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Abstract— In this paper we tackle a few problems related
to linear positive switched systems. First, we provide a result
on state-feedback stabilization of autonomous linear positive
switched systems through piecewise linear co-positive Lya-
punov functions. This is accompanied by a side result on the
existence of a switching law guaranteeing an upper bound
to the optimal L1 cost. Then, the induced L1 guaranteed cost
cost is tackled, through constrained piecewise linear co-positive
Lyapunov functions. The optimal L1 cost control is finally
studied via Hamiltonian function analysis.

I. INTRODUCTION

Switched systems [1] belong to the class of hybrid
systems [2], i.e. in which there is an interaction between
discrete and continuous dynamics, and, in particular, they
have continuous dynamics with "isolated" discrete switching
events. Some simple examples of switched systems include
cars with manual transmission, where changing the gear
modifies the continuous behavior of the vehicle; 4WD
vehicles where the torque applied to the rear axle can switch
between two different levels [3]; chemical processes with
variations of the concentrations and so on. Stability of these
kind of systems is not a trivial issue [4], [5] and two main
problems arise [2], [6]: the first one is to find conditions
that guarantee asymptotic stability of a switched system
for arbitrary switching signals; the second one occurs if a
switched system is not asymptotically stable for arbitrary
switching, since in this case it is interesting to identify those
switching signals for which it is asymptotically stable.

Positive systems [7], [8], instead, have the peculiar prop-
erty that any nonnegative input and nonnegative initial
state generate a nonnegative state trajectory and output for
all times. Positivity of the variables often emerges as the
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immediate consequence of the nature of the phenomenon
itself, such as any variable representing any possible type
of resource measured by a quantity like time, money and
goods, buffer size and queues, data packets flowing in a
network, water and air flows, populations, concentration of
any substance, electric charge and light intensity levels.
Moreover, probabilities are also positive quantities, and
therefore other examples of positive systems include hidden
Markov models and phase-type distributions models. Other
example include net of interconnected water tanks, industrial
processes with chemical reactors, heat exchangers, popula-
tions, compartmental systems, pollution models, economical
stochastic models and so on. Stabilization problems for
positive systems have been studied recently, [9], [10], and
can be particularly problematic due to the presence of the
positivity constraint on the input variable.

Switched positive systems, [11], are frequently encoun-
tered in many application fields. Examples of switched
positive systems are straightforward: environmental systems
such as rivers whose water flows is regulated by dams,
networks of tanks regulated by valves opening, chemical
plants where reagents concentration can be varied by means
of additional inputs, air conditioning systems. Also many ap-
plications in Communications networks involve algorithms
that lead to extremely complex positive systems, typically
involving significant nonlinearity, abrupt parameter switch-
ing and state resets, such as networks employing TCP and
other congestion control applications, synchronization prob-
lems and wireless power control applications [12]. Despite
their ubiquitous nature, a few basic problems, concerning
stabilization and performances, still deserve a deeper study.
This paper aims at extending results on the stabilization
for a continuous-time switched linear system [13], [14]
to continuous-time switched linear positive systems of the
general form

ẋ(t) = Aσ(t)x(t), x(0) = x0, (1)

defined for all t ≥ 0, where x(t) ∈ Rn
+ is the state
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variable vector, σ(t) is the switching signal, x0 ∈ Rn
+ is the

initial condition and Ai belongs to the set {A1, . . . , AN}.
In order to be a positive system Ai has to be Metzler,
i.e. aij ≥ 0, ∀(i, j), i 6= j. Moreover, we present also a
stabilizing switching rule for input-output switched positive
systems and the calculation of an upper bound of their
induced L1 norm. The idea that leads to the stabilization
is the same used for autonomous systems and it will be
presented in detail in the corresponding sections. Finally,
we study the stabilization of an autonomous linear switched
positive system through optimal control [15], [16], where
the continuous control is absent and only the switching
signal must be determined [17]. In particular, the sequence
of active subsystems may be arbitrary, or it may be subject to
constraints given as a pre-specified sequence with arbitrary
length or as an arbitrary sequence with pre-specified length.

Throughout this paper, the notation used is standard
for positive systems. Capital letters denote matrices, small
letters denote vectors. For matrices or vectors, (′) indicates
transpose. For matrices X or vectors x, the notation X or
x Â 0 (º 0) indicates that X, or x, has all elements positive
(non-negative). The sets of real and natural numbers are
denoted by R and N, respectively.

The paper is organized as follows. Section II is dedicated
to state-switching control where the aim is to design a func-
tion u(·) such that the system (1) is globally asymptotically
stable with the switching rule σ(t) = u(x(t)) º 0, ∀t ≥ 0.
Section III aims at finding a switching rule ensuring stability
and an upper bound of the induced L1 norm for the switched
positive system, while Section IV deals with the switched
optimal control for positive systems. Section V concludes
the paper.

II. STATE-SWITCHING CONTROL

Given a system (1), it is assumed that the state vector
x(t) is available for feedback for all t ≥ 0. Therefore our
goal is to determine the function u(·) : Rn

+ → {1, . . . , N}
such that

σ(t) = u(x(t)) (2)

makes the equilibrium point x = 0 of system (1) asymp-
totically stable. Note that we make no assumption on the
stability of the elements of the set {A1, . . . , AN}. Define
the simplex

Λ :=

{
λ ∈ RN :

N∑

i=1

λi = 1, λi ≥ 0

}
(3)

which allows us to introduce the following piecewise co-
positive Lyapunov function [18]:

v(x) := min
i=1,...,N

α′ix =min
λ∈Λ

(
N∑

i=1

λiα
′
ix

)
. (4)

The Lyapunov function in (4) is not differentiable every-
where. In particular, let us define the set I(x) = {i : v(x) =
α′ix}, v(x) fails to be differentiable on x ∈ Rn

+ such that
I(x) is composed of more than one element, that is in
the conjunction points of the individual Lyapunov functions
α′ix.

Now we will denote by M the subclass of Metzler ma-
trices consisting of all matrices Π ∈ RN×N with elements
πji, such that

πji ≥ 0 ∀j 6= i,

N∑

j=1

πji = 0 ∀j. (5)

As a consequence, any Π ∈ M has an eigenvalue at zero
since c′Π = 0, where c′ = [1 · · · 1].

Theorem 1 Consider the linear positive switched system
(1) and assume that there exists a set of positive vectors
{α1, . . . , αN}, αi ∈ Rn

+, and Π ∈ M, satisfying the
coupled co-positive Lyapunov inequalities:

A′iαi +
N∑

j=1

πjiαj ≺ 0 i = 1, . . . , N. (6)

Then, the state-switching control (2) with

u(x(t)) = arg min
i=1,...,N

α′ix(t) (7)

makes the equilibrium solution x = 0 of the system (1)
globally asymptotically stable.

Proof: Since the Lyapunov function (4) is not differen-
tiable for all t ≥ 0, we need to deal with the Dini derivative
[19]:

D+v(x(t)) = lim sup
h→0+

v(x(t + h))− v(x(t))
h

(8)

Assume, in accordance with (7), that at an arbitrary t ≥ 0,
the state-switching control is given by σ(t) = u(x(t)) = i

for some i ∈ I(x(t)). Therefore, remembering also that
(5) is valid for Π ∈ M and that α′jx(t) ≥ α′ix(t) for all
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j = 1, . . . , N , we have

D+v(x(t)) = lim sup
h→0+

v(x(t) + hAix(t))− v(x(t))
h

= min
k∈I(x(t))

α′kAix(t)

≤ α′iAix(t) ≤ −
N∑

j=1

πjiα
′
jx(t)

=− πiiα
′
ix(t)−

∑

j 6=i

πjiα
′
jx(t)

≤− πiiα
′
ix(t)−

∑

j 6=i

πjiα
′
ix(t)

=−
N∑

j=1

πjiα
′
ix(t) = 0,

(9)

which proves the proposed theorem since the Lyapunov
function v(x(t)) defined in (4) is radially unbounded.

Remark 1 Theorem 3 does not require the set
{A1, . . . , AN} be exclusively composed of Hurwitz
matrices. With Π ∈ M a necessary condition for the
Lyapunov Metzler inequalities to be feasible with respect
to {α1, . . . , αN} is that matrices Ai + πiiI have to be
asymptotically stable for all i = 1, . . . , N . Since πii ≤ 0,
this condition does not imply the asymptotic stability of Ai.

Now, let us introduce a guaranteed cost associated with
the proposed state-switching control law (7).

Theorem 2 Consider the linear positive switched system
(1) and let q ∈ Rn

+ be given. Assume that there exists a set
of positive vectors {α1, . . . , αN}, αi ∈ Rn

+ and Π ∈ M,
satisfying the coupled co-positive Lyapunov inequalities:

A′iαi +
N∑

j=1

πjiαj + q ≺ 0 i = 1, . . . , N. (10)

The state-switching control (2) with u(x(t)) given by (7)
makes the equilibrium solution x = 0 of the system (1)
globally asymptotically stable and

∫ ∞

0

q′x(t)dt ≤ min
i=1,...,N

α′ix0 (11)

Proof: If (10) holds, then (6) holds too, so we can say
that the equilibrium point x = 0 for system (1) is globally
asymptotically stable under that control law (7).

Moreover
v(x) = min

i=1,...,N
(α′ix) (12)

then

D+(v(x)) = min
k∈I(x(t))

α′kAix ≤ α′iAix

≤− πiiα
′
ix−

∑

j 6=i

πjiα
′
ix− q′x = −q′x

(13)

Hence

D+(v(x)) ≤ −q′x(t) (14)

which, after integration, gives

v(x(t))− v(0) =
∫ t

0

D+v(x(τ))dτ

≤−
∫ t

0

q′x(τ)dτ.

(15)

Due to asymptotic stability v(x(t)) goes to zero as t goes
to infinity, therefore

∫ t

0

q′x(τ)dτ ≤ v(0) = min
i=1,...,N

α′ix0. (16)

This concludes the proof.
Notice that (10) is not linear in the unknowns variables

πij , αi. Therefore, we need an alternative reformulation in
order to allow for an efficient numerical search. In particular,
the idea is to obtain a simpler, even if more conservative,
stability condition that can be expressed by means of LMIs.

The next corollary shows that, working with a subclass
of M-matrices, characterized by having the same diagonal
elements, this goal is accomplished.

Corollary 1 Let q ∈ Rn
+ be given. Assume that there exists

a set of positive vectors {α1, . . . , αN}, αi ∈ Rn
+ and a

scalar γ > 0 satisfying the modified coupled co-positive
Lyapunov inequalities:

A′iαi + γ(αj − αi) + q ≺ 0 i 6= j = 1, . . . , N. (17)

The state-switching control (2) with u(x(t)) given by (7)
makes the equilibrium solution x = 0 of the system (1)
globally asymptotically stable and

∫ ∞

0

q′x(t)dt ≤ min
i=1,...,N

α′ix0 (18)

Proof: The matrix Π ∈M has been chosen such that
πii = −γ, therefore

γ−1
∑

j 6=i

πji = 1 ∀i = 1, . . . , N (19)
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Since πji ≥ 0 ∀j 6= i, j, i = 1, . . . , N we can multiply (17)
by πji, summing up ∀j 6= i, j, i = 1, . . . , N and finally
multiplying the result by γ−1 > 0, so obtaining

A′iαi + q ≺ −
N∑

j=1

πjiαj ∀i = 1, . . . , N (20)

Hence the upper bound (11) of Theorem 2 holds.
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Fig. 1. Time simulation of the state switching control
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Fig. 2. Guaranteed cost as a function of γ.

Example 1 Let us consider the example with N = 2 and
matrices

A1 =

[
−5 30
2 −10

]
, A2 =

[
−2 18
10 −80

]
,

which are both positive and unstable. Considering q = [1 2]′

and the initial condition x0 = [1 1]′, the problem of
theorem 2 has been solved fixing the Π matrix elements and
minimizing the function δ(α) = α′1x0 + α′2x0, that is an

upper bound of the objective function min
i

α′ix0, fulfilling
(10). This procedure enables us to determine the minimum
δ?(α) = 19.158, corresponding to π11 = −91, π22 = −100
α1 = [5.6795 4.4984]′ and α2 = [5.8817 3.0984]′. Figure
1 shows the trajectories of the state variable x(t) ∈ R2

versus time for the switching system controlled by the
state switching rule σ(t) = u(x(t)) given by (7). As it
can be seen, the proposed control strategy is effective in
stabilizing the system under consideration. If we consider
the problem formulation (17), following the same rationale
explained above, we can minimize the objective function that
is now δ(γ). Figure 2 shows the behavior of the function
δ(γ), which presents an horizontal asymptote for increasing
values of γ. The minimum δ?(γ) = 13.06 corresponds to
α1 = [4.2286 2.3046]′ and α2 = [4.2294 2.2993]′. The
state variables behavior is the same shown in Figure 1.

Interestingly, a lower bound to the performance can be
obtained following the same rationale of Theorem 2.

Theorem 3 Assume that there exists a set of positive vec-
tors {α1, . . . , αN}, αi ∈ Rn

+, and Π ∈ M, satisfying the
coupled co-positive Lyapunov inequalities:

A′iαj +
N∑

k=1

πkiαk + q º 0 i, j = 1, . . . , N. (21)

Then

inf
σ

∫ ∞

0

q′x(t)dt ≥ max
i=1,...,N

α′ix(0)

Proof: Here we take

v(x) =max
i

α′ix

Then,

D+v(x(t)) = lim sup
h→0+

v(x(t) + hAix(t))− v(x(t))
h

= max
k∈I(x(t))

α′kAix(t)

≥ α′jAix(t)

≥−
N∑

k=1

πkiα
′
kx(t)− q′x(t)

=− πiiα
′
ix(t)−

∑

k 6=i

πkiα
′
kx(t)− q′x(t)

≥− πiiα
′
ix(t)−

∑

k 6=i

πkiα
′
ix(t)− q′x(t)

= − q′x(t)

(22)
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which proves the proposed theorem, since the optimal
trajectory is such that V (x(t)) → 0 as t →∞.

III. GUARANTEED INDUCED L1 NORM

The computation of an induced norm for input-output
switched system is quite difficult. Here we look at a switch-
ing rule that ensure stability and an upper bound of the
induced L1 norm for the switched positive system

ẋ = Aσx + Bσw (23)

z = Cσx + Dσw (24)

Since the system is positive, matrix Ai is Metzler and
matrices Bi, Ci, Di are positive.

We aim at finding a switching rule

u(x(t)) = arg min
i=1,...,N

α′ix(t) (25)

that makes the equilibrium solution x = 0 of the system
(23)-(24) globally asymptotically stable and

J = sup
w∈L1,w 6=0

∫∞
0

q′zz(t)dt∫∞
0

q′ww(t)dt
≤ γ (26)

where qz = [1 1 ... 1]′ and qw = [1 1 ... 1]′ of appropriate
dimensions.

Theorem 4 Assume that there exists a set of positive vec-
tors {α1, . . . , αN}, αi ∈ Rn

+, and Π ∈ M, satisfying the
coupled co-positive inequalities ∀i = 1, 2, · · · , N :

A′iαi +
N∑

j=1

πjiαj + C ′iqz ≺ 0 (27)

B′
iαi + D′

iqz ≺ γqw (28)

The state-switching control (2) with

u(x(t)) = arg min
i=1,...,N

α′ix(t) (29)

makes the equilibrium solution x = 0 of the system (1)
globally asymptotically stable and J ≤ γ.

Proof: We consider again the Lyapunov function (4).
Since (27) implies (6), the system is readily seen to be stable

under the action given by (29). Moreover, we have

D+v(x(t)) = lim sup
h→0+

v(x(t) + hAix(t))− v(x(t))
h

= min
k∈I(x(t))

α′k(Aix(t) + Biw)

≤ α′i(Aix(t) + Biw) <

<−
N∑

j=1

πjiα
′
jx(t)− q′zCix(t) + α′iBiw(t)

<− πiiα
′
ix(t)−

∑

j 6=i

πjiα
′
jx(t)

+ γq′ww(t)− q′zz(t)

≤ γq′ww(t)− q′zz(t),
(30)

so that, for each w ∈ L1 it follows
∫ ∞

0

(q′zz(t)− γqww(t))dt < min
i

α′ix(0)

The result is proved by letting x(0) → 0.

Remark 2 Notice that the L1 induced norm of a stable
positive system (Ai, Bi, Ci, Di) is ‖Gi(0)‖1, where Gi(s)
is its transfer function. This fact can be also expressed in
terms of linear inequalities as follows: ‖Gi(0)‖1 < γ if and
only if there exist a positive vector αi such that

A′iαi + C ′iqz = 0 (31)

B′
iαi + D′

iqz ≺ γqw (32)

Therefore, when all systems are stable, the attenuation level
min

i
‖Gi(0)‖1 can be attained by choosing the constant

switching signal σ(t) = arg min
i
‖Gi(0)‖1. Notice, however

that (27), (28) are certainly feasible only for γ >max
i‖Gi(0)‖, taking Π = 0 ∈M.

Example 2 Let us consider the example with N = 2 and
matrices A1, A2 of Example 1. Moreover, B1 = B2 =
[1 1]′, C1 = C2 = [1 1], and w = |sin(t)e−0.5t|. Following
the same rationale of example 1 we have achieved γ =
10.06 corresponding to π11 = −93, π22 = −100, α1 =
[5.0957 3.963]′ and α2 = [5.2737 2.7346]′. Figure 3 shows
the state variables behavior. As it can be seen, the proposed
control strategy is effective in stabilizing the system under
consideration.
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Fig. 3. Time simulation of the state switching control

IV. OPTIMAL CONTROL

In this section, we consider the optimal control problem
for an autonomous linear switched positive system on a
finite time interval. The cost functional to be minimized
over all admissible switching sequences is given by

J(x0, x, σ) =
∫ tf

0

q′x(t)dt + ς ′x(tf ) (33)

where x(t) is a solution of (1) with the switching signal
σ(t). Vectors q and ς are assumed to have all positive entries.

The optimal switching signal, the corresponding trajec-
tory and the optimal cost functional will be denoted as
σo(t, x0), xo(t) and J(x0, x

o, σo) respectively.
The Hamiltonian function relative to system (1) and cost

functional (33) is given by

H(x, σ, p) = q′x + p′Aσx (34)

Theorem 5 Let σo(t, x0) : [0, tf ]×Rn
+ → I = {1, . . . , N}

be an admissible switching signal relative to x0 and xo(t)
be the corresponding trajectory. If α(t) is a positive vector
solution of the system of differential equations

ẋo(t) = Aσo(t,x0)x
o(t) (35)

−α̇(t) = A′σo(t,x0)
α(t) + q (36)

σo(t, x0) = arg min
i∈I

{α′(t)Aix
o(t)} (37)

with the boundary condition xo(0) = x0 and α(tf ) = ς

then σo(t, x0) is the optimal switching signal relative to x0

and the value of the optimal cost functional is

J(x0, x
o, σo) = α′(0)x0 (38)

Proof: The scalar function

v(x, t) = α(t)′x (39)

is a generalized solution of the HJBE

0 = ∂v
∂t (x, t) + H

(
x(t), σo(t, x0), ∂v

∂x (x, t)′
)

(40)

where

H(x, σ, p) = q′x + p′Aσx (41)

In fact
∂v

∂x
(x, t) = α(t)′ (42)

∂v

∂t
(x, t) = α̇(t)′x (43)

so that, for almost all t ∈ [0, tf ]

α̇(t)′x(t) + q′x(t) + α(t)′Aσo(t,x0)x(t) =
=− α(t)′Aσo(t,x0)x(t)− q′x(t)+

+ q′x(t) + α(t)′Aσo(t,x0)x(t) =
= 0

(44)

Moreover it satisfies the boundary condition

v(x(tf ), tf ) = α(tf )′x(tf ) = ς ′x(tf ). (45)

This completes the proof.

Notice that computation of the optimal control law as
discussed in Theorem 5 is quite demanding. This is due
to the two point nature of the problem that requires a back
integration of (36) with a fixed final condition and a forward
integration of the system (35) with a given initial condition.

V. CONCLUSIONS

In this paper we have dealt with the stabilization of linear
switched positive systems. First of all we have found a
stabilizing switching signal for both autonomous and input-
output linear switched positive systems. For the latter an
upper bound of the induced L1 norm has been proposed. In
both cases, the determination of a guaranteed cost has been
addressed. Finally, an optimal control approach has been
studied for autonomous linear switching positive systems,
without any constraint on the switching signal.
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