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Abstract— We propose a linear control and communication
scheme for the purposes of stabilization and disturbance at-
tenuation when a discrete Gaussian channel is present in the
feedback loop. Specifically, the channel input is amplified by
a constant gain before transmission and the channel output is
processed through a linear time invariant filter to produce the
control signal. We show how the gain and filter may be chosen
to minimize the variance of the plant output. For an order one
plant, our scheme achieves the theoretical minimum taken over
a much broader class of compensators.

I. I NTRODUCTION

Many authors have studied the problem of controlling a
linear system with a communication channel in the feedback
loop (e.g., [1]–[9]). The most general framework for doing
so allows compensation at the channel input and output
that may be nonlinear, time-varying, and dynamical. In the
present paper we shall consider the simpler communication
and control scheme shown in Figure 1 wherein the channel
precompensator (the “encoder”) is assumed to be a constant
gain,λ, and the postcompensator (the “decoder”) is assumed
to be a causal linear time-invariant filter. The plant is discrete,
linear, and time-invariant, and the channel is Gaussian with
input power limitP and noise varianceσ2

n. The purpose of
control is to stabilize the plant, if necessary, and to minimize
the variance of the plant output in response to a disturbance.
It is the simple nature of the communication and control
scheme in Figure 1 that motivates us to study its properties.
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Fig. 1. Feedback control over a Gaussian communication channel with
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If the scalar amplifier at the channel input were a unity
gain, and if the power constraint were not present, then
the problem of minimizing the variance of the plant output
would be a standard linear quadratic Gaussian (LQG) control
problem, whose solution is state feedback applied to a state
estimate obtained from a Kalman filter. With the pre-channel
amplification and the power limit present, the problem no
longer fits into the standard LQG framework. However, we
shall show that the LQG results may be modified to yield
the desired solution.

The remainder of this paper is outlined as follows. In
Section II we provide a precise problem statement, review
the results on stabilization over a Gaussian channel from
[6], and develop necessary background on the discrete-time
LQG problem. The latter results are applied in Section III
for the caseλ = 1. We show that, under appropriate
hypotheses, the minimal output variance is equal to that of
the minimal estimation error for thepredicting version of
the optimal estimator. This observation allows us to apply
results from estimation theory to derive properties of the
feedback system under optimal control. In Section IV we
use the concept of entropy rate to develop a formula for the
optimal estimation error and the minimal channel capacity.In
Section V this formula is modified to include nonunity values
of λ, and we show that the variance of the plant output is
minimized by choosingλ so that the channel input satisfies
the power limit arbitrarily closely. An example is also given
in Section V. In Section VI, we show that, for a first order
plant, our linear communication and control scheme achieves
a theoretical lower bound on disturbance response that holds
for general nonlinear, time-varying, and dynamical control
and communication schemes. An alternate approach to this
result is obtained in [21], based on an inequality applicable to
open loop unstable systems derived in [16]. Conclusions and
directions for further research are presented in Section VII.

II. PRELIMINARIES

Denote a random sequence byx = {xk}, and define the
subsequencexk , {xℓ; ℓ ≤ k}. Unless stated otherwise, all
signals are assumed to have stationary distributions. Hence
if x is a scalar valued sequence, the variance ofx is given by
σ2

x = E{x2
k}, and may be computed from its power spectral

densitySx(ω) by σ2
x = (1/2π)

∫ π

−π
Sx(ω)dω, if the spectral

density is well-defined. The open and closed unit disks are
denoted byD and D̄. A rational transfer functionG(z) is
minimum phase if all its zeros lie in̄D, and is nonminimum
phase (NMP) otherwise. We say thatG(z) ∈ H2 if G(z) is
strictly proper and all its poles lie inD. The H2 norm of
G(z) ∈ H2 is given by‖G‖2

H2
= (1/2π)

∫ π

−π
|G(ejω)|2dω.



A. Problem Statement

Throughout the paper we consider the feedback system of
Figure 1, which we now describe in detail. The plant to be
controlled has state equations

xk+1 = Axk + Buk + Edk, xk ∈ R
n, uk, dk ∈ R, (1)

yk = Cxk, yk ∈ R, (2)

where(A,B) and (A,E) are assumed controllable,(A,C)
is assumed observable, andd is a zero mean Gaussian white
noise sequence of varianceσ2

d. The transfer functions from
control and disturbance inputs to the plant output are denoted
by Gu = CΦB andGd = CΦE, respectively, whereΦ(z) ,

(zI−A)−1. The output of the plant is multiplied by a scalar
gainλ and transmitted over a communication channel whose
input s and outputr are related by

rk = sk + nk, (3)

wheren is a zero mean Gaussian white noise sequence of
varianceσ2

n. The channel inputs is required to satisfy the
power limitE{s2

k} < P , and thus the capacity of the channel
is determined by the signal to noise ratio (SNR)P/σ2

n [10]:

C =
1

2
loge(1 + P/σ2

n) nats/transmission. (4)

The channel output is scaled by1/λ and used as the input
to a linear time invariant filter with transfer functionK(z),
whose output is the control signal.

The goal of feedback control is to stabilize the plant, if
necessary, and to attenuate the response of the plant outputy
to the disturbance inputd. Specifically, we seekλ andK(z)
to minimize a cost function equal to the variance of the plant
output

Jy , E{y2
k} (5)

under the assumptions that the feedback system is internally
stable and the channel power limitP is satisfied. In addition,
the controller must be causal, so that each value of the
control signalu is allowed to depend only on the current
and previous values of the channel outputr.

Denote the optimal value of the cost function (5) by

J∗
y , min

K,λ
E{y2

k}. (6)

We shall also consider the problem of minimizingE{y2
k} for

a fixed value ofλ, and denote the optimal cost by

J∗
y (λ) , min

K
E{y2

k}
∣

∣

∣

λ

. (7)

For a fixed value ofλ, the problem of choosing a causal
controller to minimize (7) is a cheap control LQG optimiza-
tion problem. We now provide a frequency domain version
of the cost function. Under the assumption that all signal
distributions are stationary, the variance of the system output
y may be computed from its power spectral densitySy(ω),
given bySy(ω) = |S(ejω)|2|Gd(e

jω)|2σ2
d+|T (ejω)|2σ2

n/λ2,
where S and T are the sensitivity and complementary
sensitivity functions

S , 1/(1 + λGuK), T , 1 − S. (8)

It follows that Jy = ‖SGd‖
2
H2

σ2
d + ‖T‖2

H2
σ2

n/λ2.

B. SNR Limited Stabilization

The authors of [6] consider the feedback system in Fig-
ure 1 with an unstable plant butwithout a plant disturbance,
and determine the minimum value ofP required to stabilize
the plant. With no disturbance present, there is no loss
of generality in assumingλ = 1, and the problem of
minimizing (5) for a fixed noise variance is equivalent to
that of minimizing theH2 norm of T :

E{s2
k} = ‖T‖2

H2
σ2

n. (9)

The following result is obtained in [6].

Proposition II.1 Consider the feedback system in Figure 1
with no disturbanceand λ = 1. Assume thatGu has no
nonminimum phase zeros and has relative degree equal to
one. Suppose further thatGu has polesφi, i = 1, . . . ,m,
with |φi| > 1. Then there exists a controllerK(z) that
stabilizes the feedback system if and only if the channel
power constraintP satisfies the lower bound

P > J∗
y (1), (10)

where

J∗
y (1) =

(

m
∏

i=1

|φi|
2 − 1

)

σ2
n. (11)

�

It follows from Proposition II.1 and (4) that the minimal
channel capacity required for stabilization with a linear time
invariant controller is given by

C >
m
∑

i=1

loge |φi| nats/transmission. (12)

The authors of [16] show that nonlinear, time-varying control
cannot achieve a channel capacity lower that that obtained
with linear time-invariant control for a minimum phase,
relative degree one plant. If the plantGu has nonminimum
phase zeros and/or relative degree greater than one, then
it is shown in [6] that the channel capacity required for
stabilization with a linear time invariant controller is strictly
greater than the bound given in (12).

The proof technique used to obtain Proposition II.1 in [6]
involved a Youla parametrization of all stabilizing controllers
together with an application of residue theory to determine
the optimal value of‖T‖H2

. An alternate approach, which
we pursue in the present paper, is to directly apply LQG
theory.

C. The Discrete Time LQG Control Problem

Consider the feedback system of Figure 1, and assume
that λ = 1, so that the plant is described by (1)-(2), and (3)
becomesrk = yk +nk. Under the assumption that all signals
are stationary, the “cheap control” LQG cost function is given
by JLQG = E{y2

k}. It is well known [11] that the problem of
finding a control law to stabilize the system and to minimize
JLQG has a solution given by state feedback applied to a state
estimate obtained from an optimal estimator that driven by



the channel output. There are two possibilities for such an
estimator, depending on whether or not the state estimate is
allowed to depend on the current value of the channel output.
We now review both versions of the estimator, as each plays
a role in subsequent developments.

Consider first the state estimate of apredictingestimator,
denotedx̂k|k−1, which depends only on previous values of
the channel output. This estimate satisfies the state equations

x̂k+1|k = Ax̂k|k−1 + Buk + Lp(rk − Cx̂k|k−1) (13)

whereLp = ALf , Lf = ΣCT (CΣCT + σ2
n)−1, and Σ is

the stabilizing solution to the Riccati equation

Σ = AΣAT − AΣCT (CΣCT + σ2
n)−1CΣAT + σ2

dEET .
(14)

Define theoutput estimateandestimation errorby ŷk|k−1 =
Cx̂k|k−1 and ỹk|k−1 = yk − ŷk|k−1, respectively. Then the
variance of the optimal predicting estimation error is given
by

E∗{ỹ2
k|k−1} = CΣCT . (15)

The state estimate of thefiltering version of the optimal
estimator, denoted̂xk|k, does depend on the current value of
the channel output, and satisfies

x̂k|k = x̂k|k−1 + Lf (rk − Cx̂k|k−1), (16)

where x̂k|k−1 is given by (13). The output estimate and
estimation error are given bŷyk|k = Cx̂k|k and ỹk|k =
yk −Cx̂k|k. The variance of the optimal filtering estimation
error is equal to

E∗{ỹ2
k|k} =

σ2
nCΣCT

σ2
n + CΣCT

. (17)

If the filtering estimator is used to minimizeJLQG, then
the control law has the form

uk = −Kcx̂k|k, (18)

where x̂k|k is given by (16) andKc is found by solving
a Riccati equation. The transfer function of the resulting
compensator is given by

K(z) = zKc (zI − (I − LfC)(A − BKc))
−1

Lp (19)

A block diagram of the resulting feedback system is shown
in Figure 2.
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Fig. 2. Feedback system with state feedback based on a filtering estimator.
The predicting estimator is in the dashed box.

Under appropriate hypotheses1, the solution to the cheap
control problem has appealing special properties.

Proposition II.2 Consider the cheap control LQG problem.
Assume thatGu has no nonminimum phase zeros and relative
degree equal to one, and that the control signal is allowed to
depend on both current and previous values of the channel
output. Then the optimal controller, given by(18)-(19), has
the properties that

Kc = (CB)−1CA, (20)

and
K(z) = G−1

u (z)CΦ(z)Lp. (21)

Furthermore, the sensitivity and complementary sensitivity
functions(8) satisfyS = Sest and T = Test, where

Sest = (1 + CΦLp)
−1

, Test = 1 − Sest. (22)

Proof: The special structure of the state feedback gain
(20) and the compensator (21) follows from equations (16)
and (22) of [13], and the form of the sensitivity and com-
plementary sensitivity functions follows by substituting(21)
into (8) with λ = 1.
It is easy to verify thatSest and Test are the sensitivity
and complementary sensitivity functions of the feedback loop
in a predicting estimator, and thus that the sensitivity and
complementary sensitivity functions in Figure 2 are identical
to those of a predicting estimator. The ability to make the
sensitivity and complementary functions associated with an
output feedback system match those of a predicting estimator
feedback loop (or its dual, a state feedback loop) is termed
“loop transfer recovery”, and has received much discussion
in the literature (e.g., [12]–[14]).

III. STRUCTURE OF THEOPTIMAL FEEDBACK SYSTEM

In this section, we use Proposition II.2 to derive interesting
properties of the feedback system in Figure 2 andK(z)
designed to minimize (5). Recall the output estimation error
ỹk|k−1 for the predicting estimator, define the associated
innovations sequenceby

ek , rk − ŷk|k−1 = ỹk|k−1 + nk, (23)

and denote thez-transforms ofỹk|k−1 andek by Ỹp(z) and
E(z). Then

Ỹp(z) = Sest(z)Gd(z)D(z) − Test(z)N(z), (24)

E(z) = Sest(z)Gd(z)D(z) + Sest(z)N(z). (25)

Our next result shows that with optimal feedback control,
the channel input and output in Figure 2 are identical to the
estimation error and innovations sequence for a predicting
estimator, and thus inherit special properties derived from
those of the optimal predicting estimator.

1Expressions for the optimal state feedback gain, compensator, and
sensitivity function that hold when the hypotheses of Proposition II.2 are
violated may be found in [12].



Proposition III.1 Consider the problem of minimizing(7)
in the special caseλ = 1. Assume that the hypotheses of
Proposition II.2 are satisfied. Then the optimal control is
state feedback(18) with Kc given by(20) and x̂k|k given
by (16). Denote the optimal values of the channel input and
output bys∗k and r∗k, respectively. Then

S∗(z) = Sest(z)Gd(z)D(z) − Test(z)N(z), (26)

R∗(z) = Sest(z)Gd(z)D(z) + Sest(z)N(z), (27)

where Sest and Test are given by(22). Furthermore, the
channel power constraint must satisfyP > J∗

y (1), where
the optimal cost is equal to the variance of the optimal
(predicting) estimation error

J∗
y (1) = E∗{ỹ2

k|k−1}, (28)

the optimal channel outputr∗k is a white noise sequence,
and the optimal channel input is orthogonal to the channel
output.

Proof: Since λ = 1, it follows that Y (z) =
S(z)Gd(z)D(z) − T (z)N(z), and thus (26) follows from
the properties ofS and T noted in Proposition II.2. The
identity rk = yk + nk together with (26) implies that (27)
holds. The fact that the channel output must be white follows
since the innovations sequence for the optimal estimator is
white [15]. Orthogonality of the input and output sequences
follows from the orthogonality between an optimal estimate
and the measurements upon which it is based [15].

We also see that, with optimal control, the feedback system
with filtering estimator depicted in Figure 2 isequivalentto
the system in Figure 3 in the following sense. The responses
of the channel input and output to the disturbance and noise
in Figure 3 are identical to the responses of the estimation
error and innovations sequence to the disturbance and noise
in Figure 2. The feedback system with optimal control is
thus equivalent to a communication channel with feedback
to the channel input.
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Fig. 3. Under optimal control, the feedback system in Figure 2is
input/output equivalent to a communication channel with feedback.

We have seen that the problem of power limited stabiliza-
tion with a disturbance over a memoryless Gaussian channel
has a solution with the following structure. First, an optimal
estimator is applied to obtain the best estimate of the next
value of the channel input (which is equal to the plant output)
given the previous channel outputs. Second, a control signal
is computed that inverts the plant and subtracts this estimate
from the plant output. Because the estimate minimizes the

mean square estimation error, it follows that the resulting
control signal minimizes the variance of the system output,
and thus also the power required at the channel input.

IV. ENTROPY RATE AND THE OPTIMAL ESTIMATION

ERROR

We now derive an expression for the optimal prediction
estimation error and provide an interpretation in terms of
mutual information. The results below are an extension
of those in [16], wherein the disturbance free stabilization
problem was considered.

Given two random variablesa and b, we denote the
mutual information[10] by I(a; b), and note thatI(a; b) =
h(a)−h(a|b), whereh(a) andh(a|b) denote the (differential)
entropy of a and the conditional entropy ofa given b,
respectively. The (differential)entropy rateof a stationary,
continuous-valued, discrete-time scalar random processa is
given by [10] h∞(a) = limk→∞ h(ak|a

k−1). The entropy
rate of a stationary Gaussian random processa may be
computed from its power spectral densitySa(ω) [10] by the
formula

h∞(a) =
1

2
loge 2πe +

1

4π

∫ π

−π

loge Sa(ω)dω.

There is a connection between the entropy rate of a random
sequence and the problem of estimating the next value of the
sequence given all previous values. Denote such an estimate
by âk|k−1, and the resulting estimation error bỹak|k−1 ,

ak − âk|k−1. Then the variance of the minimal mean square
estimation error satisfies [10]

E∗{ã2
k|k−1} =

1

2πe
e2h∞{a}, (29)

and is thus completely determined by the entropy rate ofa.
We now apply the connection between entropy rate and

estimation error to the feedback system of Figure 1 with
λ = 1. The power spectrum of the channel output may be
written as

Sr(ω) = |S(ejω)|2σ2
n

(

1 + |Gd(e
jω)|2

σ2
d

σ2
n

)

. (30)

Since the exogenous inputsd andn are assumed Gaussian,
the channel output is also Gaussian, with entropy rate given
by

h∞(r) =
1

2
loge 2πeσ2

n +
1

2π

∫ π

−π

loge |S(ejω)|dω

+
1

4π

∫ π

−π

loge

(

1 + |Gd(e
jω)|2

σ2
d

σ2
n

)

dω. (31)

Suppose that the plantGu is strictly proper, hasm anti-stable
poles|φi| > 1, and no nonminimum phase zeros. Then it is
possible to stabilize the system using a controller with no
anti-stable poles. With such a controller,S must satisfy the
discrete Bode sensitivity integral [17]

1

2π

∫ π

−π

loge |S(ejω)|dω =

m
∑

i=1

loge |φi|. (32)



We now provide an interpretation of the third term on the
right hand side of (31). Suppose, as shown in Figure 4,
that state feedbackuk = −Kmexk is used to stabilize the
plant and minimize the energy in the control signal, given by
∑∞

k=0 u2
k. The closed loop transfer function fromdk to rk

is given byCΦE (1 + KmeΦE)
−1. It may be shown from

[18, Theorem 6.35 (d)] that(1 + KmeΦE)
−1 is allpass, and

thus that the magnitude of the transfer function fromrk to
dk is identical to that ofGd. The mutual information rate

CΣ

nk

rk

E
dk

sk=yk

Φ(z)

Kme

-

Σ

Fig. 4. System stabilized with minimal energy control has the same Bode
gain plot asGd.

[19] between the signalsr andd in Figure 4 is given by

I∞(r; d) , lim sup
k→∞

I(rk−1; dk−1)

k
, (33)

and is equal to [19]

I∞(r; d) =
1

4π

∫ π

−π

log

(

1 + |Gd(e
jω)|2

σ2
d

σ2
n

)

dω. (34)

Substituting (32) and (34) into (31) and applying the
formula (29) shows that the minimum mean square error
in estimatingrk given rk−1 is given by

E∗{r̃2
k|k−1} = σ2

n

m
∏

i=1

|φi|
2e2I∞(r;d). (35)

Let us now relate the problem of estimating the current
channel outputrk given previous outputsrk−1 to that of
estimating the current channel inputsk = yk given rk−1.
Denote the estimation errors forrk and yk by r̃k|k−1 and
ỹk|k−1. Then, sincen is zero mean and white, it follows
that

E{r̃2
k|k−1} = E{ỹ2

k|k−1} + σ2
n. (36)

Combining (36) with (35) yields an expression for the min-
imal error in estimating the channel inputyk given previous
values of the channel outputrk−1 that provides an alternative
expression for the minimal power required for stabilization.

Proposition IV.1 Assume that the hypotheses of Proposi-
tion II.2 are satisfied and thatλ = 1. Then the channel
power limit must satisfy the lower boundP > J∗

y (1), where

J∗
y (1) =

(

m
∏

i=1

|φi|
2e2I∞(r;d) − 1

)

σ2
n. (37)

�

As noted in Section III, under the hypotheses of Propo-
sition II.2, the variance of the channel input will be equal

to that of the optimal estimation error. The minimal channel
capacity required for stabilization is thus obtained from (4),
yielding

C >

m
∑

i=1

loge |φi| + I∞(r; d) nats/transmission. (38)

We now provide an interpretation of the two terms that
contribute to channel capacity in (38). First, it follows from
[6] that the channel capacity required for stabilization alone
is given by

∑m

i=1 log |φi|. Hence we see that the additional
capacity required to stabilize in the presence of a disturbance
depends on the mutual information between the disturbance
and the channel output, once the plant has been stabilized.
A similar discussion appears in [7].

V. USE OFCHANNEL PRECOMPENSATION, λ 6= 1.

With λ = 1 the problem of minimizing the power required
for stabilization is equivalent to that of minimizing the
response of the plant output to the disturbance and channel
noise. If other values ofλ are allowed, then more flexibility is
available with which to either achieve smaller variance in the
plant output or satisfy a lower channel power requirement.
The former scenario arises when a channel is given that has a
greater power limit than the minimum calculated forλ = 1,
and the latter scenario when the given channel has a lower
power limit that satisfies the lower bound (10) required for
stabilization.

To proceed, note that the feedback system of Figure 1 may
be rearranged so that the plant has state equations

x̄k+1 = Ax̄k + Buk + Eλdk, (39)

sk = Cx̄k. (40)

It follows that changing the parameterλ is equivalent
to changing the variance of the disturbance input. As a
consequence, we may apply the results of Sections III and
IV to minimize the power in the channel input simply
by replacing the disturbance variance byλ2σ2

d in all the
respective formulas.

Consider the problem of minimizing the variance ofsk in
Figure 1 for a fixed value ofλ, and denote the optimal cost
by

J∗
s (λ) , min

K
E{s2

k}
∣

∣

∣

λ

. (41)

The value of the cost (7) for the plant output for the controller
that achieves the minimum in (41) is equal to

Jy(λ) =
J∗

s (λ)

λ2
. (42)

Lemma V.1 The variance of the plant output, given by the
ratio (42), is a monotonically decreasing function ofλ2.

Proof: It follows by substitutingλ2σ2
d for the distur-

bance variance in (37) that

J∗
s (λ)

λ2
=

σ2
n

λ2

(

m
∏

i=1

|φi|
2e2I∞(r;λd) − 1

)

. (43)



Taking the derivative with respect toλ2 in (43) and simpli-
fying yields

λ4e−2I∞(r;λd)

σ2
n

∂J∗
s (λ)/λ2

∂λ2
=

(

m
∏

i=1

|φi|
2

∫ π

−π

−1/2π

1 + |Gd(ejω)|2λ2σ2
d/σ2

n

dω + e−2I∞(r;λd)

)

It follows from Jensen’s inequality [20, p. 63] that

e−2I∞(r;λd) ≤
1

2π

∫ π

−π

1

1 + |Gd(ejω)|2λ2σ2
d/σ2

n

dω.

Hence

2πλ4e−2I∞(r;λd)

σ2
n

∂Js(λ)/λ2

∂λ2
≤

∫ π

−π

1

1 + |Gd(ejω)|2λ2σ2
d/σ2

n

dω

(

−

m
∏

i=1

|φi|
2 + 1

)

,

and the result follows because eachφi satisfies|φi| > 1.

Proposition V.2 Assume that the channel power limit satis-
fies the lower bound in Proposition II.1 necessary for stabi-
lization. Assume also that the hypotheses of Proposition II.2
are satisfied. Then the variance of the plant output(5) can
be made arbitrarily close to the optimal cost

J∗
y =

P

λ2
, (44)

whereλ is chosen so thatJs(λ) = P .

Proof: For a given value ofλ, the problem of mini-
mizing J(sk, λ) can be solved by applying Proposition III.1
with σ2

d replaced byλ2σ2
d, and it follows from (37) that

J∗
s (λ) = σ2

n

(

m
∏

i=1

|φi|
2e2I∞(r;λd) − 1

)

. (45)

It is clear by inspection of (45) thatJ∗
s (λ) is a monotonically

increasing function ofλ. Furthermore, asλ → 0, J∗
s (λ)

approaches the limit (11), and asλ → ∞, J∗
s (λ) → ∞. By

continuity, there exists a value ofλ for which the variance
of the channel input is equal toP , which is assumed to be
greater than the bound (11). The optimal controllerK(z)
has the form (21), whereLp is obtained from the Riccati
equation (14) withσ2

d replaced byλ2σ2
d.

It follows immediately from Proposition V.2 and
Lemma V.1 that ifP > J∗

y (1), thenλ > 1 andJ∗
y < J∗

y (1).
We thus see that if a given channel has a power limitgreater
than that required in the caseλ = 1, then the optimal cost
J∗

y is less than that forλ = 1. Similarly, if the channel has
a power limit less thanthat required in the caseλ = 1 (but
greater than the limit (10) required for stabilization), then
the optimal costJ∗

y is greater than that forλ = 1.

Example V.3 Consider the system (1)-(2) with

A =

[

1.1 1
0 1.2

]

, E =

[

0
1.5

]

, C =
[

1 1
]

,

and transfer functionGd(z) = 1.5(z − 0.1)/(z2 − 2.3z +
1.32). Assume the disturbance and noise have variances
σ2

d = 1 and σ2
n = 0.1, respectively. Plots ofJ∗

s (λ) and
J∗

s (λ)/λ2 are depicted in Figure 5. Note that the former is
monotonically increasing withλ and the latter, as proven in
Lemma V.1, is monotonically decreasing; of course these
plots intersect forλ = 1. For a given power limit, say
P = 10, one finds the value ofλ for which J∗

s (λ) = 10,
and then corresponding value ofJ∗

s (λ)/λ2 is equal toJ∗
y ,

the optimal disturbance response. For the exampleP = 10,
these values work out to beλ ≈ 1.817 andJ∗

y ≈ 3.029. �

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

λ

 

 
J*(y

k
,1)

J*(s
k
,λ)

J*(s
k
,λ)/λ2

(Π
i=1
m |φ

i
|2−1)σ

n
2

(CE)2σ
d
2

Fig. 5. As λ increases, the variance of the channel input increases and
that of the plant output decreases.

Proposition V.4 Assume thatGd is minimum phase and has
relative degree equal to one. Then, in the limit asλ → ∞,

Js(λ)/λ2 → σ2
d(CE)2. (46)

Proof: The Riccati equation (14) withσ2
d replaced by

λ2σ2
d may be rearranged into the form

Σ̃ = AΣ̃AT −
AΣ̃CT CΣ̃AT

CΣ̃CT + σ2
n/λ2

+ σ2
dEET , (47)

where Σ̃ = Σ/λ2. Hence, asλ → ∞, the solution Σ̃
behaves like the solution to an estimation problem as the
measurement noise approaches zero. The dual version of
this problem is the state regulation problem in the case
that the control cost approaches zero; i.e., “cheap control”.
Asymptotic properties of a feedback system under cheap
control are described in Theorem 6.37 of [18]. SinceGd

is assumed to have relative degree one and to be minimum
phase, all the closed loop eigenvalues will be placed at the
locations of these zeros, with the exception of one which
will be at the origin. It may be shown that the closed loop
transfer function fromd to y satisfiesS(z)Gd(z) = z−1CE,
and the result follows.



VI. OPTIMALITY OF L INEAR COMMUNICATION AND

CONTROL: THE SCALAR CASE

In this section we assume that the plant (1)-(2) is first
order (n = 1). We also suppose that the channel input and
control signal are the outputs of nonlinear, time-varying,and
dynamical systems:

sk = fk(yk, sk−1), (48)

uk = gk(rk). (49)

We derive a lower bound on the disturbance attenuation
achievable with the general communication and control
scheme (48)-(49), and show that this lower bound is obtained
using the linear compensation scheme of Figure 1. An
alternate approach to this problem is found in [21], who
apply the results of [16] to prove a similar result for a first
order unstable plant. Our approach is more general in that
the plant is allowed to be stable.

Our first result is applicable to plants of arbitrary order,
and provides a lower bound on the reduction in the variance
of yk due to the channel outputrk.

Proposition VI.1 Consider the linear system(1)-(2), chan-
nel (3), and the general communication and control scheme
described by(48)-(49). Then

E{ỹ2
k|k} ≥

σ2
n

σ2
n + P

E{ỹ2
k|k−1}. (50)

Proof: We first show that

I(yk; ŷk|k|r
k−1) ≥

1

2
loge

(

E{ỹ2
k|k−1}

E{ỹ2
k|k}

)

. (51)

To do so, we apply an argument similar to that on [10,
p. 345]:

I(yk; ŷk|k|r
k−1)

(a)
= h(yk|r

k−1) − h(yk|ŷk|k, rk−1)

(b)
= h(ỹk|k−1|r

k−1) − h(yk|ŷk|k, rk−1)

(c)
=

1

2
loge 2πeE{ỹ2

k|k−1} − h(yk|ŷk|k, rk−1)

(d)
=

1

2
loge 2πeE{ỹ2

k|k−1} − h(ỹk|k|ŷk|k, rk−1)

(e)

≥
1

2
loge 2πeE{ỹ2

k|k−1} − h(ỹk|k)

(f)

≥
1

2
loge 2πeE{ỹ2

k|k−1} −
1

2
loge 2πeE{ỹ2

k|k},

where(a) follows by definition,(b) follows sinceŷk|k−1 is
determined fromrk−1, (c) follows sinceỹk|k−1 is Gaussian
when conditioned onrk−1, (d) follows sinceŷk|k is given,
(e) follows since conditioning reduces entropy, and(f)
follows since the normal distribution maximizes the entropy
for a given second moment.

The data processing inequality [10] implies that

I(yk; ŷk|k|r
k−1) ≤ I(rk; sk|r

k−1), (52)

and the expression for channel capacity (4) implies that

I(rk; sk|r
k−1) ≤

1

2
loge

(

1 + P/σ2
n

)

. (53)

Taken together, (51)-(53) yield (50).
We next apply Proposition VI.1 to derive a lower bound

on the output variance in the special case that the plant is
first order.

Proposition VI.2 Consider the linear system(1)-(2), chan-
nel (3), and the general communication and control scheme
described by(48)-(49). Suppose further that the plant(1)-(2)
is first order, and assume that the power limit satisfies

P > (A2 − 1)σ2
n. (54)

Then communication and control schemes exists for which
maxk E{ỹ

2
k|k−1} is finite and satisfies the lower bound

sup
k

E{ỹ2
k|k−1} ≥

(1 + P/σ2
n)σ2

dC2E2

(1 − A2) + P/σ2
n

(55)

Proof: It follows from (1)-(2) that

yk = CAxk−1 + CBuk−1 + CEdk−1.

If the sequence of channel outputsrk−1 is given, thenuk−1

is determined, and it follows that

E{ỹ2
k|k−1} = E{

(

CAx̃k−1|k−1 + CEdk−1

)2
}

= E{
(

CAx̃k−1|k−1

)2
} + (CE)2σ2

d

since x̃k−1|k−1 and dk−1 are independent. The assumption
of a first order plant implies that

E{ỹ2
k|k−1} = A2E{ỹ2

k−1|k−1} + (CE)2σ2
d (56)

Hence, by (50), we have that

E{ỹ2
k|k−1} ≥ A2E{ỹ2

k−1|k−2}
σ2

n

P + σ2
n

+ (CE)2σ2
d,

or

sup
k

E{ỹ2
k|k−1} ≥ A2 sup

k

E{ỹ2
k−1|k−2}

σ2
n

P + σ2
n

+ (CE)2σ2
d

= A2 sup
k

E{ỹ2
k|k−1}

σ2
n

P + σ2
n

+ (CE)2σ2
d,

and rearranging yields (55).
Our next result shows that the lower bound (50) may be

satisfied with identity using linear control.

Proposition VI.3 Consider the linear system(1)-(2), chan-
nel (3), and the linear communication and control scheme
depicted in Figure 1. Assume that the hypotheses of Propo-
sition II.2 and the bound(54) are satisfied, and thatλ and
K(z) are chosen as in Proposition V.2. Then

E{ỹ2
k|k} =

σ2
n

P + σ2
n

E{ỹ2
k|k−1}. (57)

Proof: For a fixed value ofλ, the optimal controller is
found by minimizingE{s̃2

k|k−1}, and λ is chosen so that



E∗{s̃2
k|k−1} = P . Such a value ofλ exists because the

stabilization bound (54) is assumed to be satisfied, and may
be found by replacingσ2

d with λ2σ2
d in the scalar version of

the Riccati equation (14), and multiplying byC2 to obtain

C2Σ = A2CΣ − C4Σ2/(C2Σ + σ2
n) + λ2σ2

dC2E2. (58)

Solving (58) forλ2 yields

λ2 =
P (P + σ2

n(1 − A2))

σ2
dC2E2

, (59)

which by the assumption (54) is guaranteed to be positive.
It follows from (17) thatE∗{s̃2

k|k} = σ2
nP/(σ2

n + P ). The
result (57) follows by noting that estimates foryk may be
obtained from those forsk by dividing by λ.

Our final result shows that, for a scalar plant, the bound
from Proposition VI.2 may be satisfied with equality using
linear control.

Proposition VI.4 In addition to the hypotheses of Proposi-
tion VI.3, assume that the plant is first order, and that the
power limit satisfies(54). Then choosingλ and K(z) as in
Proposition V.2 yields

E{ỹ2
k|k−1} =

(1 + P/σ2
n)σ2

dC2E2

(1 − A2) + P/σ2
n

(60)

Proof: The assumption of stationarity, together with (56)
and (57), imply that

E{ỹ2
k|k−1} = A2E{ỹ2

k|k} + (CE)2σ2
d

= A2E{ỹ2
k|k−1}

σ2
n

σ2
n + P

+ (CE)2σ2
d,

and the result follows by rearranging.

VII. C ONCLUSIONS ANDDIRECTIONS FORFURTHER

RESEARCH

In this paper we have assumed a specific and simple
communication and control scheme and shown how to use
this scheme to stabilize the plant and minimize the variance
of the plant output in the case that the plant is minimum
phase, relative degree one, and a filtering estimator is used.
Extensions to cases where these assumptions fail to hold
remain to be worked out. We also showed that no more
general control scheme can achieve a lower variance than our
linear scheme for a first order plant. Optimality properties
of our linear scheme for higher order plants remain to be
explored.
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