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Abstract— In “Magnetic Bearing Measurement Configura-
tions and Associated Robustness and Performance Limita-
tions”, Thibeault and Smith demonstrate that self-sensing
magnetic bearings are impractical due to fundamental lim-
itations in the achievable closed-loop robustness. Due to
experimental data which appeared to contradict these results,
Maslen, Montie, and Iwasaki showed that significantly better
robustness is achievable in “Robustness limitations in self-
sensing magnetic bearings” if the magnetic bearing is modeled
as a linear periodic (LP) system rather than the linear time
invariant (LTI) system used by Thibeault and Smith. The
present paper explores why modeling the self-sensing magnetic
bearing as a LP system improves the achievable robustness.
This is accomplished by utilizing lifting to analyze the LP
model as a MIMO discrete LTI system.

I. I NTRODUCTION

By suspending the rotating shaft, or rotor, between oppos-
ing sets of electromagnets, magnetic bearings are capable
of providing non-contacting support as shown in Fig. 1.
This allows magnetic bearings to eliminate concerns that
arise from friction, wear, and lubrication in high-speed
applications. Furthermore, the electromagnets can provide
active damping and the absence of lubricants allows for
the magnetic bearing to operate in isolation from the envi-
ronment. Unfortunately, magnetic bearings are inherently
unstable and thus require closed-loop control for stable
operation.
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Fig. 1. 1-dimensional magnetic bearing model.

Self-sensing magnetic bearings are those which use feed-
back based on the measured current alone. Measuring
current for use in the feedback is preferable as current is
considerably less expensive to measure than rotor position.
Based on the analysis of a self-sensing magnetic bearing
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as a linear time invariant (LTI) system, Thibeault and
Smith [13] showed that self-sensing magnetic bearings are
not feasible due to the presence of a non-minimum phase
(NMP) zero and open right half plane (ORHP) pole in the
transfer function from voltage to current. The existence of
both a NMP zero and ORHP pole imposes severe limits
in the achievable bound on the sensitivity function [3].
However, experimental evidence [9], [10], [11], [12] ap-
pears to suggest that the bounds reported by Thibeault and
Smith [13] are too restrictive and that better robustness is
in fact obtainable using a self-sensing magnetic bearing.

To demonstrate that better robustness is in fact possible,
Maslen, Montie, and Iwasaki [6] use a linear periodic (LP)
model a self-sensing magnetic bearing rather than a LTI
model. The LP component of the model is introduced by
the high frequency ripple in the current caused by the
PWM drivers. The high frequency ripple appears as a
periodic perturbation to the LTI state equations that allows
the authors of [6] to extract information about the rotor
position from the measurement of current. Based on this LP
model of a self-sensing magnetic bearing, the authors of [6]
use the methods of Dullerud and Lall [2] to design a LP
controller to minimize the peak in the sensitivity function.
Maslen, Montie, and Iwasaki [6] then numerically evaluate
the norms of the input and output sensitivity functions for
their controller. Using this methodology, the authors of [6]
are able to demonstrate that the introduction of the periodic
perturbation alleviates the robustness issues reported in[13].
Furthermore, the authors of [6] are able to recover the
results of [13] in the limit as the magnitude and frequency of
the periodic perturbation tend toward zero. While Maslen,
Montie, and Iwasaki [6] present an intuitive argument for
why the introduction of the periodic perturbation allows for
a more robust control design, a rigorous analysis of the
system is still needed.

The present paper presents an analysis of the work done
by Maslen, Montie, and Iwasaki [6] in order to further
investigate why using a LP model of a self-sensing magnetic
bearing allows for the constraints found in [13] to be
relaxed. This is accomplished by utilizing lifting to convert
the LP system to a discrete MIMO LTI system. Once
the discrete MIMO LTI system is obtained, established
techniques [1] are used to evaluate the robustness limitations
of the system and to investigate why they differ from those
found in [13].

The use of lifting to investigate the robustness of LP
systems has previously been employed in [5], [14]. While
Khargonekar, Poolla, and Tannenbaum [5] demonstrate that



LP control of LTI systems can be used to improve the
achievable gain and phase margins, both they and the
authors of [14] have shown that LP control of LTI systems
cannot improve the achievable bound on the sensitivity
function. The main difference between [6] and [5], [14]
is that the model is LP and therefore it is probable that LP
control will be advantageous, although this remains an open
question [5].

The model of the self-sensing magnetic bearing is pre-
sented in Sec. II, followed by a review of the results of [6],
[13] in Sec. III. Next, an overview of the lifting technique
is provided in Sec. IV. Finally, the achievable bounds on
the sensitivity function are computed in Sec. V along with
a discussion of how the LP nature of the system allows for
the constraints found in [13] to be relaxed.

II. M AGNETIC BEARING MODEL

For the purpose of this paper, the model of the self-
sensing magnetic bearing is given by [6], [13]

dx

dt
= Ax + γ sin (ωt) ∆Ax + Bu (1)

y = Cx + γ sin (ωt)∆Cx (2)

where

x =
[

g v φ
]′

y = i

A =





0 1 0
0 0 Φb

ηΦb 0 −η





∆A =





0 0 0
0 0 Φb

ηΦb 0 0





B =
[

0 0 1
]′

C =
[

−Φb 0 1
]

∆C =
[

−Φb 0 0
]

g is the non-dimensional air gap between the rotor and
magnetic bearing,v is the non-dimensional velocity of the
rotor, φ is the non-dimensional magnetic flux,i is the non-
dimensional electrical current, andu is the non-dimensional
applied voltage. Values for and definitions of the constants
Φb and η are found in Table I. Forγ 6= 0, this model
corresponds to the LP self-sensing magnetic bearing model
used in [6] by Maslen, Montie, and Iwasaki. Settingγ = 0,
this model corresponds to the LTI model used in [13] by
Thibeault and Smith.

III. PREVIOUS ANALYSIS OF THE SELF-SENSING

MAGNETIC BEARING MODEL

In order to access the feasibility of using a self-sensing
magnetic bearing, the authors of both [6] and [13] use the
achievable bound on the sensitivity function as a measure of
robustness. Given the feedback structures shown in Fig. 2,

Symbol Definition Value

Φb non-dim bias flux 0.288
η ratio of times scales 0.582

TABLE I

DEFINITIONS AND NUMERICAL VALUES FOR PARAMETERS USED IN

THE SELF-SENSING MAGNETIC BEARING MODEL[6].

the input and output sensitivity functions are defined as
operators such that

y = Siw = (I + KP )
−1

w (3)

u = Sov = (I + PK)
−1

v (4)

respectively, whereP is the operator that describes the
input/output characteristics of the plant andK is the op-
erator that describes the input/output characteristics ofthe
controller. Given the definitions in Eqns. (3) and (4), the
input/output sensitivity functions quantify the responseof
the system to the input/output divisive uncertainties∆i

and ∆o respectively. Thus the achievable bound on the
sensitivity function

||Si,o||∞ := sup
µ∈L2\{0}

||Si,oµ||2
||µ||2

(5)

where L2 is the set of square integrable signals, is an
important measurement of robustness.
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Fig. 2. Generic feedback structure with input divisive uncertainty (top) and
output divisive uncertainty (bottom).

Based on the work of [3] and using a LTI model of a
self-sensing magnetic bearing, Thibeault and Smith [13]
demonstrate that the existence of a NMP zero ats = 0.288
and ORHP pole ats = 0.242 in the transfer function
from voltage to current imposes a sever limit on the
achievable bound on the sensitivity functions, see Table II.
As previously stated, these bounds appear to conflict with
experimental data given in [9], [10], [11], [12]. To account
for this difference, the authors of [6] introduce a periodic
perturbationγ sin (ωt) to model the effects of the high
frequency excitation of the PWM drivers used to operate
the self-sensing magnetic bearing. Using the techniques de-
veloped in [2], the authors of [6] design several controllers



to minimize the lower bounds of the sensitivity functions
for various values ofγ andω. Table II lists the results for
γ = 0.02 and ω = 122, which is representative of the
achieved bounds found in [6].

Results from [13] Results from [6]

‖Si‖∞ 11.53 1.02
‖So‖∞ 11.53 10.50

TABLE II

LOWER BOUNDS ON‖Si‖∞ AND ‖So‖∞ FROM [13] AND ACHIEVED

BOUNDS ON‖Si‖∞ AND ‖So‖∞ FROM [6].

The authors of [6] argue that the improvements to the
input sensitivity function are a direct result of the LP
component of the output. Modeled as a LP system, the
measured current contains an additional periodic term that
is only a function of the air gap between the rotor and
magnetic bearing, see Eqn (2). By extracting this peri-
odic information from the output, the controller is able
to determine the air gap between the rotor and magnetic
bearing. Since the transfer function from voltage to the air
gap is minimum phase, Maslen, Montie, and Iwasaki [6]
are able to avoid the limit imposed by the NMP zero in
the transfer function from voltage to current. Furthermore,
Maslen, Montie, and Iwasaki [6] argue that they are not able
to achieve significant improvements in the output sensitivity
function since an output disturbance near the frequency
of the periodic perturbationγ sin (ωt) would destroy the
ability of the controller to accurately determine the air
gap. A similar technique has been utilized to determine
rotor position in reluctance motors [7], [4], but as with
self-sensing magnetic bearings a complete analysis of the
robustness implications is presently lacking in the literature.

To explain why the introduction of the periodic perturba-
tion relaxes the constraints found in [13], the remainder
of this paper uses lifting to convert the LP system to
a MIMO LTI system. Using the MIMO LTI system, we
can compute explicit bounds on the achievable sensitivity
functions and investigate why these bounds differ from
those found in [13].

IV. D ISCRETIZATION AND L IFTING

Explicit bounds for the achievable sensitivity functions
of continuous LP systems do not yet exist. As such, the
continuous LP model of the self-sensing magnetic bearing
is discretized and then lifted to form a LTI system for which
explicit bounds do exist. The LP model is discretized using
an Euler approximation at the sampling rate

∆t =
2π

ωN
(6)

whereN is the number of desired sample points over one
period to form the discrete system

xk+1 = Akxk + Buk

yk = Ckxk

where

Ak = I + ∆t (A + γ sin (ωk∆t) ∆A)

Ck = C + γ sin (ωk∆t) ∆C.

The LTI lifted system is given by [8]

x(k+1)N = FxkN + GvkN

qkN = HxkN + EvkN

where

F =Φ(N, 0)

G =
[

Φ(N, 1) b0 Φ(N, 2) b1 · · ·

Φ(N,N − 1) bN−2 bN−1

]

H ′ =
[

c′0 Φ(1, 0)
′
c′1 · · ·

Φ(N − 2, 0)
′
c′N−2 Φ(T − 1, 0)

′
c′N−1

]

Emn =
{

emn
ij

}

emn
ij =

{

ci−1Φ(i − 1, j)bj−1 i > j

0 i ≤ j

and

vkN =
[

ukN ukN+1 · · · ukN+N−1

]′

qkN =
[

ykN ykN+1 · · · ykN+N−1

]′
.

The matrix Φ(i, j) is the discrete transition matrix given
by

Φ(i, j) = Πi−1
k=jAk.

Qualitatively, lifting increases the dimensionality of the
input and output vectors and their associated matrices in
the state space model such that they contain the inputs and
outputs over a single period. In doing so, the new system
is LTI with respect to the indexkN . An important property
of the lifted system is that it preserves the norm [5], [14]
of the system, i.e. given a discrete system,P , and the lifted
version,P̂ ,

‖P‖∞ = ‖P̂‖∞. (7)

Due to the property of Eqn. (7) we are able to evaluate the
norm based properties of the LP system using the LTI lifted
model.

V. SENSITIVITY BOUNDS

The limitations found in [13] arise due to the signal
blocking properties of NMP zeros [3]. By lifting the discrete
LP system to form a higher dimensional MIMO system we
can make use of the additional inputs/outputs to avoid the
blocking properties of the NMP zeros. Mathematically, this
appears in terms of the pole/zero input/output directions.
The more orthogonal these vectors are to one another, the
less the blocking properties of the NMP zeros influence the
achievable bounds on the sensitivity functions [1].

Having lifted the LP system to obtain the discrete MIMO
state space representation, the input and output sensitivity
operators defined in Eqns. (3) and (4) become discrete



MIMO transfer functions. As such, the achievable lower
bounds for the input and output sensitivity functions are
given by [1]

||Si||∞ ≥

√

cos2 ∠ (ηo, ζi)

∣

∣

∣

∣

1 − pz

z − p

∣

∣

∣

∣

2

+ sin2
∠ (ηo, ζi)

(8)

||So||∞ ≥

√

cos2 ∠ (ηi, ζo)

∣

∣

∣

∣

1 − pz

z − p

∣

∣

∣

∣

2

+ sin2
∠ (ηi, ζo)

(9)

whereSi is the input sensitivity function,So is the output
sensitivity function,p is the pole outside of the unit circle
of the lifted system,z is the NMP zero of the lifted system,
ζi ∈ RN×1 is the input zero direction,ζo ∈ RN×1 is the
output zero direction,ηi ∈ RN×1 is the input pole direction,
andηo ∈ RN×1 is the output pole direction. The zero and
pole direction vectors are defined as

ζ ′o

(

H (zI − F )
−1

G + E
)

= 0
(

H (zI − F )
−1

G + E
)

ζi = 0

whereζ ′oζo = 1, ζ ′iζi = 1, and

ηi =
Hν

‖Hν‖2

η′
o =

υG

‖υG‖2

where ν ∈ R3×1 and υ ∈ R1×3 are the right and left
eigenvectors ofF associated withp. Table III lists the
achievable bounds on both the input and output sensitivity
function for two different cases. In each case

ω = 122

N = 50

whereω is chosen to match the value given in [6]. The value
of γ is varied to compare our results to those of [6], [13].
Settingγ = 0 reduces the model to the LTI system studied
in [13] and it is reassuring to find that the methodology of
discretization and lifting produces the same bounds reported
in [13]. Next, we letγ = 0.2 to verify the results in [6].
Again, the bounds we have computed match those achieved
in [6]. This is not surprising as the methodology used by
Maslen, Montie, and Iwasaki [6] employs lifting to apply
robust control to LP systems, such asH∞ synthesis [2]. The
difference between this paper and [2] is that here we present
bounds on the achievable performance whereas [2] presents
a methodology for designing a controller to minimize the
norm of a LP system.

The location of the discrete pole outside of the unit circle,
p, and the NMP zero,z, of the lifted system are shown in
Fig. 3 as a function ofω. In addition the equivalent location
in the s-domain ofp andz of the lifted system, given by

s = ln (x) ∆t

γ = 0 γ = 0.02

‖Si‖∞ 11.53 1.02
‖So‖∞ 11.53 10.40

TABLE III

LOWER BOUNDS ON‖S‖∞ FOR VARIOUS VALUES OFγ .

where x is their respective location in the z-domain, are
also shown in Fig. 3 as a function ofω. It is reassuring
to observe that the lifted system remains both unstable
and NMP irrespective of the value ofω. In the z-domain,
both the pole and NMP zero approach 1 from above asω

increases since the sampling time decreases as a function
of ω, see Eqn. (6). Somewhat more interesting is that the
equivalent locations of the pole and NMP zero in the s-
domain are approximately constant withω. As ω increases
the ORHP pole converges tos = 12.1 and the NMP zero
converges tos = 14.4. Using these values to compute the
continuous time Blaschke product, we find

∣

∣

∣

∣

p + z

z − p

∣

∣

∣

∣

= 11.52,

which is essentially equal to the value of the Blaschke
product found in [13] used to find the lower bound on the
Sensitivity function.
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Fig. 3. Locations on the real axis of the discrete pole outside of the unit
circle and the NMP zero of the lifted system (Top). Equivalent locations
on the real axis in the s-domain of the discrete pole outside ofthe unit
circle and the NMP zero of the lifted system (Bottom).

For an explanation of the improved achievable perfor-
mance of the lifted system, let us examine the various
terms used in Eqns. (8) (9). The terms of interest are the
magnitude of the discrete Blaschke product

∣

∣

∣

∣

1 − pz

z − p

∣

∣

∣

∣

and the relative angles of the pole/zero input/output direc-
tions, cos ∠ (ηo, ζi) and cos ∠ (ηi, ζo). Recall that limita-
tions in the sensitivity functions arise due to the existence



of NMP zeros and ORHP poles [3] and that their impact is
determined by their relative location to one another. The
impact of this is encapsulated in the magnitude of the
Blaschke product. Thus the further apart the NMP zero and
ORHP pole, the smaller the Blaschke product, and thus the
smaller its effect. In addition, the relative angles between
the pole/zero input/output directions in MIMO systems play
an important role as they represent the extent to which the
inputs and outputs can be used to “avoid” the effects of the
NMP zeros and ORHP poles.

To visualize their effect, the Blaschke product, the
cos ∠ (ηo, ζi), and thecos ∠ (ηi, ζo) are plotted in Fig. 4 as a
function ofω. Both the Blaschke product andcos ∠ (ηi, ζo)
remain relatively constant with changingω and thus little
improvement is observed in the output sensitivity function.
In contrast,cos ∠ (ηo, ζi) approaches zero with increasing
ω. Therefore the improvements in the input sensitivity
function occur due to the input zero direction and output
pole direction becoming orthogonal to one another.
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Fig. 4. Blaschke product and angle between zero and pole directions as a
function of ω .

To investigate the relative angles of the pole/zero in-
put/output directions further, they are each plotted element-
wise in Figs. 5 and 6 for the LP lifted system,γ 6= 0,
and for the LTI lifted system,γ = 0. When the periodic
perturbation is introduced the input zero direction,ζi, output
zero direction,ζo, and input pole direction,ηi, all develop
a sinusoidal variation while the output pole direction,ηo,
remains essentially constant.

However, it is not the appearance (or lack there of) of
a sinusoidal variation in the input/output directions that
causes the change in the achievable bound on the sensitivity
function. To demonstrate this, the relative angles of the
pole/zero input/output directions are each plotted element-
wise in Figs. 7 and 8 for the case of∆A = 0 and γ 6= 0
which removes the periodic perturbation from the state
dynamics given in Eqn. (1) but not the output equation. As
seen in Fig. 8 the output zero direction,ζo, does not develop
a sinusoidal variation for the case of∆A = 0 while the
input pole direction,ηi, is unaffected by setting∆A = 0.
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Fig. 5. Pole and zero direction vectors associated withSi.
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Fig. 6. Pole and zero direction vectors associated withSo.

Despite this change in the direction vectors the bounds on
the sensitivity functions remain unchanged, see Table. IV.
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Fig. 7. Pole and zero direction vectors associated withSi with and without
including the periodic perturbation on the state dynamics.

If not the appearance of a sinusoidal variation in the
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input/output directions, what then causes the change in the
achievable bound on the sensitivity functions? Recall that
the cosine of the angle between two unit vectors is defined
as

cos ∠ (η, ζ) = |η′ζ| .

Simply put, the cosine of the angle between two unit vectors
is the absolute value of the summation of the piece wise
multiplication of each element in the two vectors. Therefore
the improvement to the input sensitivity function is caused
by the fact thatζi has a zero mean when the periodic
perturbation appears in the output, see Fig. 5. Why the
periodic perturbation shifts the mean ofζi to zero is unclear.
However, the results of Table IV support the claim made
by Maslen, Montie, and Iwasaki [6] that the improvement
in the input sensitivity function is a result of the periodic
perturbation in the output, which contains information about
the rotor position in the size and phase of the current ripple.
Note that there is little change in the achievable output
sensitivity function norm. This implies that there will be at
least some classes of disturbances and unmodeled dynamics
to which the self-sensing magnetic bearing has high sensi-
tivity. For example, unmodeled measurement time delays
could easily destabilize the self-sensing magnetic bearing
by causing aliasing or other such distortions to the phase
and magnitude of the current ripple. Fortunately, the applied
voltage and current measurement are co-located as actuators
and sensors, and time delays in the self-sensing magnetic
bearing itself are physically impossible. Delays may occur
in the measurement electronics but fortunately, these can be
accurately controlled by well established electronic design
principles.

VI. CONCLUSION

This paper has presented an analysis of the LP model of
a self-sensing magnetic bearing used by Maslen, Montie,
and Iwasaki [6] in an attempt to gain insight into why it
appears to contradict the results published by Thibeault and

∆A 6= 0 ∆A = 0

‖Si‖∞ 1.02 1.02
‖So‖∞ 10.40 10.40

TABLE IV

LOWER BOUNDS ON‖Si‖∞ AND ‖So‖∞ FOR∆A 6= 0 AND ∆A = 0.

Smith [13]. By utilizing lifting to convert the LP model to a
discrete MIMO LTI model, it was shown that improvements
in the achievable bound on the sensitivity function is a result
of the orthogonality of the pole/zero input/output direction
vectors due to the periodic nature of the output. While
strengthening the claims made by Maslen, Montie, and
Iwasaki [6], more work is still required to better understand
how the controller should exploit the periodic nature of the
system to improve robustness and when similar techniques
can be applied to other systems.
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