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Abstract— In this paper we consider a problem termed
“path tracking”. This differs from the common problem
of reference tracking, in that here we can adjust the
speed at which we traverse the reference trajectory. We
are interested in ascertaining the degree to which we
can track a given trajectory, and in characterizing the
class of paths for which we can generate an appropriate
temporal specification so that the path can be tracked
arbitrarily well in an L2 sense.
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I. INTRODUCTION

The problem of tracking - causing the output y(t) of
a dynamic system to follow a commanded trajectory
r(t) - is a classical problem in systems control. It
was realized some time ago (see, for example, [13]
for the linear case, or [15] for a nonlinear version of
these results) that the lack of a stable inverse (or the
existence of unstable zero dynamics) limits the achiev-
able tracking performance. It is therefore of interest
to investigate circumstances under which additional
information or an alternate problem formulation can
be used to enhance the tracking performance.

One means by which tracking performance restric-
tions might be relaxed is the use of “preview” control,
wherein advance knowledge of the trajectory to be
tracked permits improved performance, e.g. see [5]
and [6]. Another means to enhance performance is
to consider an alternate problem formulation: in some
situations, as in the problem of steering an object (such
as a ship, a robot, or a cutting tool), the primary
objective is to follow a certain path, with the speed
at which the path is traversed being of secondary
importance. In this context one introduces a “path
variable” (or “timing signal”) θ(t), which creates an
extra degree of freedom, so that the goal is to make
y(t)−r(θ(t)) small rather than y(t)−r(t) small. Prob-
lems of this form have been considered for some time,
with recent work including [16], [1], [8], [2], [3], and

[7], wherein it is is shown that such path tracking prob-
lems permit significant improvement in the achievable
performance. One fundamental objective is to ascertain
sufficient conditions on r to guarantee that the tracking
performance can be made as small as desired (by a
suitable choice of control and path variable or timing
signal) - the nonlinear case is considered in [8] and [3]
with the linear case considered in [1], [2] and [7]; the
approaches are constructive. In particular, in the linear
case it is proven in [2] that it is sufficient that r(t) be a
finite sum of sinusoids (of non-zero frequency) and it
is proven in [7] that (roughly speaking) it is sufficient
that the path be repeatable and that the origin lie in
the interior of its convex hull.

Here we consider the linear case and we are in-
terested in answering two questions: (i) For which
trajectories can we make the cost as small as desired?
and (ii) How do we compute the (infimal) optimal
cost when it is non-zero? Our focus is analysis, al-
though synthesis is achievable with additional work.
We provide conditions, weaker than those listed above,
to ensure that the cost can be made as small as
desired, and in a reasonably general situation we show
how to compute the optimal cost by solving a finite
dimensional convex optimization problem. Because of
space constraints, all proofs will be omitted.

A. Preliminary Mathematics

Let R denote the set of real numbers and R+

denote the set of non-negative numbers. The norm of
x ∈ Rn is the Holder 2-norm; with A ∈ Rn×m, the
corresponding induced norm is denoted by ‖A‖, and
σmin(A) denotes the smallest singular value of A.

We let PC(Rn) denote the set of Rn−valued piece-
wise continuous signals on R+, and with k ∈ Z+ we
let Ck(Rn) denote the set of Rn−valued continuous
signals on R+ which are k times continuously differ-
entiable. We let L2(Rn) denote the set of Rn-valued,
Lebesgue measureable, square integrable functions and
use ||f || to denote the norm of f ∈ L2. Henceforth we



write f ∈ PC, f ∈ Ck and f ∈ L2, as appropriate;
the dimension will be clear from the context.

II. THE SETUP

Here we consider a square plant model of the form

ẋp = Apxp +Bpu (1)

y = Cpxp, (2)

with x(t) ∈ Rn and u(t), y(t) ∈ Rm. We assume that
(Ap, Bp) is controllable, (Cp, Ap) is observable, and
the system has no transmission zeros (in the sense of
[9]) on the imaginary axis, i.e.

rank

[
Ap − jωI Bp

Cp 0

]
= n+m, ω ∈ R.

A. Isolating the Zero Dynamics

Following a linear version of [11], under some
modest assumptions we can transform the plant to
isolate the zero dynamics. For simplicity, we derive
this in the case of “uniform relative degree”; the more
general vector relative degree case can be carried out
with similar analysis to that which follows, but with
substantially more complexity.

Definition 1: The transfer function C(sI −A)−1B
is said to have uniform relative degree p if

CAjB = 0, j = 0, 1, ..., p− 2

and CAp−1B is nonsingular.

Standing Assumption 1: Cp(sI − Ap)−1Bp has
uniform relative degree p.

With

vT :=
[
yT (y(1))T · · · (y(p−1))T

]
, (3)

it can be shown that we can choose x =
[
x+

x−

]
=

Txp with T ∈ R(n−mp)×n so that the plant model can
be rewritten in the form

ẋ+ = A+x+ +B+y
ẋ− = A−x− +B−y
v̇ = Avv +A1x

+ +A2x
− +Bvu

y = Cv

(4)

with A− and −A+ Hurwitz and the transmission zeros
of (1)-(2) equal to the eigenvalues of A− and A+.

B. The Control Objective

In this paper the objective will be to control the
system in order to follow a pre-specified path r,
parametrized by the timing signal θ, while maintaining
closed loop stability; the tracking error is defined by

e(t) := r(θ(t)) − y(t).

The objective is different from the common one of
reference tracking: we are allowed to choose θ(t) to

follow the path as rapidly or as slowly as desired; in-
deed, in some cases it is permissible to reverse course,
although we distinguish between the case where we
must always go forward and that for which we need
not. Given that the plant is strictly proper, we cannot
expect to asymptotically track an arbitrary r ∈ PC;
since p represents the uniform relative degree, it is
natural to require that r ∈ Cp. Furthermore, while
in this context we would typically want to track
bounded trajectories (often periodic), we will allow
for trajectories which are unbounded as long as they
diverge more slowly than exponentially. To this end,
we define

L̂∞ := {f ∈ PC : for every σ > 0 we have

sup
t≥0

e−σt‖f(t)‖ <∞}

and the class of admissible trajectories by

Rp := {r ∈ Cp : r(i) ∈ L̂∞, i = 0, 1, ..., p}.
Now we consider the class of timing signals θ. Since

the reference signal will be r ◦ θ, we will need θ to
be sufficiently smooth - it must belong to Cp. We will
also insist that eventually it traverse the trajectory at
the original speed. Now we define two different classes
of timing signals.

Definition 2: Θp is the set of θ ∈ Cp for which
θ(0) = 0, θ(·) ≥ 0, and for which there exists a T > 0
so that

θ̇(t) = 1, t ≥ T.

Θ+
p is the subset of those θ ∈ Θp for which θ(t) is

monotonically increasing.
Remark 1: The constraint on θ ensures that eventu-

ally we will be trying to track the unscaled trajectory.
Allowing θ̇ to be negative is akin to allowing one to
maneuver a car into a tight parking spot.

Remark 2: In practise there are a number of other
constraints that may be important for path tracking
problems, including a constraint on the maximum
rate of change of θ, a constaint on the maximum
T , or actuator constraints. While these features may
be important in practice, they add substantial further
complications to the analysis presented here.

Remark 3: It is routine to confirm that θ ∈ Θp and
r ∈ Rp implies that r ◦ θ ∈ Rp.

Given the problem setting, we allow feed-forward
control and perfect prior knowledge of r. In this
context, stability can be expressed in terms of how
fast the control signal and state are allowed to grow.

Definition 3: (u, θ) ∈ PC × Θp is stabilizing
if u, x ∈ L̂∞, limt→∞[y(t) − r(θ(t))] = 0, and
J(r, θ, u) := ‖y − r(θ)‖2 < ∞, in which case we
write (u, θ) ∈ S(r); we define S+(r) in an analogous
way.

Our control problems are two-fold:



(i) Given r ∈ Rp, compute the following two quanti-
ties:

Jopt(r) := inf
(u,θ)∈S(r)

J(r, θ, u),

J+
opt(r) := inf

(u,θ)∈S+(r)
J(r, θ, u).

(ii) Second, characterize the subset of r ∈ Cp for which
Jopt(r) and J+

opt(r) are zero, i.e. those trajectories for
which we can obtain near optimal path-following.

We will be able to convert the first problem into an
unconstrained convex optimization problem, at least
to compute Jopt(r); we will also prove that Jopt(r) =
J+

opt(r) if r is periodic, as it often is. We have a partial
solution to the second problem.

The next step is to change the optimization problem
from one in terms of both u and θ to one solely
in terms of θ. There are two possible approaches.
One is to convert the problem into “error coordinate
form”, as in [7], while the other is to use the original
representation, which is what we do here.

Standing Assumption 2: r ∈ Rp.

III. SIMPLIFYING THE PROBLEM

Here we show how to simplify the optimization
problem - we eliminate u so that we end up with
θ as the only free variable. To proceed, define the
controllability Grammian:

W :=
∫ ∞

0

e−A+τB+(B+)T e−(A+)T τ dτ.

Proposition 1:

Jopt(r) = inf
θ∈Θp

‖W−1/2

∫ ∞

0

e−A+τB+r(θ(τ)) dτ‖.

J+
opt(r) = inf

θ∈Θp
+
‖W−1/2

∫ ∞

0

e−A+τB+r(θ(τ)) dτ‖.
Remark 4: Motivated by Proposition 1, with T ≥ 0

we define ρ, ρT : L̂∞ → R+ by

ρ(f) := ‖W−1/2

∫ ∞

0

e−A+τB+f(τ) dτ‖,

ρT (f) := ‖W−1/2

∫ T

0

e−A+τB+f(τ) dτ‖.

These are pseudo-norms: they satisfy the triangular
inequality and the scaling property but do not have
a unique zero.

At this point we have eliminated u from the opti-
mization problem. We now show that the optimal cost
is unchanged if we restrict our attention to piecewise
constant θ. To this end, define

Ĵopt(r) = inf{ρ(r◦θ) : there exists a T > 0 so that

θ is piecewise constant on [0, T ] and satisfies

θ̇(t) = 1 for t > T },

Ĵ+
opt(r) = inf{ρ(r ◦ θ) : there exists a T > 0 so that

θ is piecewise constant on [0, T ], is monotonically

increasing, and θ̇(t) = 1 for t > T}.
Proposition 2:
(i) Ĵopt(r) = Jopt(r).
(ii) Ĵ+

opt(r) = J+
opt(r).

We now demonstrate that we can simplify the prob-
lem even further by eliminating θ from the optimiza-
tion problem and replacing it with something simpler.
To this end, the following two sets prove useful:

CIM(r) := closure of {r(t) : t ≥ 0},
CIM+(r) := closure of the positive limit set of r.

We now define

J̃opt(r) := inf{ρ(f) : f ∈ L̂∞ and f(·) ∈ CIM(r)},
J̃+

opt(r) := inf{ρ(f) : f ∈ L̂∞ and f(·) ∈ CIM+(r)}.
Remark 5: In the definition of Ĵopt(r), let θ be an

admissible function over which the optimization is
carried out, and define f(t) := r(θ(t)). Then it follows
immediately that f is piecewise continuous (indeed, it
is piecewise constant for the first interval of time, and
continuous thereafter) and takes values in CIM(r);
furthermore, it is easy to see that f ∈ L̂∞. Using
Proposition 2, this means that

J̃opt(r) ≤ Ĵopt(r) = Jopt(r).

The same is not true of J̃+
opt(r) and J+

opt(r) unless
there is additional structure on r, such as periodicity.

Proposition 3:
(i) J̃opt(r) = Jopt(r).
(ii) J̃+

opt(r) ≥ J+
opt(r).

It turns out that if r is periodic, then the above result
can be used to prove

Proposition 4: If r ∈ Rp is periodic then

J+
opt(r) = J̃+

opt(r) = J̃opt(r) = Jopt(r).

IV. SOME INITIAL BOUNDS

In this section we prove some preliminary results.
To proceed, we choose c0 > 0 and λ0 < 0 so that

‖e−A+t‖ ≤ c0e
λ0t, t ≥ 0.

Theorem 1:
(i) Jopt(r) ≤ c0

|λ0|‖W−1/2‖ inft≥0 ‖B+r(t)‖.

(ii) J+
opt(r) ≤ c0

|λ0|‖W−1/2‖ inft≥0 ‖B+r(t)‖.

(iii) Jopt(r) ≤ c0
|λ0|‖W−1/2‖ inf{‖B+w‖ : w ∈

CIM(r)}.
(iv) J+

opt(r) ≤ c0
|λ0|‖W−1/2‖ inf{‖B+w‖ : w ∈

CIM+(r)}.



It turns out that we can have Jopt(r) = 0 even if
0 /∈ B+ × CIM(r), with analogous results for the
case of J+

opt(r).

Theorem 2: (i) If there exist w1, w2 ∈ CIM(r)
and T ≥ 0 so that B+w1 + eA+TB+w2 = 0, then
Jopt(r) = 0.
(ii) If there exist w1, w2 ∈ CIM+(r) and T ≥ 0
so that B+w1+eA+TB+w2 = 0, then J+

opt(r) = 0.

Remark 6: There are cases in which the bounds
provided by Theorem 1 are not tight. To see this,
suppose that

A+ =
[

1 0
0 2

]
, B+ =

[
1 0
0 1

]
,

r(t) =
[

1/6
5/18

]
+ sin(t)

[
5/6

13/18

]
,

i.e., r(t) oscillates in a straight line between w1 :=[
1
1

]
and w2 :=

[ −2/3
−4/9

]
, which means that 0 /∈

CIM(r) = B+ × CIM(r), so the upper bound
provided by Theorem 1 is positive. If we choose
T = ln 1.5, it is easy to see that

B+w1 + eA+TB+w2 = 0,

so Theorem 2 says that Jopt(r) = 0. This shows that
we do not need 0 ∈ CIM(r) or 0 ∈ B+ × CIM(r)
for Jopt(r) = 0.

We can also find a lower bound on the performance
in some cases.

Theorem 3: If A+ and B+ are of the form

A+ =
[
λ1 0
0 ∗

]
, B+ =

[
B+

1

∗
]
,

with λ1 ∈ R and inft≥0 ‖B+
1 r(t)‖ > 0, then

Jopt(r) ≥ σmin(W−1/2)
1
λ1

inf
t≥0

‖B+
1 r(t)‖ > 0.

V. THE SINGLE-INPUT CASE

In the single-input case we can obtain conditions
ensuring that Jopt(r) = 0 (or J+

opt(r) = 0) which
are crisper than in the general case. We consider two
situations.

A. At Least One Real Positive Zero

Theorem 4: If A+ has at least one real eigenvalue,
then

Jopt(r) = 0 iff inf
t≥0

|r(t)| = 0

and
J+

opt(r) = 0 iff inf
t≥0

|r(t)| = 0.

B. Two Complex Zeros

It turns out that if A+ has exactly two complex
eigenvalues then we no longer need inft≥0 |r(t)| = 0
to have Jopt(r) = 0. We begin with an illustrative
example.

Example 1: Consider the case of

A+ =
[

α β
−β α

]
, B+ =

[
1
1

]
,

with a reference trajectory periodic of period T := 2π
β

given by
r(t) = eαt, t ∈ [0, T ).

It follows that∫ ∞

0

e−A+τB+r(τ)dτ = 0.

While r is discontinuous, it can be approximated
arbitrarily well (in L2) by a function which belongs
to C∞.

Now the question is: in this situation, what is a
necessary and sufficient condition for Jopt(r) = 0? It
is clearly not the same as in the case of having at least
one real zero; results on the structure of an associated
controllability subset derived in [10] can be used to
obtain bounds. To proceed, we write

[b, b̄] := CIM(r) ⊃ CIM+(r) =: [b+, b̄+].

Theorem 5: Suppose that A+ ∈ R2×2 and
sp(A+) = α± jβ. Then
(i) Jopt(r) = 0 iff 0 ∈ [b, b̄] or eπ α

β ≤ b̄

b .

(ii) J+
opt(r) = 0 if 0 ∈ [b+, b̄+] or eπ α

β ≤ b̄+

b+ .

VI. A COMPUTATIONAL APPROACH

Now we turn to the problem of computing Jopt(r)
and J̃+

opt(r) in the general case. In the forth-going,
we focus on Jopt(r) (which equals J+

opt(r) if r is
periodic), but computing J̃+

opt(r) is similar, with a
simple replacement of CIM(r) with CIM+(r). To
proceed, we impose

Standing Assumption 3: r ∈ Rp is bounded and
CIM(r) is strictly convex.

In the general case, we do not have any closed form
results. Making use of Proposition 3, we end up with
the technical problem of computing

Jopt(r) = inf{‖W−1/2

∫ ∞

0

e−A+τB+f(τ)dτ‖ :

f ∈ PC and f(·) ∈ CIM(r)}
and its approximation:

JT
opt(r) := inf{‖W−1/2

∫ T

0

e−A+τB+f(τ)dτ‖ :

f ∈ PC and f(·) ∈ CIM(r)}.



It is clear that limT→∞ JT
opt(r) = Jopt(r). The fol-

lowing easily proven result provides a bound on the
speed of convergence.

Proposition 5:

|Jopt(r) − JT
opt(r)| ≤

eλ0T c0
|λ0| ‖W

−1/2‖ × ‖B+‖ × ‖CIM(r)‖.
Hence, it follows that to compute Jopt(r) to within

a prescribed bound, it is enough to compute JT
opt(r).

Therefore, we turn our attention to this latter problem,
which we can rewrite as a classical control problem.
To minimize clutter we define

U := CIM(r).

Optimization Problem 1 (OPT-1)
Minimize

g(x(T )) := ‖W−1/2e−A+Tx(T )‖2

subject to

ẋ = A+x+B+u, x(0) = 0
u(·) ∈ U.

This is simply a classical control problem with
end constraints. To proceed, we define two associated
functions:

ψ : Rm → R

ξ 
−→ maxu∈U ξTu

and

φ : Rm → R

ξ 
−→ argmaxu∈U ξTu.

The first is well-defined because of the compactness
of U ; indeed, it is convex. The second is well-defined
since U is strictly convex. To illustrate these definitions
an example is in order.

Example 2: Consider the case of U being an ellip-
soid: with J > 0 positive definite and symmetric and
u0 ∈ Rm, consider

U = {u ∈ Rm : ‖J(u− u0)‖2 = 1}.
Using a Lagrange Multiplier approach, it is easy to
verify that

ψ(ξ) = maxu∈U ξTu = ξTu0 +
ξTJ−2ξ

‖J−1ξ‖ ,

φ(ξ) = argmaxu∈U ξTu = u0 +
1

‖J−1ξ‖J
−2ξ.

It turns that OPT-1 is a special case of the classical
Meyer Problem. A detailed study of this problem is
given in the MASc thesis [12], which is based in large
part on the results of Rockafellar [14]. In the following
we provide a summary of the main steps.

Proposition 6: (Theorem 1.1 of [12]) Every opti-
mal control u∗ of OPT-1 is of the form

u∗(t) = φ((B+)T ρ(t))

subject to

ẋ∗ = A+x∗ +B+u∗, x∗(0) = 0
ρ̇ = −(A+)T ρ, ρ(T ) = −(∂xg)(x∗(T )).

So to obtain the optimal cost it is enough to find
all triples (u∗, x∗, ρ) which satisfy Proposition 6 and
then find the one which is optimal. This constrained
optimization problem is difficult so we turn to a dual
problem.

Optimization Problem 2 (OPT-2) Minimize

h(α) :=
1
4
αTWα+

∫ T

0

ψ((B+)T e−(A+)T tα) dt

subject to α ∈ Rn.
Since h is strictly convex, a broad range of software

tools can be used to minimize it (assuming that ψ can
be easily computed, as it will be in several special
cases), yielding the unique minimum; since ψ(0) = 0,
this minimum is at most zero. It turns out that the
solutions of OPT-1 and OPT-2 are related.

Theorem 6: (Theorem 4.3 of [12]) The optimal
solution α∗ of OPT-2 yields the optimal solution
of OPT-1:

JT
opt(r) = [−h(α∗)]1/2.

VII. AN EXAMPLE

Here we consider the example of [2]: it is a vehicle
with mass M moving in the plane, on top of which is
a mass m, modelled by

Mÿ = D(ż − ẏ) + u

mz̈ = D(ẏ − ż) +G(z − y);

here D = diag(d1, d2) > 0 is associated with the
viscous friction, G = diag(g1, g2) > 0 is associated
with gravity, u(t) ∈ R2 is the force, while y(t) ∈ R2

and z(t) ∈ R2 are the positions of the vehicle and
mass, respectively. It turns out that the system has two
non-minimum phase zeros. For the choice of

M = 1,m = 0.1, d1 = 1, d2 = 2, g1 = 1.5, g2 = 1,

these zeros are 0.488 and 1.324; the unstable zero
dynamics associated with x+ are given by

ẋ+ =
[

0.488 0
0 1.324

]
︸ ︷︷ ︸

=:A+

x+ +
[

0 .53
−1.97 0

]
︸ ︷︷ ︸

=:B+

y.

In [2] it is shown that the infimal L2 tracking
performance can be made as small as desired for all
paths arising from a reference trajectory which is a
finite sum of sinusoids (with non-zero frequency); this
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Fig. 2. A plot of JT
opt(ra) as a function of a.

means, in particular, that 0 is contained in CIM(r). As
demonstrated in Remark 6, 0 need not lie in CIM(r)
for the infimal cost to be zero. To this end, consider
the periodic reference signal

ra(t) =
[

3.1216 1.5884
1.5884 1.2861

]
[
[

0
a

]
+

[
cos(t)
sin(t)

]
];

the surface of CIM(r0) is given in Figure 1; clearly
CIM(ra) can be obtained by shifting CIM(r0) by[

1.5884
1.2861

]
a. From the formula for ra, it is easy to

see that

0 ∈ CIM(ra) ⇔ a ∈ [−1, 1],

so it is immediate from Theorem 1 that

Jopt(ra) = 0, a ∈ [−1, 1].

Using Theorem 6 we can compute JT
opt(ra) as a

function of a - see Figure 2 (we choose T = 20
here). Observe, in particular, that JT

opt(ra) = 0 for
a ∈ [0, 1.8].

VIII. CONCLUSIONS

In this paper we have considered path tracking per-
formance limitations for multivariable non-minimum

phase systems. In particular, we have studied problems
related to infimal L2 performance. By using the zero
dynamic form of a system we are able to derive
a number of results, including sufficient conditions
for the infimal cost to be zero and other sufficient
conditions for it to be strictly greater than zero. In a
reasonably general situation, we show that the infimal
cost can be computed by solving a finite dimensional
convex optimization problem.

IX. ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences
Research Council of Canada and the Australian Re-
search Council.

REFERENCES

[1] A. P. Aguiar, D.B. Dacic, J.P. Hespanha, and P. Kokotovic,
“Path-Following or Reference Tracking?”, Proc. of IAV2004
- 5th IFAC/EURON Symposium on Intelligent Autonomous
Vehicles, Lisbon, Portugal, July 2004.

[2] A. P. Aguiar, J. P. Hespanha and P. Kokotovic, “Path-
following for non-minimum phase systems removes perfor-
mance limitations”, IEEE Trans. on Automat. Contr. 50(2),
pp. 234-239, 2005.

[3] A. P. Aguiar, J. P. Hespanha and P. Kokotovic “Limits of
Performance in Reference-Tracking and Path-Following for
Nonlinear Systems”, Proc. of IFAC World Congress, Prague,
July, 2005.

[4] C. T. Chen, “Linear System Theory and Design”, Oxford
University Press, 1984.

[5] D. Chen and B. Paden, “Stable inversion of nonlinear non-
minimum phase systems”, Int. Jnl. of Control, vol. 64, no. 1,
pp. 81–97, 1996.

[6] J. Chen, Z. Ren, S. Hara and L. Qiu, “Optimal Tracking
Performance: Preview Control and Exponential Signals”,
IEEE Trans. Auto. Contr., V46, N10, pp. 1647–1653, October
2001.

[7] D.B. Dacic and P.V. Kokotovic, “Path-Following for Linear
Systems with Unstable Zero Dynamics”, Automatica, to
appear.

[8] D.B. Dacic, M.V. Subbotin, and P.V. Kokotovic, “Path-
Following for a Class of Nonlinear Systems with Unstable
Zero Dynamics”, 43rd IEEE Conf. on Decision and Control,
Atlantis, Paradise Island, Bahamas, 2004.

[9] E. J. Davison and S. H. Wang, “Properties and Calculation
of Transmission Zeros of Linear Multivariable Systems”,
Automatica, V10, pp. 643–658, 1974.

[10] T. Hu, Z. Lin, and L. Qiu, “An explicit description of
null controllable regions of linear systems with saturating
actuators”, Systems & Control Letters, vol. 47, pp. 65 – 78,
2002.

[11] A. Isidori, “Nonlinear Control Systems: 3rd Edition”,
Springer, 1995.

[12] B. Liu, “Methods of Convex Analysis in Optimal Control”,
MASc Thesis, Dept. of Electrical and Computer Engineering,
University of Waterloo, Canada, 2003.

[13] L. Qiu and E. J. Davison, “Performance limitations of non-
minimum phase systems in the servomechanism problem”,
Automatica V29, pp. 337–349, 1993.

[14] R. T. Rockafellar, “Conjugate Convex Function s in Optimal
Control and the Calculus of Variations”, Journal of Math.
Anal. Appl.. vol. 32, pp. 174 - 222, 1970.

[15] M. M. Seron, J. H. Braslavsky, P. V. Kokotovic, and D. Q.
Mayne, “Feedback Limitations in Nonlinear Systems: From
Bode Integrals to Cheap Control”, IEEE Transactions on
Automatic Control, V44, pp. 829–832, 1999.

[16] R. Skjetne, T.I. Fossen, and P.V. Kokotovic, “Robust Output
Maneuvering for a Class of Nonlinear Systems”, Automatica,
pp. 373 – 383, 2004.


