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Abstract— In “Magnetic Bearing Measurement Configura- as a linear time invariant (LTI) system, Thibeault and
tions and Associated Robustness and Performance Limita- Smith [13] showed that self-sensing magnetic bearings are
tions”, Thibeault and Smith demonstrate that self-sensing q; feasible due to the presence of a non-minimum phase
magnetic bearings are impractical due to fundamental lim- NMP d iaht half ol ORHP le in th
itations in the achievable closed-loop robustness. Due to ( ) zeéro an open right half plane ( )p_oe in the
experimental data which appeared to contradict these results, transfer function from voltage to current. The existence of
Maslen, Montie, and Iwasaki showed that significantly better both a NMP zero and ORHP pole imposes severe limits
robustness is achievable in “Robustness limitations in self- in the achievable bound on the sensitivity function [3].
sensin_g magne_tic _bearings” if the magnetic bearing_is modeled However, experimental evidence [9], [10], [11], [12] ap-
as a linear periodic (LP) system rather than the linear time .
invariant (LTI) system used by Thibeault and Smith. The peqrs to suggest that th_e ,bOU”dS reported by Thibeault a.nd
present paper explores why modeling the self-sensing magnetic Smith [13] are too restrictive and that better robustness is
bearing as a LP system improves the achievable robustness. in fact obtainable using a self-sensing magnetic bearing.
This is accomplished by utilizing lifting to analyze the LP To demonstrate that better robustness is in fact possible,
model as a MIMO discrete LTI system. Maslen, Montie, and Ilwasaki [6] use a linear periodic (LP)
model a self-sensing magnetic bearing rather than a LTI
model. The LP component of the model is introduced by

By suspending the rotating shaft, or rotor, between oppoghe high frequency ripple in the current caused by the
ing sets of electromagnets, magnetic bearings are capableym drivers. The high frequency ripple appears as a
of providing non-contacting support as shown in Fig. 1periodic perturbation to the LTI state equations that asiow
This allows magnetic bearings to eliminate concerns thgfe authors of [6] to extract information about the rotor
arise from friction, wear, and lubrication in high-speedyosition from the measurement of current. Based on this LP
applications. Furthermore, the electromagnets can peovighodel of a self-sensing magnetic bearing, the authors of [6]
active damping and the absence of lubricants allows fQjse the methods of Dullerud and Lall [2] to design a LP
the magnetic bearing to operate in isolation from the envigontroller to minimize the peak in the sensitivity function
ronment. Unfortunately, magnetic bearings are inherentiyiasien, Montie, and Iwasaki [6] then numerically evaluate
unstable and thus require closed-loop control for stable norms of the input and output sensitivity functions for

I. INTRODUCTION

operation. their controller. Using this methodology, the authors df [6

are able to demonstrate that the introduction of the peariodi
I J |__ l perturbation alleviates the robustness issues reporfd@jn

-—eu _ N Furthermore, the authors of [6] are able to recover the
v, I N § N I v results of [13] in the limit as the magnitude and frequency of
‘: t 2 the periodic perturbation tend toward zero. While Maslen,

— _‘l I_ . Montie, and Iwasaki [6] present an intuitive argument for

why the introduction of the periodic perturbation allows fo
Left Electromagnet I_) g RightElectromagnet a more robust control design, a rigorous analysis of the

system is still needed.
Fig. 1. 1-dimensional magnetic bearing model. The present paper presents an analysis of the work done

by Maslen, Montie, and Iwasaki [6] in order to further
Self-sensing magnetic bearings are those which use fe ||a\_/est|gate why using a LP model of a self-sensing magnetic

back based on the measured current alone Measurinearing allows for the constraints found in [13] to be
' Blaxed. This is accomplished by utilizing lifting to comve

current for use in the feedback is preferable as current [Re Lp system to a discrete MIMO LTI system. Once
considerably less exp_ensive to measure than rotor positi%e discrete MIMO LTI system is obtained, established
Based on the analysis of a self-sensing magnetic bearlrt]tgchniques [1] are used to evaluate the robustness liomiati
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LP control of LTI systems can be used to improve the Symbol | Definition | Value

achievable gain and phase margins, both they and the o, non-dim bias flux | 0.288

authors of [14] have shown that LP control of LTI systems n ratio of times Sca'GJ 0.582

cannot improve the achievable bound on the sensitivity TABLE |

function. The main difference between [6] and [5], [14] DEFINITIONS AND NUMERICAL VALUES FOR PARAMETERS USED IN
is that the model is LP and therefore it is probable that LP THE SELFSENSING MAGNETIC BEARING MODEL[6].

control will be advantageous, although this remains an open
question [5].
The model of the self-sensing magnetic bearing is pre-
sented in Sec. I, followed by a review of the results of [6l¢he input and output sensitivity functions are defined as
[13] in Sec. lll. Next, an overview of the lifting technique operators such that
is provided in Sec. IV. Finally, the achievable bounds on
the sensitivity function are computed in Sec. V along with y=Sw=(I+KP) " w (3)
a discussion of how the LP nature of the system allows for uw=Syw=(I+PK) v 4)

the constraints found in [13] to be relaxed.
respectively, whereP is the operator that describes the

[I. MAGNETIC BEARING MODEL input/output characteristics of the plant aid is the op-
fgrator that describes the input/output characteristichef
controller. Given the definitions in Eqgns. (3) and (4), the
input/output sensitivity functions quantify the resporcfe
dz the system to the input/output divisive uncertaintids

For the purpose of this paper, the model of the sel
sensing magnetic bearing is given by [6], [13]

dt = Az +ysin (wt) Adz + Bu @ and A, respectively. Thus the achievable bound on the
y = Czx + ysin (wt) ACz (2) sensitivity function
Sio
where ||SZOHOO — sup H ) MHQ (5)
, neLy\{0} ||M||2
T = [ g v ¢ ] . . . .
where L, is the set of square integrable signals, is an
y=1 important measurement of robustness.
0 1 0
A= 0 0 & VoA
| 7%y 0 -7 L= “‘
B 0 0 0 —)@—) Controller, K @ Plant,P y
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g is the non-dimensional air gap between the rotor and T
magnetic bearingy is the non-dimensional velocity of the Fig. 2. Generic feedback structure with input divisive uteiaty (top) and
rotor, ¢ is the non-dimensional magnetic fluxis the non- output divisive uncertainty (bottom).

dimensional electrical current, ands the non-dimensional

applied voltage. Values for and definitions of the constants gased on the work of [3] and using a LTI model of a
%, andn are found in Table I. Fory # 0, this model geit sensing magnetic bearing, Thibeault and Smith [13]
corresponds to the LP self-sensing magnetic bearing moqglmonstrate that the existence of a NMP zers at0.288
used in [6] by Maslen, Montie, and Iwasaki. Setting=0, 5nd ORHP pole as = 0.242 in the transfer function
this model corresponds to the LTI model used in [13] byrom yoltage to current imposes a sever limit on the
Thibeault and Smith. achievable bound on the sensitivity functions, see Table Il
As previously stated, these bounds appear to conflict with
experimental data given in [9], [10], [11], [12]. To account
for this difference, the authors of [6] introduce a periodic
In order to access the feasibility of using a self-sensingerturbation~ sin (wt) to model the effects of the high
magnetic bearing, the authors of both [6] and [13] use thigequency excitation of the PWM drivers used to operate
achievable bound on the sensitivity function as a measure tife self-sensing magnetic bearing. Using the techniques de
robustness. Given the feedback structures shown in Fig. &loped in [2], the authors of [6] design several contraller

IIl. PREVIOUS ANALYSIS OF THE SELFSENSING
MAGNETIC BEARING MODEL



to minimize the lower bounds of the sensitivity functionswhere
for various values ofy andw. Table Il lists the results for

v = 0.02 andw = 122, which is representative of the A = I+ At (A +ysin (wkAt) Ad)

achieved bounds found in [6]. C = C + ~ysin (wkAt) AC.
Results from [13]  Results from [6] The LTI lifted system is given by [8]
1S3 ]l oo 11.53 1.02 TyyN = Frgy + Gugn
Solleo 11.53 10.50
I qkn = Hxpn + Evgn
TABLE Il
LOWER BOUNDS ONJ|S; [|c AND ||Sol|oc FROM[13] AND AcHiEVED ~ WheTe
BOUNDS ON || S;]|oc AND ||:So||oc FROM [6]. F =& (N,0)

G=[ ®(N,1)by ®(N,2)b
The authors of [6] argue that the improvements to the ®(N,N—1by-2 by-1 ]
input sensitivity function are a direct result of the LP  H' =[ ¢4 ®(1,0)'¢}
component of the output. Modeled as a LP system, the (I)(N_Q,())’CN_Q (T — 1a0)/0/1v—1 ]
measured current contains an additional periodic term that pmn _ ¢ mn

is only a function of the air gap between the rotor and *
magnetic bearing, see Eqn (2). By extracting this peri- ept =
odic information from the output, the controller is able

to determine the air gap between the rotor and magnetitmd
bearing. Since the transfer function from voltage to the air /
gap is minimum phase, Maslen, Montie, and Iwasaki [6] ven = [ UkN  UkNt1 o UkN4N-1 ]
are able to avoid the limit imposed by the NMP zero in aN = [ YkN  UkN+1 0 UkN4N-1 ]'.
the transfer function from voltage to current. Furthermore . o . . .
Maslen, Montie, and Iwasaki [6] argue that they are not abl-tghe matrix & (i, j) is the discrete transition matrix given
to achieve significant improvements in the output sensjtivi by

function since an output disturbance near the frequency ®(i,j) = H;‘C—:lek_

of the periodic perturbationy sin (wt) would destroy the o o . ] ]
ability of the controller to accurately determine the ai,Quahtatlvely, lifting increases the dimensionality ofeth

gap. A similar technique has been utilized to determinPut and output vectors and their associated matrices in
rotor position in reluctance motors [7], [4], but as withthe state space model su_ch that thgy contain the inputs and
self-sensing magnetic bearings a complete analysis of tQ&tPUtS over a single period. In doing so, the new system
robustness implications is presently lacking in the litera. IS LTI with respect to the index.V. An important property

To explain why the introduction of the periodic perturbaOf the lifted system is that it preserves the norm [5], [14]
tion relaxes the constraints found in [13], the remainde?f the system, i.e. given a discrete systdfmand the lifted
of this paper uses lifting to convert the LP system td/€rsion,P,
a MIMO LTI system. Using the MIMO LTI system, we _ P

o : g [Plloc = [Pl]oo- ()
can compute explicit bounds on the achievable sensitivity
functions and investigate why these bounds differ fronPue to the property of Eqn. (7) we are able to evaluate the
those found in [13]. norm based properties of the LP system using the LTI lifted
model.

{e
Cl',l(I)(Z.— ].,j)bj,1 1>
0 i<j

IV. DISCRETIZATION AND LIFTING
Explicit bounds for the achievable sensitivity functions V. SENSITIVITY BOUNDS
of continuous LP systems do not yet exist. As such, the The limitations found in [13] arise due to the signal
continuous LP model of the self-sensing magnetic bearingocking properties of NMP zeros [3]. By lifting the disoeet

is discretized and then lifted to form a LTI system for which_p system to form a higher dimensional MIMO system we
explicit bounds do exist. The LP model is discretized usingan make use of the additional inputs/outputs to avoid the

an Euler approximation at the sampling rate blocking properties of the NMP zeros. Mathematically, this
Al — 2 ©6) appears in terms of the pole/zero input/output directions.
~ wN The more orthogonal these vectors are to one another, the

where N is the number of desired sample points over onkess the blocking properties of the NMP zeros influence the
period to form the discrete system achievable bounds on the sensitivity functions [1].

Having lifted the LP system to obtain the discrete MIMO
state space representation, the input and output sensitivi
Yy = Cry, operators defined in Eqgns. (3) and (4) become discrete

Tpq1 = Apzy + Bug,



MIMO transfer functions. As such, the achievable lower vy=0 ~=0.02

bounds for the input and output sensitivity functions are ISilloo  11.53 1.02
given by [1] [|So]| 0o 11.53 10.40
TABLE IIl
1—pz|?
||Si‘|oo > \/0052 / (7707@) p ’ +sin? / (7707 ) LOWER BOUNDS ON||S||oc FOR VARIOUS VALUES OF~.
(8)
1—pz 2
1S6l] o =4/ co8? £ (mi, Co) _ ‘ +sin® 2 (n:,()  wherez is their respective location in the z-domain, are

) also shown in Fig. 3 as a function of. It is reassuring
to observe that the lifted system remains both unstable
where S; is the input sensitivity functionS,, is the output and NMP irrespective of the value af. In the z-domain,
sensitivity function,p is the pole outside of the unit circle both the pole and NMP zero approach 1 from abovesas
of the lifted system; is the NMP zero of the lifted system, increases since the sampling time decreases as a function
¢; € RV*1is the input zero direction;, € RN*! is the of w, see Eqn. (6). Somewhat more interesting is that the
output zero directiony; € R™V>*! is the input pole direction, equivalent locations of the pole and NMP zero in the s-
andn, € RV*! is the output pole direction. The zero anddomain are approximately constant with As w increases
pole direction vectors are defined as the ORHP pole converges to= 12.1 and the NMP zero
, 1 converges tae = 14.4. Using these values to compute the
Co (H (2 = F) G+ E) =0 continuous time Blaschke product, we find
(H(zIfF)_lGJrE) G=0

where(/ ¢, =1, ¢/¢; =1, and

p+z
=P
which is essentially equal to the value of the Blaschke

=11.52,

n; = _Hv product found in [13] used to find the lower bound on the
[ Hvll2 Sensitivity function.
o = v@G
€] P
WhereV € R3><1 and v _6 R1><?f are the rlght .and Ieﬂ: 1'41‘ — Discrete pole outside the unit circle, p|
eigenvectors ofF' associated withp. Table Il lists the \ - - - Discrete NMP zero, z

achievable bounds on both the input and output sensitivity
function for two different cases. In each case

Location on real axis

w =122
N =50 g

Equivalent ORHP pole in the s—domain, In(p)/A {
= = = Equivalent NMP zero in the s-domain, In(z)/A t

wherew is chosen to match the value given in [6]. The value
of ~ is varied to compare our results to those of [6], [13].
Settingy = 0 reduces the model to the LTI system studied
in [13] and it is reassuring to find that the methodology of 10 20 30 40 50 60 70 8 9 100
discretization and lifting produces the same bounds redort
In [13] Next, we lety = 0.2 to verify the results in [6]_' Fig. 3. Locations on the real axis of the discrete pole oetsifithe unit
Again, the bounds we have computed match those achievggie and the NMP zero of the lifted system (Top). Equivalecations
in [6]. This is not surprising as the methodology used byn the real axis in the s-domain of the discrete pole outsidthe@funit
Maslen, Montie, and lwasaki [6] employs lifting to applycwcle and the NMP zero of the lifted system (Bottom).

robust control to LP systems, suchis, synthesis [2]. The

difference between this paper and [2] is that here we presentFor an explanation of the improved achievable perfor-
bounds on the achievable performance whereas [2] presemiance of the lifted system, let us examine the various
a methodology for designing a controller to minimize theerms used in Eqgns. (8) (9). The terms of interest are the
norm of a LP system. magnitude of the discrete Blaschke product
The location of the discrete pole outside of the unit circle, 1—pz
p, and the NMP zeroz, of the lifted system are shown in
Fig. 3 as a function of. In addition the equivalent location =TP
in the s-domain ofp and z of the lifted system, given by and the relative angles of the pole/zero input/output direc
tions, cos Z (1,,¢;) and cos Z (n;,(,). Recall that limita-
s = In (z) At tions in the sensitivity functions arise due to the existenc

Location on real axis
=
w




of NMP zeros and ORHP poles [3] and that their impact is 03
determined by their relative location to one another. The
impact of this is encapsulated in the magnitude of the
Blaschke product. Thus the further apart the NMP zero and
ORHP pole, the smaller the Blaschke product, and thus the =~ %[
smaller its effect. In addition, the relative angles betwee 03, 5 2 = m =0
the pole/zero input/output directions in MIMO systems play
an important role as they represent the extent to which the
inputs and outputs can be used to “avoid” the effects of the 0.15
NMP zeros and ORHP poles. =2 o
To visualize their effect, the Blaschke product, the o5l
cos Z (0o, ¢;), and thecos £ (n;, ¢,) are plotted in Fig. 4 as a ‘ ‘ ‘ ‘
function ofw. Both the Blaschke product ards / (1;, (,) 0 10 20 ents a0 50
remain relatively constant with changing and thus little
improvement is observed in the Output SensitiVity function Fig. 5. Pole and zero direction vectors associated With
In contrast,cos £ (n,, ;) approaches zero with increasing
w. Therefore the improvements in the input sensitivity
function occur due to the input zero direction and output
pole direction becoming orthogonal to one another.

0.151
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o
R Element #

Fig. 6. Pole and zero direction vectors associated With

Fig. 4. Blaschke product and angle between zero and poletidins as a Despite this change in the direction vectors the bounds on
function ofw . o . .
the sensitivity functions remain unchanged, see Table. IV.

To investigate the relative angles of the pole/zero in-
put/output directions further, they are each plotted elgme
wise in Figs. 5 and 6 for the LP lifted system, # 0,
and for the LTI lifted system;y = 0. When the periodic N
perturbation is introduced the input zero directign,output
zero direction,(,, and input pole directiony;, all develop
a sinusoidal variation while the output pole directiop,
remains essentially constant. 03

However, it is not the appearance (or lack there of) of
a sinusoidal variation in the input/output directions that
causes the change in the achievable bound on the sensitivity =
function. To demonstrate this, the relative angles of the ~015¢
pole/zero input/output directions are each plotted elémen -0.3; 5 5 = e 2
wise in Figs. 7 and 8 for the case &fA = 0 and~ # 0 Element #
which removes the periodic perturbation from the state
dynamics given in Eqn. (1) but not the output equation. Agig. 7._ Pole and zero direction yectors associated )Su'tlwi_th and without

. . . . including the periodic perturbation on the state dynamics.

seen in Fig. 8 the output zero directiay, does not develop
a sinusoidal variation for the case &fA = 0 while the
input pole directiony;, is unaffected by settindA A = 0. If not the appearance of a sinusoidal variation in the

o
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Fig. 8. Pole and zero direction vectors associated Withvith and without
including the periodic perturbation on the state dynamics.

AA#£0 AA=0

(A 1.02 1.02
[Solle  10.40 10.40
TABLE IV

LOWER BOUNDS ON||S;||oc AND ||So||co FORAA # 0 AND AA = 0.

Smith [13]. By utilizing lifting to convert the LP model to a
discrete MIMO LTI model, it was shown that improvements
in the achievable bound on the sensitivity function is altesu
of the orthogonality of the pole/zero input/output direati
vectors due to the periodic nature of the output. While
strengthening the claims made by Maslen, Montie, and
Iwasaki [6], more work is still required to better understan
how the controller should exploit the periodic nature of the
system to improve robustness and when similar techniques
can be applied to other systems.
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