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Abstract— We propose a linear control and communication If the scalar amplifier at the channel input were a unity
scheme for the purposes of stabilization and disturbance at- gain, and if the power constraint were not present, then
tenuation when a discrete Gaussian channel is present in the e nroblem of minimizing the variance of the plant output
feedback loop. Specifically, the channel input is amplified by . . .

a constant gain before transmission and the channel output is would be a standard I|.nea.r quadratic Gaussian (_LQG) control
processed through a linear time invariant filter to produce the Problem, whose solution is state feedback applied to a state
control signal. We show how the gain and filter may be chosen estimate obtained from a Kalman filter. With the pre-channel
to minimize the variance of the plant output. For an order one  gmplification and the power limit present, the problem no
gl?;]a’cﬁuéri(;z%?ilgggI?)\fleczmeetgsgtfr“scal minimum taken over |5nqer fits into the standard LQG framework. However, we
P ' shall show that the LQG results may be modified to yield
the desired solution.

The remainder of this paper is outlined as follows. In

Many authors have studied the problem of controlling @€ction Il we provide a precise problem statement, review
linear system with a communication channel in the feedbadk® results on stabilization over a Gaussian channel from
loop (e.g., [1]-[9]). The most general framework for doing{6]’ and develop necessary background on thg dlscrgte-tlme
so allows compensation at the channel input and outp@CG Problem. The latter results are applied in Section Il
that may be nonlinear, time-varying, and dynamical. In thfPr the casel = 1. We show that, under appropriate
present paper we shall consider the simpler communicatidlyPotheses, the minimal output variance is equal to that of
and control scheme shown in Figure 1 wherein the channi]® Minimal estimation error for thpredicting version of
precompensator (the “encoder”) is assumed to be a constdfg optimal estimator. This observation allows us to apply

gain, \, and the postcompensator (the “decoder”) is assumdgsults from estimation theqry to derive propertjes of the
to be a causal linear time-invariant filter. The plant is ise, eedback system under optimal control. In Section IV we

linear, and time-invariant, and the channel is Gaussiah wit!S€ the concept of entropy rate to develop a formula for the

input power limit P and noise variance?. The purpose of optimal estimation error and the minimal channel capabity.
control is to stabilize the plant, if necessary, and to mizém Section V this formula is modified to include nonunity values

the variance of the plant output in response to a disturban@ A @nd we show that the variance of the plant output is
It is the simple nature of the communication and controffinimized by choosing\ so that the channel input satisfies

scheme in Figure 1 that motivates us to study its propertie§'€ Power limit arbitrarily closely. An example is also give
in Section V. In Section VI, we show that, for a first order

plant, our linear communication and control scheme ackieve
a theoretical lower bound on disturbance response thashold
for general nonlinear, time-varying, and dynamical cantro
and communication schemes. An alternate approach to this
result is obtained in [21], based on an inequality appliedbl
open loop unstable systems derived in [16]. Conclusions and
directions for further research are presented in Sectidn VI

I. INTRODUCTION

Il. PRELIMINARIES

Denote a random sequence by= {x;}, and define the
subsequence® £ {z,; ¢ < k}. Unless stated otherwise, all
signals are assumed to have stationary distributions. élenc
Fig. 1. Feedback control over a Gaussian communication chavitte if x iS a scalar valued sequence, the variance isfgiven by
input power constrainE{si} < P and additive white noise of variance Ui — E{UUi} and may be computed from its power spectral

2 2 . ! .
Tn densityS, (w) by 02 = (1/27) ["_Su(w)dw, if the spectral
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A. Problem Statement B. SNR Limited Stabilization

Throughout the paper we consider the feedback system ofThe authors of [6] consider the feedback system in Fig-
Figure 1, which we now describe in detail. The plant to baire 1 with an unstable plant butithout a plant disturbance,
controlled has state equations and determine the minimum value &frequired to stabilize

tps1 = Awy + Buy, + Edy, z1, € R, ug,dy, € R, (1) the plant. _Wit_h no dist_urbance present, there is no loss

of generality in assumingh = 1, and the problem of

yr = Cr, yr € R, ©) minimizing (5) for a fixed noise variance is equivalent to
where (A4, B) and (4, E) are assumed controllable4,C)  that of minimizing theH, norm of T":
is assumed observable, atids a zero mean Gaussian white SL21 — ITI2 o2 9
noise sequence of varianed. The transfer functions from (s} = 1T, 7 ©)
control and disturbance inputs to the plant output are @ehotThe following result is obtained in [6].
by G, = C®B andG, = COE, respectively, wheré(z) =
(I — A)~'. The output of the plant is multiplied by a scalarProposition 11.1 Consider the feedback system in Figure 1
gain A and transmitted over a communication channel whosgith no disturbanceand A = 1. Assume that3, has no
input s and output- are related by nonminimum phase zeros and has relative degree equal to

= Sk + T, (3) one. Suppose further that,, h:?\s polesg;,i = 1,...,m,
_ ) ) ) with |¢;| > 1. Then there exists a controlleK(z) tha

wheren is a zero mean Gaussian white noise sequence gfypjlizes the feedback system if and only if the channel

variancea,, . The channel inpus is requweq to satisfy the power constraintP satisfies the lower bound
power limit£{s?} < P, and thus the capacity of the channel

is determined by the signal to noise ratio (SNR)o2 [10]: P> 1), 10
C= %loge(l +PJ/o?) natsftransmission  (4) Where i
*(1) = g2 2
The channel output is scaled iy A and used as the input Jy(l) = (1_[1 || 1) o2 (11)

to a linear time invariant filter with transfer functiai (z),
whose output is the control signal. u
nezzgsg(r)ala%f dffc?g?tz‘r:]t;tgrltrzglr:asst%:ibglflztﬁeth?aﬂami 'E follows from Proposition 1.1 and (4) that the minimal
Y, : © resp P WP annel capacity required for stabilization with a lindaret
to the disturbance input. Specifically, we seek and K (z) . . T
S : : |{'|var|ant controller is given by
to minimize a cost function equal to the variance of the plan

output “ .
C > 1 ;| nats/transmissian 12
1, 2 4t} ® 2. loe |64 12
und?r the aisur?‘ptlonf that th? fegdbagkf;ystem IS |_n_t§ernal|1he authors of [16] show that nonlinear, time-varying cohtr
s;abe andlt € channel power |Im}?t|s Sr?t's |ed.hln a?d't'o?’ cannot achieve a channel capacity lower that that obtained
the controller must be causal, so that each value of Mgy jinear time-invariant control for a minimum phase,
control s!gnalu is allowed to depend only on the current o ative degree one plant. If the pla@t, has nonminimum
ang pre':notl:]s valtj_es |°f trlle chfatr;]nel outteut ion (5 b phase zeros and/or relative degree greater than one, then
enote the optimal value of the cost function (5) by it is shown in [6] that the channel capacity required for

M £ min £{y?}. (6) stabilization with a linear time invariant controller igistly
K\ . .
_ o greater than the bound given in (12).
We shall also consider the problem of minimiziéigy; } for The proof technique used to obtain Proposition I1.1 in [6]
a fixed value of\, and denote the optimal cost by involved a Youla parametrization of all stabilizing coritees
TV 2 min&ly?}| . @ togethgr with an application of residue theory to deterrmne
K A the optimal value of|T'||z,. An alternate approach, which

For a fixed value of)\, the problem of choosing a causalwe pursue in the present paper, is to directly apply LQG
controller to minimize (7) is a cheap control LQG optimiza-theory.
tion problem. We now provide a frequency domain versio . )
of the cost function. Under the assumption that all signaf” The Discrete Time LQG Control Problem
distributions are stationary, the variance of the systetpuigu ~ Consider the feedback system of Figure 1, and assume
y may be computed from its power spectral densifw), thatA =1, so that the plant is described by (1)-(2), and (3)
given byS, (w) = |S(e7*) [2|Ga(e?) [Pa2+|T(e7%) 252 /N2, becomes, = y;. +n,. Under the assumption that all signals
where S and T are the sensitivity and complementaryare stationary, the “cheap control” LQG cost function isegiv
sensitivity functions by Jroe = E{yi}. Itis well known [11] that the problem of
N N finding a control law to stabilize the system and to minimize

§=1/(1+AGuK), T=1-5. (8) Jroc has a solution given by state feedback applied to a state

It follows that J, = ||SGall3;, 05 + | T3, 0% /22 estimate obtained from an optimal estimator that driven by



the channel output. There are two possibilities for such an Under appropriate hypothedeshe solution to the cheap
estimator, depending on whether or not the state estimatedsntrol problem has appealing special properties.
allowed to depend on the current value of the channel output.
We now review both versions of the estimator, as each playoposition 1.2 Consider the cheap control LQG problem.
a role in subsequent developments. Assume that?,, has no nonminimum phase zeros and relative

Consider first the state estimate opeedictingestimator, degree equal to one, and that the control signal is allowed to
denotedzy,_1, Which depends only on previous values ofdepend on both current and previous values of the channel
the channel output. This estimate satisfies the state egsati output. Then the optimal controller, given K8)-(19), has

the properties that

Tpg1)k = AZgjp—1 + Bug, + Ly(rg — CZpp—r)  (13) (©B)! (20)
K. = (CB)"\CA, 20

where L, = ALy, Ly = XCT(CSCT +02)~!, and T is
the stabilizing solution to the Riccati equation and
K(z) = G, (2)C®(2)L,. (21)
¥ =AY AT — AxCcT(02CT + 62)'C2AT + 03FET.
(14) Furthermore, the sensitivity and complementary sensitivi
Define theoutput estimat@ndestimation errorby g, = functions(8) satisfyS = Sc; andT" = T, where
C:i:gf‘k_l and gjk‘k_l_: Yk — Q;ﬂk__l, res_pect_lvely. The_n the Soot = (14 CQ)LP)A’ Toey =1 — Sou. 22)
variance of the optimal predicting estimation error is give
by Proof: The special structure of the state feedback gain
5*{37,€|,€_1} =cxct. (15) (20) and the compensator (21) follows from equations (16)
and (22) of [13], and the form of the sensitivity and com-

The state estimate of thdtering version of the optimal 0 entary sensitivity functions follows by substituti(2y)
estimator, denoted,,, does depend on the current value ofhto (8) with A = 1

o [ |
the channel output, and satisfies It is easy to verify thatS.,, and T, are the sensitivity
Frpk = Erjp_1 + Ly (rk — Cppor), (16) and complementary sensitivity functions of the feedbaoiplo

in a predicting estimator, and thus that the sensitivity and
where 7,1 is given by (13). The output estimate andcomplementary sensitivity functions in Figure 2 are ideaiti

estimation error are given by, = CZ, and g, = to those of a predicting estimator. The ability to make the
yr — CZyi. The variance of the optimal filtering estimationsensitivity and complementary functions associated with a
error is equal to output feedback system match those of a predicting estimato

feedback loop (or its dual, a state feedback loop) is termed
(17) “loop transfer recovery”, and has received much discussion
in the literature (e.g., [12]-[14]).

2 T
.3 0.CEC
E Tt = o2 4 O 0T

If the filtering estimator is used to minimizé, ¢, then

IIl. STRUCTURE OF THEOPTIMAL FEEDBACK SYSTEM
the control law has the form

In this section, we use Proposition 11.2 to derive interesti
up, = — Ky, (18)  properties of the feedback system in Figure 2 dki¢k)

L . . designed to minimize (5). Recall the output estimationrerro
where ), is given by (16) andf. is found by solving yrik—1 for the predicting estimator, define the associated

a Riccati equation. The transfer function of the resultin .
N novations sequenday
compensator is given by

ek Tk — -1 = Jrjh—1 + 1 (23)
K(z) = zK. (2] — (I — L;C)(A— BK.)) 'L, (19) B TE T Ukt = Vhle1 TR
A block diagram of the resulting feedback system is show%r?i)d?rr;f:s the-transforms ofg ;. andey, by Y;,(2) and
in Figure 2. : i
Y, (2) = Sest(2)Ga(2)D(2) — Test(2)N(2), (24)
predicting estimator E(Z) == Sest (Z)Gd(Z)D(Z) + Sest (Z)N(Z) (25)

S i, | Our next result shows that with optimal feedback control,
® 7* the channel input and output in Fig%re 2 are identical to the
e . estimation error and innovations sequence for a predicting
17— estimator, and thus inherit special properties derivednfro
those of the optimal predicting estimator.

e &)

i ) o 1Expressions for the optimal state feedback gain, compensatat
Fig. 2. Feedback system with state feedback based on anfjtestimator.  sensitivity function that hold when the hypotheses of Psitin 1.2 are
The predicting estimator is in the dashed box. violated may be found in [12].



Proposition Ill.1 Consider the problem of minimizin(f) mean square estimation error, it follows that the resulting
in the special case\ = 1. Assume that the hypotheses otontrol signal minimizes the variance of the system output,
Proposition 1.2 are satisfied. Then the optimal control isand thus also the power required at the channel input.
state feedbacK18) with K. given by(20) and z;, given

by (16). Denote the optimal values of the channel input and V- ENTROPY RATE AND THE OPTIMAL ESTIMATION

output bys; and 7}, respectively. Then ERROR
vy We now derive an expression for the optimal prediction
S*(z) = Sest(2)Ga(2) D(2) = Tewt (2)N (2), (26)  ostimation error and provide an interpretation in terms of
R*(2) = Sest(2)Ga(2)D(2) + Sest(2)N(2), (27)  mutual information. The results below are an extension
where S..; and T,.; are given by(22). Furthermore, the of those in [16], wherein the disturbance free stabilizatio
channel power constraint must satisfy > .J;(1), where problem was considered.
the optimal cost is equal to the variance of the optimal Given two random variables and b, we denote the

(predicting) estimation error mutual information[10] by I(a;b), and note thaf (a;b) =
h(a)—h(alb), whereh(a) andh(a|b) denote the (differential)
Ty (1) = E4{GR 1}, (28) entropy of a and the conditional entropy of given b,

the optimal channel output: is a white noise sequence respectively. The (differentialgntropy rateof a stationary,
k ' continuous-valued, discrete-time scalar random proaess

h imal ch i is orth | to the channef
and the optlma channe mput IS ort ogona to the ¢ anneglven by [10] hoo(a) _ limkﬁoo h(ak|ak_1). The entropy

output. . :
rate of a stationary Gaussian random procesmay be

Proof: Since A = 1, it follows that Y(z) = computed from its power spectral densBy(w) [10] by the
S(2)Ga(2)D(z) — T(2)N(z), and thus (26) follows from formula
the properties ofS and T' noted in Proposition 11.2. The 1 1
identity r, = i, + n, together with (26) implies that (27) hoo(a) = 5 log, 2me + — [ log, Sa(w)dw.
holds. The fact that the channel output must be white follows -7
since the innovations sequence for the optimal estimator #d1€re is a connection between the entropy rate of a random
white [15]. Orthogonality of the input and output sequencegeduence and the problem of estimating the next value of the
follows from the orthogonality between an optimal estimatéeduence given all previous values. Denote such an estimate
and the measurements upon which it is based [15]. m DY dxj;—1, and the resulting estimation error By, , =

We also see that, with optimal control, the feedback systeff — @k|x—1- Then the variance of the minimal mean square

with filtering estimator depicted in Figure 2 égjuivalentto ~ €stimation error satisfies [10]
the system in Figure 3 in the following sense. The responses ‘(9 L e
of the channel input and output to the disturbance and noise Ejyp-1} = ome’ ’ (29)

in Figure 3 are identical to the responses of the estimatioanqd is thus completely determined by the entropy rate. of
error and innovations sequence to the disturbance and nois e now apply the connection between entropy rate and

Itﬂ Figure 2'| T?? feedback systet_m ert1h optllmq![hc?nt:jo; Is(i(stimation error to the feedback system of Figure 1 with
us equivaient 1o a communication channet with Teedback _  “tne power spectrum of the channel output may be
to the channel input. written as

s

5:(0) = Is@)Po? (14 1Gale P2 ). (30)

n

Since the exogenous inpufsandn are assumed Gaussian,

dy X1k 8" =Vigk 1 | =k
9 - kL 9 ; [ the channel output is also Gaussian, with entropy rate given

channel - by
o 1 L[ ‘
L] heo(T) = 5 log, 2meo? + o log, |S(e’%)|dw
—T
Fig. 3.  Under optimal control, the feedback system in Figurés 2 1 ™ ) o2
input/output equivalent to a communication channel with Feetk. + = log, (1 + |Gy (e?)? U;l) dw. (31)
—T n

We have seen that the problem of power limited stabilizeSuppose that the plant, is strictly proper, has: anti-stable
tion with a disturbance over a memoryless Gaussian channgiles|;| > 1, and no nonminimum phase zeros. Then it is
has a solution with the following structure. First, an o@lm possible to stabilize the system using a controller with no
estimator is applied to obtain the best estimate of the neahti-stable poles. With such a controllér,must satisfy the
value of the channel input (which is equal to the plant oytputiscrete Bode sensitivity integral [17]
given the previous channel outputs. Second, a control kigna . m
is computed that inverts the plant and subtracts this estima 1 log, |S(e7)|dw = Z log, | ¢il. (32)
from the plant output. Because the estimate minimizes the 2 ) o F =1 e



We now provide an interpretation of the third term on thdo that of the optimal estimation error. The minimal channel
right hand side of (31). Suppose, as shown in Figure 4apacity required for stabilization is thus obtained frof (
that state feedback, = —K,,.x) is used to stabilize the yielding

plant and minimize the energy in the control signal, given by m

> reoui. The closed loop transfer function from, to 7, C> Zloge ¢s| + Ino(r;d) nats/transmission.  (38)
is given by C®FE (1 + K,,,,&E)‘l. It may be shown from =1

[18, Theorem 6.35 (d)] thatl + K,,.®E) " is allpass, and
thus that the magnitude of the transfer function fromto
dy is identical to that ofGG,;. The mutual information rate

We now provide an interpretation of the two terms that
contribute to channel capacity in (38). First, it followsrn

[6] that the channel capacity required for stabilizatioons

is given by >, log |¢;|. Hence we see that the additional
capacity required to stabilize in the presence of a dishoba
depends on the mutual information between the disturbance
and the channel output, once the plant has been stabilized.
A similar discussion appears in [7].

V. USE OFCHANNEL PRECOMPENSATION A # 1.

Fig. 4. System stabilized with minimal energy control has tee Bode With )‘ = 1,the problem of minimizing the p‘?"‘,’er, r?quwed
gain plot asGy. for stabilization is equivalent to that of minimizing the

response of the plant output to the disturbance and channel

[19] between the signals andd in Figure 4 is given by noise. If other values of are allowed, then more flexibility is
available with which to either achieve smaller variancehia t

k—1. jk—1
Io(r;d) £ limsup M7 (33) Pplant output or satisfy a lower channel power requirement.
k—o0 k The former scenario arises when a channel is given that has a
and is equal to [19] greater power limit than the minimum calculated foe= 1,

and the latter scenario when the given channel has a lower

™ 2
Ioo(rid) = %/ log <1 +|Ga(e)? Z;l) dw. (34) E;Vt\;ﬁirzléilrt?ci)tnthat satisfies the lower bound (10) required for

Substituting (32) and (34) into (31) and applying the To proceed, note that the feedback system of Figurelmay
formula (29) shows that the minimum mean square errdie rearranged so that the plant has state equations

in estimatingr, givenr*~1 is given by Trr1 = ATy, + Bug + EXdy, (39)
+1 — )

s = Cxy. (40)

—T n

m
E 1} = on H | i 22T (i) (35)
=1 It follows that changing the parametet\ is equivalent
Let us now relate the problem of estimating the currerio changing the variance of the disturbance inpés a
channel outputr, given previous outputs®~! to that of consequence, we may apply the results of Sections Il and
estimating the current channel inpsit = v, givenr*~1. IV to minimize the power in the channel input simply
Denote the estimation errors fay, andy, by 7,—; and by replacing the disturbance variance bﬁ/o—g in all the
Ukk—1- Then, sincen is zero mean and white, it follows respective formulas.
that Consider the problem of minimizing the variancesgfin
E{fp1} = E{TRpr } + o (36) Figure 1 for a fixed value o, and denote the optimal cost

Combining (36) with (35) yields an expression for the min-by
imal error in estimating the channel inpyt given previous

values of the channel output—! that provides an alternative
expression for the minimal power required for stabilizatio

Ji(\) 2 rr%nf){si} K (41)

The value of the cost (7) for the plant output for the con&oll
that achieves the minimum in (41) is equal to

Proposition IV.1 Assume that the hypotheses of Proposi- J,(\) = J5(A) (42)
tion 11.2 are satisfied and thah = 1. Then the channel Y A2

ower limit must satisfy the lower bourfél > J(1), where . .
P bt s(1) Lemma V.1 The variance of the plant output, given by the

m ratio (42), is a monotonically decreasing function &f.
Jy(1) = (HI@IQe”w(“d) - 1) e @y 2 ind 9 e

i=1 Proof: It follows by substituting\?s2 for the distur-
m Dbance variance in (37) that

As noted in Section lll, under the hypotheses of Propo- Je(N) - &21 H i |2e2Toerdd) 1 ] (43)
sition 11.2, the variance of the channel input will be equal A2 A\



Taking the derivative with respect t& in (43) and simpli- and transfer functiorG4(z) = 1.5(z — 0.1)/(2% — 2.3z +

fying yields 1.32). Assume the disturbance and noise have variances
il (rxd) A 7 ) 02 =1 and o2 = 0.1, respectively. Plots of/*(\) and
Ale™= =AY DT (M) /A _ J*(N\)/\? are depicted in Figure 5. Note that the former is
o2 o2 monotonically increasing with and the latter, as proven in

m Lemma V.1, is monotonically decreasing; of course these
2 —1/2m —210 (r;)d) . . -
H|¢z| 1+|Gd(ejw)|2)\gaz/ gdw +e ’ plots intersect forA = 1. For a given power limit, say
d P = 10, one finds the value o for which J*(\) = 10,

It follows from Jensen’s inequality [20, p. 63] that and then corresponding value df()\)/\? is equal toJ;,
o () 1 (7 1 the optimal disturbance response. For the exaniple 10,
Tt < — : dw. ~ o .
e =2 ) T4 |Ga(@*) P22 /02 w these values work out to be~ 1.817 and J; ~ 3.029. W
Hence 10
o IO
2 \te= 2o (1Ad) 9 T (X)) /N2 P,
o2 ON2 - - = = P NN

n
mo o2 4y 2
U i

g 1 2 10° H (CEY0? h N 1
/ 1+ |Ga(e7%)|2\202 /02 5 d ( H|¢l| +1>

and the result follows because eaghsatisfies|¢;,| > 1. ®

10"
Proposition V.2 Assume that the channel power limit satis
fies the lower bound in Proposition 1.1 necessary for stat
lization. Assume also that the hypotheses of Propositi@n |
are satisfied. Then the variance of the plant outf®jtcan 1
be made arbitrarily close to the optimal cost

P

Ty =32 (44) )
10 ! !
where \ is chosen so thafl,(\) = P. 10 1 ) v "

. _PrOOf: For a given value of\, the problem of mini- Fig. 5. As )\ increases, the variance of the channel input increases and
mizing J(sk, A) can be solved by applying Proposition 1ll.1 that of the plant output decreases.

with o2 replaced by\?c2, and it follows from (37) that

JE(\) = <H | i |2e2Toe (ridd) ) (45) Proposition V.4 Assume that7; is minimum phase and has

relative degree equal to one. Then, in the limit)as- oo,

It is clear by inspection of (45) that*()\) is a monotonically Js(N)/\2 = 02 (CE). (46)

increasing function ofA. Furthermore, as\ — 0, JX(\)

approaches the limit (11), and as— oo, J}(\) — oco. By Proof: The Riccati equation (14) wit? replaced by

continuity, there exists a value of for which the variance A?¢3 may be rearranged into the form

of the channel input is equal t8, which is assumed to be ASCTOSAT

greater than the bound (11). The optimal controlfé(z) N AT 2 O%EET7 (47)

has the form (21), wherd, is obtained from the Riccati CXCT + o7 /N2

equation (14) withv; replaced by\*s;. B Wwhere¥ = ¥/A2. Hence, as\ — oo, the solutions

It follows immediately from Proposition V.2 and
Lemma V.1 that if? > J(1), then\ > 1 andJ; < J;(1).
We thus see that if a given channel has a power Igmater
than that required in the cask = 1, then the optimal cost
J,; is less than that foA = 1. Similarly, if the channel has
a power limitless thanthat required in the case = 1 (but
greater than the limit (10) required for stabilization)gerth
the optimal cost/; is greater than that fok = 1.

behaves like the solution to an estimation problem as the
measurement noise approaches zero. The dual version of
this problem is the state regulation problem in the case
that the control cost approaches zero; i.e., “cheap cdntrol
Asymptotic properties of a feedback system under cheap
control are described in Theorem 6.37 of [18]. SinGg
is assumed to have relative degree one and to be minimum
phase, all the closed loop eigenvalues will be placed at the
locations of these zeros, with the exception of one which
will be at the origin. It may be shown that the closed loop
Ao {1.1 1 ] Eo [ 0 } c=[1 1] transfer function froml to y satisfiesS(2)G4(z) = 2 ~CE,

0 1.2|° 1.5]° and the result follows. [ ]

Example V.3 Consider the system (1)-(2) with



VI. OPTIMALITY OF LINEAR COMMUNICATION AND and the expression for channel capacity (4) implies that
CONTROL: THE SCALAR CASE

1
I(ry; slr®~ 1) < =1 1+ P/o2). 53
In this section we assume that the plant (1)-(2) is first (ris sefr™ ") < 2 o8 ( /73) (3)

order ¢ = 1). We also suppose that the channel input antfaken together, (51)-(53) yield (50). u
control signal are the outputs of nonlinear, time-varyiagg We next apply Proposition VI.1 to derive a lower bound
dynamical systems: on the output variance in the special case that the plant is

o first order.
sk = fu(y®, s, (48)

w, = g (r). (49)  Proposition V1.2 Consider the linear systeifi)-(2), chan-
) ) . nel (3), and the general communication and control scheme
We derive a lower bound on the disturbance attenuatiofescriped by(48)-(49). Suppose further that the pla(t)-(2)

achievable with the general communication ar!d con.trqg first order and assume that the power limit satisfies
scheme (48)-(49), and show that this lower bound is obtained

using thelinear compensation scheme of Figure 1. An P> (A% —1)o2. (54)

alternate approach to this problem 1S _found in [21], Whorhen communication and control schemes exists for which
apply the results of [16] to prove a similar result for a first < 8{:&}%% V is finite and satisfies the lower bound
-1

order unstable plant. Our approach is more general in that"

the plant is allowed to be stable. . (14 P/o2)o’C?E?

Our first result is applicable to plants of arbitrary order, Sgpg{yklkfl} 2 (1— A2) + P/o2 (55)
and provides a lower bound on the reduction in the variance "
of y, due to the channel outpu;. Proof: It follows from (1)-(2) that

yr = CAx_1 + CBug_1 + CEdj_1.
Proposition VI.1 Consider the linear systeifi)-(2), chan- s is gi
nel (3), and the general communication and control scheml the sequence of channel outp is given, thenuy
described by(48)-(49). Then is determined, and it follows that

, 2 , E{G2 -1} = E{(C AT 11 + CEdy_1)”}
- S o - .
8{yk‘k} = J?L + Pg{yk:‘kfl} (50) — E{(CAi'kfl‘kfl)Q} + (CE)Qo,s
Proof: We first show that since ¥j_y,—1 andd,_; are independent. The assumption
Y of a first order plant implies that
Tlue: o lrF=1) > 11 Elip } 51 9 20072 2 2
(yrs Drpe|r™ ™) 2 5 08¢ E{T%\k} N CYY) EUipp—1} = A1 o1} + (CE)0g  (56)

o Hence, by (50), we have that

To do so, we apply an argument similar to that on [10, )
. 345]: ~ - On

P- 349] EM o} 2 AR os + (CEY o,

. —1y (@) — . _
Iy Gl 1) = Ryl =) = (il g, 7™ 7) or
®, - - - - . i %
= h(@pe—1 7 = h(yrl iy 71 Supg{yiw_ﬁ > A? Sng{ylz—l\kﬂ}p_,_ o2 +(CE)*oj
© 1 ) R B k k n
= 5 lOge 27T€8{y;3‘k_1} - h(yk“yk|k7rk 1) .

_ ol
= A? Sgpg{yimq}m +(CE)?a3,

n

—
=

1 . L
= 5 log, 2me& (G 1} = Plkinldrn, 7"

© and rearranging yields (55). |

e) 1 B B

> - log, 27T€5{?J;3\k_1} — h(Gkr) C_)u_r next_ re_sult s_,howsf tha_t the lower bound (50) may be
2 satisfied with identity using linear control.

1 1
> —log, 2meE{y? — ~log, 2meE{y; . : :
= 9 08esTe (i1} g “0Be STC (B Proposition VI.3 Consider the linear systeif1)-(2), chan-

nel (3), and the linear communication and control scheme
depicted in Figure 1. Assume that the hypotheses of Propo-
sition 1.2 and the bound54) are satisfied, and thak and
K(z) are chosen as in Proposition V.2. Then

where (a) follows by definition, (b) follows sincegy, . is

determined fromr*~1, (¢) follows sincegyp—1 is Gaussian
when conditioned on*~!, (d) follows sincegy;, is given,
(e) follows since conditioning reduces entropy, aqf))

follows since the normal distribution maximizes the engyrop Y o2 ~2

for a given second moment. E{Gkpit = mg{yk\k—l}' (57)

The data processing inequality [10] implies that i . )
Proof: For a fixed value of\, the optimal controller is

I(yws Gael ™) < I(rps si|r®=1), (52) found by minimizing&{5}, ,}, and\ is chosen so that



E*{3x_1} = P. Such a value ofx exists because the [s]
stablhzatlon bound (54) is assumed to be satisfied, and may
be found by replacing2 with \%c3 in the scalar version of [6]
the Riccati equation (14), and multiplying iy to obtain

C%% = A?0% — C*2?/(C?S + 02) + \202C?E%. (B8)  [7]
Solving (58) forA? yields "
P(P + 02(1 — A?))
A= 202 : (59)
[9]

which by the assumption (54) is guaranteed to be positive:
It follows from (17) that€*{s},} = o P/(o, + P). The
result (57) follows by noting that estimates fgf may be
obtained from those fosg; by dividing by \. LIRS

Our final result shows that, for a scalar plant, the bound
from Proposition VI.2 may be satisfied with equality using12]
linear control.

[10]

[13]
Proposition VI.4 In addition to the hypotheses of Proposi-
tion V1.3, assume that the plant is first order, and that the, 4
power limit satisfieg54). Then choosing\ and K(z) as in

Proposition V.2 yields (1]

L, _ (1+P/02)o3C?E?
g{yk|k—l} - (1 _ AQ) —l—P/o‘%
Proof: The assumption of stationarity, together with (56},
and (57), imply that

(60) [16]

(18]
5{@%“@—1} = Azg{?ji\k} +(CE)*a]
o2 [19]
= A? S{Qk\k Vs o2 —|—P + (CE)?a3, [20]
and the result follows by rearranging. m [21]

VIlI. CONCLUSIONS ANDDIRECTIONS FORFURTHER

RESEARCH

In this paper we have assumed a specific and simple
communication and control scheme and shown how to use
this scheme to stabilize the plant and minimize the variance
of the plant output in the case that the plant is minimum
phase, relative degree one, and a filtering estimator is. used
Extensions to cases where these assumptions fail to hold
remain to be worked out. We also showed that no more
general control scheme can achieve a lower variance than our
linear scheme for a first order plant. Optimality properties
of our linear scheme for higher order plants remain to be
explored.
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