
Fairness and Convergence Results for Additive-Increase
Multiplicative-Decrease Multiple-Bottleneck Networks

Richard H. Middleton, Christopher M. Kellett, and Robert N. Shorten

Abstract— We examine the behavior of the Additive-Increase
Multiplicative-Decrease (AIMD) congestion control algorithm.
We present a variant of a recently proposed matrix model
that allows us to obtain previous results for competition via
a single bottleneck link. We then extend these results to the
case of multiple bottleneck links paying particular attention
to some aspects of fairness and convergence properties for
multiple bottleneck systems. We examine both the synchronous
(deterministic) and asynchronous (stochastic) cases. A simple
simulation example illustrates the results.

I. INTRODUCTION

Traffic generated by the Transmission Control Protocol
(TCP) accounts for 85% to 95% of all traffic in today’s Inter-
net [1]. TCP, in congestion avoidance mode, is based primar-
ily on Chiu and Jain’s [2] Additive-Increase Multiplicative-
Decrease (AIMD) paradigm for decentralized allocation of
a shared resource (e.g., bandwidth) among competing users.
The AIMD paradigm is based upon a network of users
who independently compete for the available resource by
using two basic strategies; each user probes for its share
of the available resource by gradually utilizing more and
more of the resource (the additive increase stage), and then
instantaneously down-scales its utilization-rate in a multi-
plicative fashion when notified that capacity has been reached
(the multiplicative decrease stage). With some minor mod-
ifications, the AIMD algorithm has served the networking
community well over the past two decades and it continues to
provide the basic building block upon which today’s internet
communication is built.

The dynamics of communication networks in which the
AIMD algorithm is deployed have been studied extensively
from an empirical viewpoint in the networking and computer
science community, and more recently from a mathematical
perspective in the mathematics literature; for example, see
[3], [4], [5], [6], [7], [8], [9], [10] and references therein.
In these papers, some fundamental properties of networks
that utilize the AIMD algorithm have been established. For
networks where the resource constraint is a bound on the
sum of the resource shares of the users, basic stability
and convergence properties have been determined, both in
a deterministic and in a stochastic setting. In particular,
it has been shown that (with a fixed number of users)

R.H. Middleton is with the ARC Centre for Complex Dynamic Systems
and Control, The University of Newcastle, Callaghan NSW, 2308, Australia.
E-mail: Rick.Middleton@newcastle.edu.au.

C. M. Kellett and R. N. Shorten are with the Hamilton Institute,
National University of Ireland, Maynooth, Co. Kildare, Ireland, and are
supported by Science Foundation Ireland Grant 04/IN3/I460. E-mails:
chris.kellett@nuim.ie and robert.shorten@nuim.ie.

such networks possess unique stable equilibria to which the
system converges geometrically from all starting points.

However, the original AIMD algorithm, as proposed by
Chiu and Jain, was based upon a number of assumptions
that are generally not valid in real network scenarios. In
particular, these include the notion that all sources compete
for bandwidth in a single bottleneck scenario. Recently, a
number of authors have reported that in such circumstances,
AIMD dynamics can lead to network oscillations. In this con-
text our primary interest here is to derive results that describe
the behavior of AIMD networks in a quantifiable manner
in multiple-bottleneck networks. We note that a number of
network models have already been proposed in the literature
that purport to capture the essential dynamics of AIMD
networks. Roughly speaking, two modeling approaches can
be discerned; (i) models based upon fluid approximations of
network behavior [8], [11]; and (ii) linear algebraic models
that take into account the multi-modal behavior of AIMD
networks [9], [12]. While both of these approaches success-
fully accommodate single bottleneck scenarios, extensions
to networks with multiple congested routers have not been
straightforward. In particular, the linear algebraic models
proposed in the literature have failed to deliver results in
multiple-bottleneck scenarios. The main contribution of this
note is to present a variant of a recently proposed matrix
model that allows us to derive results which predict a degree
of fairness in resource allocation between flows that compete
directly with each other; even in the presence of network
oscillations.

II. MATHEMATICAL FRAMEWORK

The general problem setup that we consider follows that
of [9]. Throughout this paper, we consider a set of ns

AIMD sources, flowing through a network with multiple
bottlenecks. We assume that each AIMD source has (ef-
fectively) an infinite amount of data, and therefore will
always alternate between an additive increase, followed by
the source detecting congestion, resulting in a multiplicative
decrease phase. Let Z≥0 denote the nonnegative integers. We
denote the (ordered) set of times at which congestion occurs
at any node by tk, k ∈ Z≥0. We assume that the sequence
tk does not contain any accumulation points1. We shall
return to this assumption later to give conditions sufficient
to guarantee that this is the case.

We denote by xi(k) ∈ R+ the flow rate of the ith source
at the kth congestion event. Denote the additive increase

1In other words, we wish to rule out the possibility that an infinite number
of congestion events occur in an arbitrarily short time.

and multiplicative decrease parameters of the ith source by
αi ∈ (0,∞) and βi ∈ (0, 1) respectively. We assume that
the additive increase parameter is small enough compared to
the total number of packets in the network that the additive
increase phase is effectively continuous. We ignore network
and queueing delays in this model framework.

We assume that the network consists of nn nodes, labeled
j = 1, 2, . . . , nn, and that each flow originates with a source,
i ∈ {1, 2, . . . , ns} and passes through a set of nodes Ni ⊂
{1, 2, . . . , nn}. Also, denote by Ωj ⊂ {1, 2, . . . , ns} the set
of flows that pass through node j. We assume that each node
has a total capacity, Bj > 0, and that the node capacity
constraints can be expressed as:

Bj ≥
∑
i∈Ωj

xi(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0. (1)

Suppose that (1) is satisfied at the kth congestion event.
Then for all times after the previous congestion event,
leading up to the current event (that is for t ∈ (tk−1, tk)),
all flows will be in their additive increase phase. It therefore
follows that their maximum over this time interval is at tk,
and therefore if the constraints are satisfied at all congestion
events, then they must also be satisfied at all intervening
times.

To simplify the notation, we denote the
stacked vector of source flows by XT (k) :=[

x1(k) x2(k) · · · xns
(k)

]
then note that the

constraints (1) can be expressed in vector form as:

Bj ≥ LT
j X(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0 (2)

where Lj is a vector with ith element unity if the ith flow
includes node j, and zero otherwise; that is, (Lj)i = Ij∈Ni .
We make the following assumption on the flows:

Assumption 1: All flows include at least one node. That
is:

Ni 6= ∅ : ∀i ∈ {1, 2, . . . , ns}. (3)
Note that Assumption 1 implies that the constraints (2)

form a compact set. More specifically, under Assumption 1
there exists2 an Xmax ∈ (0,∞) such that for all X(k) in
the positive orthant satisfying (2), we have:

‖X(k)‖2 ≤ Xmax. (4)

At the kth congestion event, we assume that at least one
node is congested. We denote by J(k) ⊂ {1, 2, . . . , nn} the
set of nodes congested at tk, that is; J(k) = {j : Bj =
LT

j X(k)}.

A. Synchronous Traffic

In the synchronous traffic case, we assume that all flows
that include a congested node experience congestion. In
practice, this would mean that all flows through a congested
link would have a packet dropped. This may be a reasonable
assumption in some cases such as: where the flows are at
least somewhat fair (that is, no flows experience a much
smaller share of the available bandwidth than the average);

2For example, it suffices to take Xmax =
√

ns maxj{Bj}.

or, the total number of packets dropped by routers at each
congestion event is large compared to the number of flows
through the router (for example, if the product of the packet
data rate and round trip time is large compared to the number
of flows).

Note that in this case, using our model framework, it
is straightforward to show that a congestion event at time
tk in node j causes a drop in flow in node j from
Bj =

∑
i∈Ωj

xi(k) to
∑

i∈Ωj
βixi(k). Thus the total

decrease in flow in node j is
∑

i∈Ωj
(1 − βi)xi(k) ≥(

1−maxi∈Ωj{βi}
)
Bj . Since the rate of increase of flow

through node j is at most3
∑

i∈Ωj
αi, it follows that the

minimum time between congestion events for node j is at

least Bj

(
1−maxi∈Ωj

{βi}P
i∈Ωj

{αi}

)
. Furthermore, since there are a

finite number of nodes (each of which has a nontrivial lower
bound on the time between successive congestion events),
there cannot be any accumulation points in congestion times.

For the case of synchronous traffic, the model we adopt
for the recursion is given by:

X(k + 1) = Aj(k)X(k) + UT (k) (5)

where U is a stacked vector of the additive increase param-
eters U =

[
α1 α2 · · · αns

]T
; T (k) = tk+1 − tk is

the time between congestion events given by:

T (k) = max
T :Bm≥Lm(Aj(k)X(k)+UT);m=1,2,...nn

{T}; (6)

and Aj denotes a diagonal matrix with ith element given by:

(Aj)ii =
{

βi : i ∈ Ωj

1 : otherwise

}
. (7)

In other words, when node j experiences congestion, all
flows which transit node j (i.e., all flows in Ωj) reduce their
flow rate as βixi(k), while flows not crossing node j are
unaffected and continue to increase their rates.

Note that in this case, it is straightforward to show that the
time between congestion events is bounded. In particular, if
we let α = mini{αi} and take any X̄ > Xmax, then using
(5), T (k) > X̄/α implies ‖X(k+1)‖ > X̄ which contradicts
(4).

B. Asynchronous Flows

In this case, we no longer assume that when a node is
congested, that all flows experience congestion (i.e., not all
flows are notified that the node is congested). Rather, at
random, one or more flows will experience congestion. In
this case the model of (5) becomes more complex, since the
appropriate A matrix is no longer a deterministic function
of the congested node, j(k). For simplicity, we follow the
model framework of [9] wherein the probabilities associated
with whether or not source i experiences congestion is
independent4 of other sources and is given by λi. More

3Since a congestion event at a node other than node j may cause some
flows through node j to decrease.

4Here the independence is both serially in time and between different
flows.

complex models that take into account the dependence of the
probability of detecting congestion on the relative fraction of
the total flow can be developed. A detailed analysis of such
models is substantially more complex due to the nonlinear
nature of the models. However, in the case of independent
drop probabilities, the equivalent model to (5) becomes:

X(k + 1) = AkX(k) + UT (k) (8)

where Ak is a diagonal random matrix with elements given
by

Ak(ii) =
{

βi w.p. λi for i ∈ Ωj(k)

1 otherwise

}
.

Under the assumption above on independence of the prob-
abilities in the elements of Ak, from (8) we can show that
the expected value of X(k) (denoted E{X(k)}) satisfies the
recursion:

E{X(k + 1)} = A′kE{X(k)}+ UE{T (k)} (9)

where A′k is a constant diagonal matrix with elements β′i =
1− λi + λiβi for i ∈ Ωj(k).

III. SINGLE BOTTLENECK ANALYSIS

Before addressing the multiple bottleneck case, we first
review some existing results (see for example [9]) on the
single bottleneck case. If there is a single bottleneck, it
must restrict all flows, that is, L is a vector of all unity
elements. Otherwise, any flows not restricted would grow
without bound.

A. Synchronous Single Bottleneck

For synchronous flows with a single bottleneck, the model
(5) simplifies to:

X(k + 1) = AX(k) + UT (k) (10)

where A is diagonal with ith element Aii = βi. T (k) can
be computed as the duration required to achieve the capacity
constraint LT X(k + 1) = B, that is, T (k) := B−LT AX(k)

LT U
.

Define5

T ∗ :=
B

LT (I −A)−1U
and X∗ := (I −A)−1UT ∗.

Further, define error coordinates E(k) := X(k) − X∗ and
∆(k) := T (k)− T ∗. Then we can re-write (10) as:

E(k + 1) = AE(k) + U∆(k) (11)

Now ∆(k) = −LT A
LT U

E(k) and therefore, we can re-write
(11) as:

E(k + 1) =
(

A− ULT A

LT U

)
E(k) (12)

We now perform a diagonal state transformation, with
D = diag{

√
αi/βi}. Then if we define V T :=[√

α1
√

α2 . . .
√

αn

]
, it can be shown that we have

D−1U = A
1
2 V ; LT AD = V T A

1
2 and LT U = V T V .

Therefore, with F (k) := DE(k) we have:

5X∗ here is closely related with the Perron eigenvector given in [13,
Theorem 2.1].

F (k + 1) = A
1
2

(
I − V V T

V T V

)
A

1
2 F (k) (13)

It then follows from (13) that6

‖F (k + 1)‖ ≤ ‖A‖‖F (k)‖ = max{βi}‖F (k)‖.

As βi ∈ (0, 1) for all i, this implies that F (k) converges
exponentially to the origin. Consequently, X(k) converges
to X∗.

B. Asynchronous Single Bottleneck

Similarly, if we consider the asynchronous flows case, then
A′k in (9) becomes the constant matrix A′ = diag{β′i}, and
(9) becomes:

E{X(k + 1)} = A′E{X(k)}+ UE{T (k)}. (14)

Then by direct extension of the analysis in Section III-A
(or from [9]), if we define

T ∗′ =
B

LT (I −A′)−1U
and X∗′ = (I −A′)−1UT ∗′,

then E{T (k)} converges exponentially fast to T ∗′ and
E{X(k)} converges exponentially fast to X∗′.

IV. PARALLEL FLOWS

In this section, we wish to consider aspects of the behav-
ior of more general network configurations. One particular
aspect of more general, multiple bottleneck networks, is to
consider the behavior of ‘parallel’ flows. Here we define
parallel flows as flows that pass through an identical set
of congested nodes. In other words, flows i1, i2, . . . , ip are
parallel if and only if:

Ni1 = Ni2 = · · · = Nip
=: Np (15)

Recall that Ni is the set of nodes through which flow i
passes.

We would argue that some measure of fairness between
parallel flows is necessary (though not sufficient) for overall
network ‘fairness’. In particular, users might at least expect
relative fairness with other users who share identical routes,
even if it is not possible to simply quantify or ensure
‘fairness’ in relation to users having different paths and
destinations.

A. Synchronous Parallel Flows: Time Averages

Consider first the simple case where we have synchronous
flows modeled by (5) and (6), where some of the flows
i1, i2, . . . , ip are parallel in the sense of (15). In this case,
define a selection vector Ep ∈ Rp×ns as:

Ep =


eT
i1

eT
i2
...

eT
ip

 (16)

6This is slightly weaker than is possible, but suffices for the main
properties we wish to show.

where ei denotes the ith elementary vector. Define Xp(k) =
EpX(k) as the subflows at the kth congestion event. We now
consider the evolution of Xp(k). For this subsection, without
loss of generality, we assume that for all k, congestion occurs
on one of the nodes in the parallel flow7. In this case, using
(5) and (16), the recursion for the subflows becomes:

Xp(k + 1) = ApXp(k) + UpT (k) (17)

where Up := EpU and Ap := EpAip
ET

p are independent of
which node within Np is congested.

Note that we cannot apply the same analysis as in the
previous section since, due to the presence of flows outside
the parallel grouping, we cannot calculate the time between
congestion events. However, we can make the following
claim:

Claim 2: Consider any set of parallel flows. Take any U⊥
p

orthogonal to Up; that is, U⊥
p Up = 0. Suppose that either of

the following conditions hold:

βi1 = βi2 = · · · = βip
=: βp (18)

or
lim

k→∞
T (k) = T∞ (19)

then
lim

k→∞

(
U⊥

p (I −Ap)Xp(k)
)

= 0. (20)
Proof: Note that in either case, from (17) that:

Xp(k) = Ak
pXp(0) +

k−1∑
`=0

Ak−1−`
p UpT (`). (21)

The first term in (21) decays exponentially fast to zero, so
it remains to evaluate properties of the remaining term.

First, suppose that (18) holds. Then it follows that Ap =
βpI , A`

p = β`
pI , and U⊥

p (I − Ap)−1 = 1
(1−βp)U

⊥
p . Using

these facts along with (21) and ignoring initial conditions
gives:(
U⊥

p (I −Ap)Xp(k)
)

= (1− βp)U⊥
p Xp(k)

= (1− βp)U⊥
p Up

k−1∑
`=0

βk−1−`
p T (`)

= 0 (22)

Alternatively, suppose that (18) is not assumed to hold,
but that instead (19) holds. In this case we note first that as
k →∞, again ignoring initial conditions:

Xp(k) =
k−1∑
`=0

Ak−1−`
p UpT (`)

=
k−1∑
`=0

Ak−1−`
p UpT∞ +

k−1∑
`=0

Ak−1−`
p Up(T (`)− T∞)

→ (I −Ap)−1UpT∞

7Note that if this is not the case, then none of the subflows are congested,
and as far as the subflows are concerned, we simply ignore this congestion
event. This cannot happen indefinitely since otherwise the subflows would
become unbounded.

and the result follows immediately.
In other words, under the conditions stated in Claim 2,

the states converge to a one dimensional subspace aligned
with (I − Ap)−1Up (the Perron eigenvector in [9, Theorem
2.1]) which has ith element (1−βi)−1αi. Note however, that
this does not apply in general (i.e., in the absence of (18) or
(19)). However, the following is true:

Claim 3: Consider any set of parallel synchronized flows,
(17), subject to Assumption 1, then

lim
K→∞

(
1
K

k0+K∑
k=k0

U⊥
p (I −Ap)Xp(k)

)
= 0. (23)

Proof: First, take summations of (17) to give:

1
K

k0+K∑
k=k0

Xp(k + 1) =

Ap
1
K

k0+K∑
k=k0

Xp(k) + Up
1
K

k0+K∑
k=k0

T (k). (24)

Then we can rearrange (24) to the form:

(I −Ap)
1
K

k0+K∑
k=k0

Xp(k) =

1
K

(Xp(k0)−Xp(k0 + K + 1)) + Up
1
K

k0+K∑
k=k0

T (k). (25)

Multiplying (25) from the left by U⊥
p and taking the

limit as K → ∞ gives the desired result in view of the
boundedness of Xp(k).

Remark 4: By operating in terms of expected values, the
extension to stochastic networks defined in Section II-B is
immediate. We defer detailed discussion of this to Section
IV-C after we have given some interpretations of Claim 3.

We first note that in the case where the states do converge,
Claim 3 immediately gives the following corollary.

Corollary 5: Consider any set of parallel synchronized
flows, (17), subject to Assumption 1 and suppose that Xp(k)
converges to a limit denoted by Xp(∞). Then

U⊥
p (I −Ap)−1Xp(∞) = 0. (26)

Remark 6: Since Claim 3 holds for any set of synchro-
nized flows, including any pair of flows, it represents a kind
of average inter-flow fairness. The time average of the peak
flows represented in Xp(k) lies on a given ray from the
origin. Moreover, for any flows ` and m that are parallel,
take U⊥

p as a vector with all elements zero, except the `th

element 1/α` and the mth element −1/αm. We then have the
long term time average (which we denote with an overbar;
i.e., fk := limK→∞

1
K

∑K
k=0 fk):

(
1− β`

α`

)
(X(k))` −

(
1− βm

αm

)
(X(k))m = 0 (27)

and therefore, provided the appropriate time averages exist,
(27) implies(

1− β`

α`

)
(X(k))` =

(
1− βm

αm

)
(X(k))m. (28)

As an aside, we note that the basic result of Claim 3 can
be generalized to models that allow for a nonlinear decrease
but maintain an additive increase as follows:

Corollary 7: Consider an Additive Increase, Nonlinear
Decrease (AIND) process with parallel flows that obey the
recursion:

Xp(k + 1) = f(Xp(k)) + UpT (k) (29)

where Xp(k) satisfies (4). Then for any U⊥
p orthogonal to

Up:

lim
K→∞

(
1
K

k0+K∑
k=k0

U⊥
p (Xp(k)− f(Xp(k)))

)
= 0. (30)

Proof: (29) can be rewritten as:

Xp(k)− f(Xp(k)) = Xp(k)−Xp(k + 1) + UpT (k). (31)

Summing (31) gives:

k0+K∑
k=k0

(Xp(k)− f(Xp(k))) =

Xp(k0)−Xp(k0 + K + 1) + Up

k0+K∑
k=k0

T (k). (32)

Multiplying (32) from the left by U⊥
p , dividing by K, and

taking limits gives the desired result.

B. Synchronous Parallel Flows: Ensemble Averages

Because the rest of the network can influence the detailed
behavior of a set of parallel flows, even in the synchronous
case, it is not possible to guarantee that the parallel flows
converge. The results in Section IV-A give time average
results that apply in this case. Here we give some results for
ensemble averages for the synchronous parallel flow case.

To facilitate this analysis, we note that in the previous
approach, the capacity constraint (1) can be thought of as
a “router view” of congestion. An alternate approach is to
consider what bandwidth constraint a group of parallel flows
will see at congestion. We observe that this bandwidth will
vary depending on both which node is congested as well
as how much capacity is being used by other flow groups.
As such, the capacity constraint seen by any individual
flow group will be random and time-varying. Using Ip to
denote the pth parallel flow group, we can write the capacity
constraint at congestion as

Bp(k) =
∑
i∈Ip

xi(k); ∀k ∈ Z≥0. (33)

Note that Bp(k) is necessarily bounded by the minimum
capacity link traversed by the flow group Ip.

We make the following assumption:
Assumption 8: The process Bp(k) is a stationary random

process; i.e., there exists a finite real number B̄p > 0 such
that E{Bp(k)} = B̄p.

Using the previous vector notation, at congestion we have

LT
p Xp(k + 1) = Bp(k + 1), (34)

where Lp is a vector of dimension |Ip| consisting of all ones.
Taking expectations on both sides, and using the evolution
equation (17) we obtain

LT
p (ApE{Xp(k)}+ UpE{T (k)}) = B̄p. (35)

Similar to the analysis in the single bottleneck case (Sec-
tion III), we can compute the expected time between con-
gestion events as E{T (k)} = T̄ ∗ = B̄p

LT
p (I−Ap)−1Up

and the
expected flow rate E{Xp(k)} converges exponentially (via
the same arguments in Section III-A) to:

X̄∗
p = (I −Ap)−1UpT̄

∗. (36)

Remark 9: It is important to note here that we not only
characterize the asymptote but also the dynamics of the
process. Convergence to the equilibrium state is exponential
and bounds on the rate of convergence can be derived. It
is also important to note that the dynamics of the second
moment can be expressed in a similar manner to the above
analysis.

From a practical viewpoint, it may well be that we do
not know the expected value of the bandwidth; i.e., we will
not know B̄p. However, the above analysis does indicate
how parallel flows will share available bandwidth within the
parallel group. For example, if all flows in the group have
the same increase and decrease parameters, the (unknown)
bandwidth will be shared equally on average.

C. Asynchronous Parallel Flows: Ensemble Averages

We now consider the more general model framework of
Section II-B, that allows randomness in determining which
flows experience lost packets at a congestion event. In this
case, by the same arguments as in Claim 3, applied to (9),
we obtain:

lim
K→∞

1
K

k0+K∑
k=k0

U⊥
p (I −Ap)E {Xp(k)} = 0. (37)

Furthermore, if the process is ergodic, then (37) simplifies
to:

U⊥
p (I −Ap)E {Xp(k)} = 0. (38)

V. EXAMPLES

Example 1: Consider the network topology depicted in
Figure 1. Here, C1 = 2.5 units and C2 = 5 units.
This arrangement gives rise to a constraint surface that is
polyhedral in nature. Drops at congestion are generated so
that all nodes contributing to congestion are informed of
congestion; namely, x1 and x2 are informed every time
a node is congested, whereas x3 is informed only when
node N2 is congested. The network was simulated for 2000
seconds.

Here α1 = α2 = α3 = 1 and β1 = 0.5, β2 = 0.75, and
β3 = 0.9. It follows from Claim 3 that X̄(k)1 = 2 X̄(k)2.
This is immediately confirmed from the simulation results
depicted in Figure 2.

Example 2: Consider again the network topology depicted
in Figure 1. Drops at congestion are generated at each node

1
x

3
x
2
x

1
C

2
C

1
N
 2
N

Fig. 1. Two node, thee flow scenario

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k [events]

tim
e

av
er

ag
ed

 s
ta

te

Fig. 2. Predictions of Claim 3: Synchronized network

according to fixed probabilities (uniform for every source
utilizing the constraint). Again, the flows x1(k) and x2(k)
are parallel flows in this scenario. In this simulation we
observe limK→∞

1
K

∑K
k=0 Xi(k), i ∈ 1, 2 over the first 1600

congestion events.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k [events]

tim
e

av
er

ag
ed

 s
ta

te

Fig. 3. Predictions of Claim 3: Stochastic network

We see from Figure 3 that

lim
K→∞

1
K

K∑
k=0

X1(k) ≈ 2

(
lim

K→∞

1
K

K∑
k=0

X2(k)

)
,

which is in complete agreement with Claim 3 and the
associated remarks.

VI. CONCLUSIONS

In this paper we have extended work on the analysis of
some AIMD multiple bottleneck systems, based on fairness

and convergence analysis such as in [9] for the single
bottleneck case. For the multiple bottleneck case, it is known
that convergence does not hold in general. However, by
introducing the concept of parallel flows for flows that
experience an identical set of bottleneck nodes, we are able
to establish results for average fairness amongst parallel
flows. These results imply directly that when the flows do
converge, parallel flows must satisfy a form of fairness
directly analogous to those of [9]. The results have been
pursued in both the synchronous and asynchronous cases,
and are illustrated by a simple simulation study.

REFERENCES

[1] Z. Hhoa, S. Darbha, and A. Reddy, “A method for estimating
the proportion of nonresponsive traffic at a router”, IEEE/ACM
Transactions on Networking, v. 12, pp. 708-718, 2004.

[2] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks”, Journal of Com-
puter Networks v. 17, pp. 1-14, 1989.

[3] A. Berman, R.N. Shorten, and D.J. Leith, “Positive matrices asso-
ciated with synchronised communication networks”, Linear Algebra
and its Applications, v. 393, pp. 47-54, 2004.

[4] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability”, Journal
of the Operational Research Society, v. 49, pp. 237-252, 1998.

[5] J. Hespanha, S. Bohacek, K. Obrarzka, and J. Lee, “Hybrid modeling
of TCP congestion control”, Hybrid Systems: Computation and
Control, pp. 291-304, 2001.

[6] A. Leizarowitz, R. Stanojevic and R.N. Shorten, “Towards an analysis
and design framework for communication networks with Markovian
dynamics”, IEE Proceedings on Control Theory, Accepted for pub-
lication, 2006.

[7] U.G. Rothblum and R.N. Shorten, “Convergence results for high-
speed TCP”, Submitted to SIAM Journal of Control and Optimiza-
tion, 2005.

[8] R. Srikant, “The Mathematics of Internet Congestion Control”,
Birkhauser, 2003.

[9] R.N. Shorten, F. Wirth and D.J. Leith, “A Positive Systems Model
of TCP-like congestion control: asymptotic results”, IEEE/ACM
Transactions on Networking, v. 14, pp. 616-629, 2006

[10] F. Wirth, R. Stanojevic, R.N. Shorten, and D.J. Leith, “Stochastic
equilibria of AIMD communication networks”, SIAM Journal of
Matrix Analysis, Accepted for publication, 2006.

[11] S.H. Low, F. Paganini, and J.C. Doyle, “Internet Congestion Control”,
IEEE Control Systems Magazine, pp. 28-43, February 2002

[12] F. Baccelli and D. Hong, “Interaction of TCP flows as billiards”, in
Proceedings of INFOCOM, 2003.

[13] R.N. Shorten, D.J. Leith, J. Foy, and R. Kilduff, “Analysis and design
of AIMD congestion control algorithms in communication networks”,
Automatica, v. 41, pp. 725–730, 2005.

