the range of �. Therefore, it is
possible to perceive the optimality of the LTI SNR constrained
solution, in terms of Freudenberg et al. (2006), for a �rst order
unstable plant and an additive Gaussian ARMA(1) noise chan-
nel with �2=1.

6. CONCLUSION AND REMARKS

In this paper we analysed the channel capacity of a SNR con-
strained communication channel in feedback with an unstable
plant and stabilising controller. We observe, as in Braslavsky
et al. (2007), that the in�mal SNR solution, for the case of a
memoryless AWGN channel, imposes a capacity that matches
the in�mal data rate required for stabilisation as in Nair and
Evans (2004). We conclude that the same is true for the case of
a scalar unstable plant and an additive Gaussian MA(1) noise
channel with unity variance noise and, depending on the valid-
ity of Conjecture 5, also for the case of an additive Gaussian
ARMA(1) noise channel with unity variance. The conclusion is
not trivial due to the presence of feedback and additive coloured
channel noise. Future opportunities for research should con-
sider �lters other than the MA(1) and ARMA(1) for the additive
Gaussian noise channel model and, perhaps, the lifting of the
scalar plant condition.

APPENDIX

Proof of Theorem 3 (Suf�ciency)

Assume the controller C(z), in Figure 4, to be enforcing the
in�mal SNR required for stabilisability, and also that 
� (k) is
de�ned as in (16). Consider �rst the case of � and � having
opposite sign, thus 
� (k)=1. The MA(1) process 1+�z−1 colouring
the noise can be seen to play the role of H(z) in our de�nition of
a channel with memory in Figure 1. From Theorem 2 in Rojas
et al. (2006) we have that for one unstable pole �, the in�mal
SNR required to guarantee stabilisability converts into a power
constraint

P=(|� |2−1)|1−|� ||�−1||2. (22)
We therefore see that the choice xo= 1

|�| , satis�es (15), with P

as in (22). We now turn to the issue of the channel input
distribution and whether it achieves channel capacity or not.
From Kim (2006b) we have that the channel feedback capacity
Cfb is achieved by an asymptotically stationary ergodic input
process satisfying E{s2}=P (see also (Cover and Pombra, 1989,
Section VIII)). We also have that the input distribution that
achieves the channel capacity is obtained by a �ltered version
of the noise innovation ((Kim, 2006b, p. 3073))

s1∼N(0,P),

s(k)=� s(k−1)+
n(k−1), k=2,3,···, (23)

where 
 and � are given by

=sign(�)

√
P(1−� 2)=sign(�)|(�+�−1)(� 2−1)|,

�=−sign(�)xo,
(24)

and

sign(�)=

{
1 �≥0,

−1 �<0.

After some algebra we have that the transfer function T̂sn re-
lating the channel additive white Gaussian noise n(k) and the
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Fig. 8. Equivalent additive Gaussian MA(1) noise channel
with feedback and implicit consideration of encoder and
decoder.

channel input s(k) is given by T̂sn=



z−� , when the optimal con-
troller Ĉ(z) achieving the in�mal SNR required for stabilisability
is in place. Thus, indeed the optimal SNR solution generates
a channel input distribution that achieves the channel feedback
capacity. The obtained channel feedback capacity, with xo= 1

|�| , is
�xed at the value of Cfb=log2 |� | bits/trans. Consider now the oppo-
site case in which � and � have the same sign. The sign involved
in the unit gain for the encoder and decoder are synchronized,
that is when the encoder value is −1 the decoder value is also
−1. From the signal de�nitions in Figure 4 we can claim

r(k)
′
=(−1)kr(k), and s(k)

′
=(−1)ks(k), (25)

where it is assumed that encoder and decoder are 1 at k=0. De�ne
at this point an alternative white noise sequence n(k)

′ as

n(k)
′
=(−1)kn(k). (26)

If we couple this alternative white noise sequence with the
alternative colouring LTI �lter 1−�z−1, as in Figure 8, it is
possible to verify that the obtained coloured noise is effectively
v(k)

′
=(−1)−kv(k), and that the additive Gaussian MA(1) noise

channel input and output in Figure 8 are precisely s(k)
′ and

r(k)
′ (with the encoder and decoder set back to be again time

invariant gains of magnitude 1). The net gain in considering
the proposed time varying scheme is that we have actually
changed the LTI �lter colouring the noise (now 1−�z−1). As
a consequence the in�mal SNR required for stabilisability
converts into the power constraint in (22). A similar close
inspection of (15) for P de�ned as in (22) shows that xo= 1

|�|
is still the appropriate solution. Turning now to the issue of
the channel input distribution and whether it achieves channel
capacity or not, after some algebra we have that T̂s′n′=

−

z+� , from

which we obtain the recursive expression for the channel input
as

s(k)′=−� s(k−1)′−
 n(k−1)′. (27)
By recalling (25) and (26) and replacing in (27) we have
s(k)=� s(k−1)+
 n(k−1), thus regaining (23). By the argument pre-
sented in (Kim, 2006b, p. 3073) we can claim that the obtained
channel input distribution achieves channel feedback capacity.

Proof of Theorem 6 (Suf�ciency)

Consider for the �rst half of this proof that �>0. As hinted by
the de�nition of � in (20) we need to consider three cases: �<�,
�=� and �>�.

�<�: recall that the proposed LTI �lter colouring the noise is
given by

H(z)= z+�
z+� , (28)

with �∈[−1,1] and �∈(−1,1). For the present case we have that

�−� (k) de�ned in Figure 6 is 1 for all k and the in�mal input



channel power constraint, from Theorem 2 in Rojas et al.
(2006), is given by

P=(�2−1)
(
�+�
�+�

)2
=(|� |2−1)

( |�|+�
|�|+�

)2
. (29)

Replace the in�mal channel input power presented in (29) into
(19), recall that �=1 for this case, and observe that a suitable
solution of the polynomial in x is given by xo= 1

|�| , thus the
in�mal Ccon jf b is given by log2 |� | bits/trans.

�=�: in this case we have that the additive channel noise
becomes effectively white. The channel input power constraint
accordingly to Theorem 2 in Rojas et al. (2006) (see also
Braslavsky et al. (2007)) is given by

P=�2−1=|� |2−1, (30)

which when replaced in (19), recalling that �=0 for the present
case, has as a solution xo= 1

|�| , and thus the in�mal Ccon jf b is given
by log2 |� | bits/trans.

�>�: in order to prove the present case observe that the chan-
nel additive coloured noise v(k), given H(z)=(z+�)/(z+�), can be
alternatively described as

v(k)=n(k)+(�−�)�kl=1(−�)l−1n(k−l). (31)

Consider now, as in the second half of the suf�ciency proof of
Theorem 3, that n(k) is replaced by n(k)′=(−1)kn(k) therefore the
coloured noise becomes

v(k)=n(k)′+(�−�)�kl=1(−�)l−1n(k−l)′

=(−1)kn(k)+(�−�)(−1)k−1�k
l=1(�)l−1n(k−l)

=(−1)k [n(k)+(�−�)�kl=1(�)l−1n(k−l)]︸ ︷︷ ︸
v(k)′

=(−1)kv(k)′.

(32)

The last line in the above result is equivalent to have replaced
the LTI �ltering colouring the additive channel noise (z+�)/(z+�)
by (z−�)/(z−�) instead. The new additive coloured channel noise
is v(k)′, whilst the effect of the factor (−1)k is eliminated by the
choice of 
�−� , which is also (−1)k. Consider for example k even,
thus we have r(k)′=s(k)′+v(k)′, and if k is odd, then

r(k)′=−r(k)=−(s(k)+v(k))=−(−s(k)′−v(k)′)=s(k)′+v(k)′, (33)

from which we can conclude that, by the choice of 
�−� and the
use of n(k)′, the original scheme in Figure 6 is now effectively
the one represented in Figure 9. The application of Theorem 2

r
′

�

�
�

�� �

�

C(z)
−

+

+

Channel

G(z)
u y

1−�z−1

1−�z−1

n′

v′

s
′

�

Fig. 9. Equivalent additive Gaussian ARMA(1) noise channel
with feedback and implicit consideration of encoder and
decoder.

in Rojas et al. (2006) for the loop in Figure 9 gives a channel
input in�mal power of P=(�2−1)

(
�−�
�−�

)2
=(|� |2−1)

( |�|−�
|�|−�

)2
, which

when replaced in (19), recalling that �=−1 for the present case,
has as a solution xo= 1

|�| , and thus the in�mal Ccon jf b is given by

log2 |� | bits/trans. The proof ends by considering now �<0 and the
three cases: �<�, �=� and �>�.
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