
A novel learning based solution for efficient data transport
in heterogeneous wireless networks

Venkataramana Badarla • C. Siva Ram Murthy

� Springer Science+Business Media, LLC 2009

Abstract There has been a spectacular growth in the use

of wireless networks in recent times and consequently,

adapting TCP to the wireless networks is a hot topic of

current research. However, most of the existing works

proposed for this problem have been designed for specific

wireless networks, or they necessitate changes at either the

receiver or the intermediate nodes, or at both, because of

which their deployment becomes difficult. In this work, we

propose a TCP variant which works over both multi-hop ad

hoc wireless networks as well as single-hop (last-hop)

wireless networks, like Wireless LANs, cellular, and

satellite networks. We use a learning based method to

dynamically change the congestion window size according

to the network conditions. Our protocol does not rely on

any explicit feedback from the network and requires only

sender-side modifications. Through extensive simulations

we show that our protocol achieves the desired goals of

performance improvement in goodput, reduction in packet

loss, and fairness to the competing flows. To the best of our

knowledge, this is the first unified solution for both single-

hop and multi-hop wireless networks.

Keywords TCP � Congestion control � Satellite network �
Cellular network � Wireless LAN � Ad hoc network �

Heterogeneous wireless networks � Learning automata �
Performance evaluation

1 Introduction

The combination of Transport Control Protocol (TCP) and

Internet Protocol dominates today’s communication in

various networks. The purpose of TCP is to provide a byte-

streaming in-order connection-oriented reliable service to

the application layer. Another important function of TCP is

congestion control. It tries to control the flow of packets, to

prevent an overflow of buffers at the routers, by main-

taining a congestion window (cwnd). The cwnd is an upper

bound on the maximum number of unacknowledged

packets for a TCP flow in the network. TCP adjusts its

cwnd in a deterministic fashion according to the network

events. For more details about TCP, please refer [1].

1.1 A brief introduction to various wireless networks

Satellite links are characterized by a high latency and a high

bandwidth, thus having a high bandwidth-delay product

(BDP). These links typically have link asymmetry, with the

downlink bandwidth usually being much higher than the

uplink bandwidth. There is a huge variation in the band-

width provided by the satellite links which varies from as

much as 0.01–50 Mbps. The link losses in these networks

are typically in the order of 10-2, which is quite high.

The cellular networks have a moderately high band-

width and high latencies, hence moderate BDP. They have

a moderate wireless losses (10-3) and link asymmetry.

These networks often experience bandwidth oscillations

and delay variations due to mobility of nodes and conse-

quently handover the connection to a new base station.

V. Badarla (&)

Hamilton Institute, National University of Ireland Maynooth,

Maynooth, Republic of Ireland

e-mail: badarla.venkataramana@nuim.ie;

b.v.ramana@gmail.com

C. Siva Ram Murthy

Department of Computer Science and Engineering, Indian

Institute of Technology Madras, Chennai 600 036, India

e-mail: murthy@iitm.ac.in

123

Wireless Netw

DOI 10.1007/s11276-009-0228-4

Wireless LANs (WLANs) have a low latency and a high

bandwidth. However, due to the link level retransmission

scheme to handle the wireless losses, WLANs also have

delay fluctuations. In WLANs, uplink and downlink

channels are not independent as in cellular and satellite

networks, but compete with each other for shared

bandwidth.

Ad hoc wireless networks are multi-hop networks in

which the nodes use multi-hop relaying technique to

communicate with the nodes that are not directly reachable.

Like WLANs, the medium is shared among the nodes.

They have limited bandwidth and the nodes in these net-

works have limited battery power. Besides, they have a

very high packet loss because of high channel contentions

and frequent path breaks due to mobility of the nodes.

These networks have a low BDP.

1.2 Limitations of TCP in wireless networks

There has been a huge growth in the use of wireless net-

works in recent times and consequently, adapting TCP to

the wireless networks is a hot research topic. The following

are some of the problems faced by TCP in wireless net-

works [2, 3].

1.2.1 Wireless losses

In wired networks, congestion is the main cause of packet

loss. But, in wireless networks packet loss could also

happen due to erroneous wireless links, unstable channel

conditions, or user mobility. TCP assumes all these losses

to be congestion losses and reduces its cwnd size, which

adversely affects the throughput.

1.2.2 Bandwidth-delay product

As satellite links have a high bandwidth-delay product

(BDP), TCP should increase its cwnd aggressively in these

networks. In contrast, as ad hoc networks have low BDP,

TCP should follow a conservative approach to increase its

cwnd. But, in congestion avoidance (CA) phase, TCP

increases its cwnd by 1

cwnd
for every TCP acknowledge

packet (ack) it receives, which is too small in satellite

networks and too large in ad hoc networks. Hence, TCP

should dynamically adjust its increment factor depending

on the network in which it operates.

1.2.3 Reactive nature of TCP

Transport Control Protocol keeps increasing its cwnd until

it experiences packet loss. As TCP is reactive rather than

proactive for avoiding congestion, it experiences a high

amount of packet loss. TCP needs to resend the lost packets

which not only reduces the throughput, but also severely

affects the ad hoc networks, as they are severely con-

strained by the bandwidth and battery power.

1.2.4 Asymmetric paths

The satellite and cellular links have asymmetric paths. As

the bandwidth in the forward and reverse paths could be

different, congestion in the reverse path would increase the

round-trip time (RTT), which results in a slow increase in

cwnd; thereby leading to a drop in the throughput.

1.3 Goals

We aim to design a TCP variant which works in both the

single-hop wireless networks (such as WLAN, cellular, or

satellite networks) and the multi-hop ad hoc wireless net-

works, while attaining the following goals.

1.3.1 Throughput improvement

We want to improve the throughput attained in heteroge-

neous wireless networks while minimizing the packet losses.

1.3.2 Fairness

Attaining a good throughput while the competing flows

starve is not a good solution. Hence, we want to achieve

fairness among the competing flows.

1.3.3 No support from the network

Our proposal should not take any explicit help from any of

the network components.1 Because in reality, one cannot

expect making changes at all the network components.

2 Related work

A lot of research has been done to adapt TCP to address the

challenges in the wireless domain. However, most of the

work was done for specific wireless network paradigms or

requires explicit support from the network components.

A comparison of the existing proposals addressing this

issue is given in Table 1.

The proposals [4–7] are designed specifically for satel-

lite or high BDP networks. These proposals suggest an

aggressive increase of cwnd to exploit the available

bandwidth in the networks. But, TCP-Peach? [4], and

XCP [5] rely on an explicit support from the network

1 Throughout this paper, we use the term network components to

denote the intermediate nodes on the path or the receiver.

Wireless Netw

123

components for their operation. Although HS-TCP (High

Speed TCP) [6] and Compound-TCP [7] do not need any

explicit network support, they are designed and evaluated

exclusively for high BDP networks. The proposals [8–10]

are designed for cellular networks. However, the assump-

tions made in WTCP [8] such as, presence of very low and

highly variable bandwidth and high delays, make it suitable

only for cellular networks. Further, these proposals need an

explicit support from the network components. The pro-

posals [11–13] are designed exclusively for WLANs.

Further, Snoop [11] and I-TCP [12] seek changes at the

network components. TCP-DCR [13] also faces a similar

problem. The proposals [14–16] are designed for ad hoc

networks and they do not rely on explicit network support.

TCP Adaptive Pacing [14] assumes in its rate estimation

the availability of uniform bandwidth in all the wireless

links, which is usually not the case. The small additive

increase factor used by TCP-FeW [15] makes the protocol

more conservative, thereby making it suitable only for the

ad hoc networks. The proposal in [16] works for ad hoc

networks. However, its congestion estimation algorithm

uses inter-arrival times, which are prone to high fluctua-

tions in high BDP networks, thereby restricting its appli-

cability only for ad hoc networks. Further, it uses Finite

Action-set Learning Automata, because of which it is not

capable of making finer updates in the cwnd size.

The proposals [17, 19, 20] are designed for more than

one kind of network. TCP-NewJersey [17] was shown to

perform well in WLANs and cellular networks. However, it

relies on explicit congestion warnings from the network.

TCP-Westwood [18] achieves improved performance over

TCP in WLANs and satellite networks, while achieving

fairness. However, Westwood depends completely on acks

(i.e., inter ack arrival times) because of which its perfor-

mance degrades when it is used in high delay links. This is

due to the poorer accuracy in the bandwidth estimation

done based on the delayed acks [19]. Adaptive Transport

Layer (ATL) [19] has been designed for the single-hop

Table 1 Comparison of TCP variants for wireless networks

Protocol TCP

semantics

Modification

required

Targeted

networks

Reactive/

proactive

Packet

transmission

Type of network support

required

Peach? [4] End-to-end Router, end

stations

Satellite Proactive Window based Priority mechanism at routers

XCP [5] End-to-end Router, end

stations

Satellite Proactive Window based Congestion notification

HS-TCP [6] End-to-end Sender Satellite Proactive Window based –

Compound

TCP [7]

End-to-end Sender Satellite Reactive Window based –

WTCP [8] End-to-end End stations Cellular Proactive Rate based Receiver classifies losses

and calculates sending rate

Freeze-TCP [9] End-to-end End stations Cellular Reactive Window based Receiver freezes cwnd in the

presence of impending

disconnections

Snoop [11] End-to-end Base station (BS) WLAN Reactive Window based BS retransmits lost packets

I-TCP [12] Split Base station WLAN Reactive Window based BS maintains two separate

connections with the

end nodes

TCP-DCR [13] End-to-end Base station WLAN Reactive Window based BS retransmits lost packets

TCP-AP [14] End-to-end Sender, routers Ad hoc Proactive Pacing Feedback about the

bandwidth along the path

TCP-FeW [15] End-to-end Sender Ad hoc Reactive Window based –

Learning-

TCP [16]

End-to-end Sender Ad hoc Proactive Window based –

TCP NewJersey

[17]

End-to-end Sender, routers WLAN and cellular Proactive Window based Explicit congestion

notification

TCP

Westwood [18]

End-to-end Sender WLAN and satellite Proactive Window based –

ATL [19] End-to-end Sender and all

wireless nodes

WLAN, cellular,

and satellite

Reactive Window based Receiver supplies pw

and dw values

UL-TCP

[this paper]

End-to-end Sender Ad hoc, WLAN,

cellular, and

satellite

Proactive Window based –

Wireless Netw

123

wireless access networks, such as WLAN, cellular, and

satellite networks. The key idea of ATL is the following.

For a TCP flow, ATL tries to attain the throughput obtained

in the wired part of the network ðT̂Þ while operating in a

wireless network. It uses the TCP Friendly Rate Control

(TFRC) equation [20] to obtain T̂; then using T̂ ; as shown

in Eq. 1, it adjusts the additive increase factor (a) that

reflects in the aggressiveness needed in increasing cwnd

size.

a ¼ bpð1� bÞ
2ð1� bÞ T̂ 2Rþ 3T0pð1þ 32p2Þð1þ bÞ

� �� �2 ð1Þ

Here, p, b, R, T0, and b represent packet loss probability,

multiplicative decrease factor, end-to-end RTT, initial

retransmission timeout, and the number of data packets

acknowledged with a single ack, respectively. One

important observation from Eq. 1 is that a is proportional

to p and R, hence as the values of p and R increase with the

increasing congestion in the network, a also increases,

thereby increasing cwnd with higher amounts during the

congestion. This makes the protocol more aggressive and

leads to a high amount of packet loss during the

congestion. We compare our work with ATL as it was

proposed for WLANs, satellite, and cellular networks and

had a performance gain over Snoop, WTCP, Peach?, and

Westwood. However, ATL has several limitations which

make its deployment extremely difficult. (a) ATL tries to

attain the throughput of the wired part of the network by

increasing its a aggressively. This causes an aggressive

increase in cwnd thus causing unfairness to the competing

flows in the wireless part of the network. (b) ATL is a

reactive protocol. It increases its cwnd aggressively and

results in a huge packet loss, which leads to a high battery

power consumption. (c) ATL needs the receiver to

explicitly supply the wireless link loss and delay values

at the receiver’s side. Hence, our objective is to reduce the

packet loss and improve fairness to the competing flows

while trying to attain the goodput of ATL, without any

explicit feedback from the network.

3 Overview of our protocol

Here, we first give a brief introduction to learning automata

followed by an overview of our protocol henceforth called

as, Unified Learning-TCP (UL-TCP).

3.1 A brief introduction to learning automata

The theory of learning automata consists of a learning

automaton which provides a simple model for adaptive

decision making with unknown random environments [21].

The learning automaton interacts with the environment by

selecting an action from a set of actions. When a specific

action is performed, the environment provides either a

favorable or an unfavorable response. The response can be

either a binary-value, a finite number of discrete values, or

continuous values over a finite interval. However, in

practice, it may be important to have finer distinctions

(discretization) in the response, in order to perceive the

system better. These finer distinctions would help in pro-

viding the extent of favorability of a response to a partic-

ular action. The selection of action could be either

deterministic or stochastic. In the latter case, probabilities

are maintained for each possible action to be taken, which

are updated with the reception of each response from the

environment. The objective in the design of the learning

automaton is to determine how the previous actions and

responses should affect the choice of the current action to

be taken, and to improve or optimize some predefined

objective function. Figure 1 shows the interactions

between the automaton and the environment.

A learning automata can be formally described in terms

of the following:

State of the automaton at any instant n, denoted by /(n),

is an element of the finite set U ¼ f/1;/2; . . .;/sg;
where s represents the number of states.

Output (or) action of an automaton at any time instant n,

denoted by a(n), is an element of the finite set a ¼
fa1; a2; . . .; arg; where r represents the number of

actions.

Input (or) Feedback of an automaton at any time instant

n, denoted by b(n), is an element of the finite or infinite

set b ¼ fb1; b2; . . .; bmg or b ¼ fða; bÞg; where m is

number of discrete values in the response from the

environment and a and b are real numbers.

Transition function F(., .) determines the state at the

time instant (n ? 1), in terms of the state and input at

any time instant n and could be either deterministic or

stochastic. /(n ? 1) = F[/(n), b(n)].

21 sφ = {φ , φ ,..., φ }

Actions

Input
β = { β , β ,..., β }1 2 m

α = {α , α ,..., α }1 2 r

Learning Automaton

Environment

Fig. 1 Learning automaton operation in stochastic environment

Wireless Netw

123

Output function G(.) determines the output of the

automaton at any time instant n, in terms of the state

at that instant and could be either deterministic or

stochastic. a(n) = G[/(n)].

The automaton is called deterministic if both F and G

are deterministic, and is called stochastic (variable-struc-

ture) otherwise. For mathematical simplicity, it is generally

assumed that each state corresponds to one distinct action.

Hence, the automaton can be represented by the triple

fa; b;Ag; where A is called the updating function. In this

paper, we use the terms updating function and learning

algorithm interchangeably. The objective of the updating

function is to enable the automaton to learn the state of the

environment based on the feedback obtained and choose

the best possible action at any point of time. It should be

able to efficiently guide the automaton to quickly adapt to

the changes in the environment.

The models of learning automata can be classified based

on the number of actions in the action set ðaÞ: The finite

action-set learning automata (FALA) is one such model

which contains a finite number of actions and each action

corresponds to a range of responses provided by the

environment. However, such discretization may not be

possible in all the situations as the discretization may be

either too coarse for the problem or a finer discretization

may result in a large number of actions; these large number

of actions may increase the time to update the action

probabilities and also complicate the process of decision

making.

A natural choice in such a case, would be to use con-

tinuous action-set learning automata (CALA) [22] which

has an infinite number of actions. It maintains an action

probability distribution which follows a normal distribu-

tion, with mean l and standard deviation r, rather than

action probability for each action. At any time instant n, the

updating function of CALA has to update l(n) and r(n)

based on the response received from the environment for

its previously performed action. Then the automaton

selects an action x, where x is a real number chosen from

this action probability distribution. Unlike FALA, as

CALA maintains only the action probability distribution,

updating l(n) and r(n), and decision making process are

fairly simple. Details about the updating function used in

CALA are provided in Sect. 4.

3.2 Details of UL-TCP

TCP increments its cwnd by a deterministic value. In the

CA phase, it increases its cwnd by one maximum segment

size (MSS) for every round-trip time (RTT). This limits the

extensibility of TCP to various networks. For instance, as

the satellite networks have a high BDP, a larger cwnd

increment is needed to quickly utilize the large bandwidth

available. In contrast, in ad hoc networks a more conser-

vative cwnd increase gives better performance [15]. Also

because of its reactive nature, TCP experiences a high

packet loss, which leads to a poor utilization of network

resources.

To overcome these problems, in this paper, we propose a

learning-based mechanism, which uses CALA, to dynam-

ically update the cwnd based on the network conditions by

learning the effective amount of update (increase or

decrease) in the cwnd size. The notion of an action in

CALA here refers to the amount of update in the cwnd size.

The motivation behind selecting CALA to our problem is

the following. In CALA the size of the action set is infinite

due to which more accurate mapping of network response

to the actions is possible. Further, as the actions are learned

(or the action probability distribution is updated dynami-

cally based on the network condition), it is possible to

increase the cwnd aggressively or conservatively, based on

the network in which it is operating. For example, when the

available bandwidth is high (satellite networks), the l of

the action probability distribution will be high. Thus, it can

update congestion window size aggressively. On the other

hand, in ad hoc networks as the available bandwidth is low,

the l will be low. Thus, it can operate conservatively in the

ad hoc networks.

The following steps, also shown in Fig. 2, give a brief

description of the protocol. They are explained in detail in

Sect. 4.

Step 1: Getting the network conditions: Using the

fluctuations in RTTs and the throughput in the for-

ward-path, we capture the congestion and throughput

fluctuations in the path into the parameters k1 and k2,

respectively. Further, in order to minimize the number of

timeouts, using the cwnd sizes at which previous

timeouts have happened, we estimate the cwnd size at

which the next timeout is likely to happen. Taking this as

, ,λ 1 λ 2 3)f (γ λ

g (γ)β

(µ , σ)normalx
+_

(µ , σ) β)(

Getting

Capturing network
conditions from acks

β from γ and

Packet

ack from the receiver

Network

UL−TCP

updating action probabilities

cwnd xcwnd

CALA

Transmission

Fig. 2 UL-TCP and its interaction with the network

Wireless Netw

123

a reference point, we obtain the degree of aggressiveness

needed in cwnd increase as a parameter k3.

Step 2: Combining the parameters: The parameters k1,

k2, and k3 are mapped into a single parameter c, which

corresponds to the network response.

Step 3: Mapping c to b: b represents the input to the CALA

learning algorithm. In order to update the action proba-

bility distribution of CALA, as it should reflect in the

current network conditions, get the b from current c. Using

b, update l and r of the action probability distribution.

Step 4: Action Selection: Generate a normal random

number x from the action probability distribution, which

is updated in the previous step. Using this x, update the

cwnd size, and transmit packets if the cwnd permits.

4 Protocol details

4.1 Inferring network conditions

As we are not relying on any explicit support from the

network, we infer the network conditions from the acks.

This is the most crucial part of our work. Using the

information contained in acks, we compute the RTT and

the throughput in the forward-path. Then we use these in

estimating the network conditions.

4.1.1 Mapping of congestion (k1)

The RTT is potentially a good metric to estimate the con-

gestion in the network [14, 23]. RTT can be obtained by

enabling the timestamp option in the TCP header. In order

to estimate the congestion, we keep the mean and standard

deviation (SD) of most recent n RTT values. As we can

observe from Fig. 3a, in the presence of congestion there is

a sharp increase in the RTTs. Further, the SD increases with

the increasing levels of congestion. Hence, we can detect

the incipient congestion, from the SD of RTTs. The RTTs

which are above mean ? SD indicate a sign of congestion

in the network and the RTTs below mean - SD indicate

the availability of bandwidth in the network.

On a linear scale between 0 and 1, with the normalized

values of mean ? SD and mean - SD as the upper and

lower bounds, respectively, the mean of k recent RTT

values, meank (k \ n), is mapped to a parameter k1 (see

Fig. 4a). We consider meank instead of only the current

RTT due to the fluctuations in the RTTs that typically

occur in the wireless networks because of the bandwidth

fluctuations and link-level error control. Any value below

mean - SD is mapped to 1, to indicate absence of con-

gestion in the network and any value above mean ? SD is

mapped to 0 to indicate that the network is congested. The

following paragraph derives the relationship between the n

and k by assuming that RTTs will increase during con-

gestion [24].

Let rtts denote the initial RTT. That is RTT when cwnd

size is 1 MSS. As cwnd size grows, congestion in the

network increases; as a result the RTT values will also

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 15 20 25 30 35 40 45 50

La
te

nc
y

(s
ec

)

Simulation Time (sec)

RTT
mean + SD
mean - SD

(a) RTTs of a TCP flow along with the , and
of RTTs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

K
bp

s)

Simulation Time (sec)

Throughput

(b) The corresponding fluctuations in the forward-path throughput.

SD
SD

Fig. 3 There is one TCP flow and three background UDP flows

running between 25 and 35, 30 and 40, and 35 and 45 s, on a satellite

link

λ 2

3λ

λ 1

tput loss tput max

cwnd cutoff cwndmin

0.5

0

*
mean + SD mean − SD

15.00

0

1

(a) Mapping of RTT values to

(b) Mapping of throughput values to

(c) Mapping of current cwnd values to

*

10

mean

Fig. 4 Mapping of network conditions to k1, k2, k3. Note that ‘‘*’’

denotes the favorable bound of k1 and k3 for cwnd increase action; for

k2, the bound varies with network conditions

Wireless Netw

123

grow. Now, assume that n samples are taken in the esti-

mation of mean and SD, for which the RTTs are rtts,

rtts ? D, ..., rtts ? (n - 1)D. Let us assume that D is a

growth factor by which RTT values will increase in every

round. Then, mean ¼ rtts þ Dðn�1Þ
2

; SD ¼ D
ffiffiffiffiffiffiffiffi
n2�1

12

q
and,

meank ¼ rtts þ Dð2n�k�1Þ
2

:

Taking a general case where mean ? c 9 SD is the

upper bound for a constant c, to capture congestion, meank

[mean ? c 9 SD. That is, meank - mean [c 9 SD.

meank �mean ¼ðrtts þ
Dð2n� k � 1Þ

2
Þ

� ðrtts þ
Dðn� 1Þ

2
Þ ¼ D

2
ðn� kÞ

As meank - mean [c 9 SD

) D
2
ðn� kÞ[c� D

2

ffiffiffiffiffiffiffiffi
n2�1

3

q

) ðn� kÞ[c�
ffiffiffiffiffiffiffiffi
n2�1

3

q
) k\n� c�

ffiffiffiffiffiffiffiffi
n2�1

3

q
:

Hence, for n samples in computing mean and SD, the

above equation shows that any k B 0.42 9 n is sufficient to

identify congestion when mean ? SD is used as an upper

bound. Hence, we take n as 100, to consider a reasonable

amount of history and get k as 42.

4.1.2 Mapping of throughput fluctuations (k2)

Throughput in the forward-path is another important

parameter in wireless networks because of asymmetric

paths. This can be measured simply through explicit

feedbacks from the receiver. However, as this requires

modifications at the receiver, we rely on TCP timestamp

option to measure the forward-path throughput. As the

receiver writes its timestamp in every ack it is sending, by

observing the difference of every two successive time-

stamps and the amount of data has been acknowledged in

this duration, the sender can get an approximate estimate of

throughput in the forward-path. Note that to compute the

forward-path throughput, the sender does not require the

absolute clock time at the receiver. It just requires to know

the length of clock tick at the receiver, so that the

throughput can be estimated from the amount of data

received by the receiver in two successive clock ticks.

Hence, we compute the throughput over k acks to ensure

that the sender receives acks that span at least in two dif-

ferent clock ticks at the receiver. Figure 3b shows the

trends in forward-path throughput in the presence of

background traffic. We can observe that the throughput

drops drastically with the introduction of background

traffic and this drop persists until the congestion ends.

In order to map the throughput to a parameter k2, we

keep the maximum throughput (tputmax) observed so far.

However, taking only the tputmax into account will not

completely indicate the current network conditions as one

best case tputmax will always try to increase the cwnd to

achieve this value. Hence, we introduce the throughput at

the previous loss (tputloss) as a second reference point, at

the mid scale. In the new mapping, the values between 0

and tputloss are mapped to [0, 0.5] and the values between

tputloss and tputmax are mapped to [0.5, 1] (see Fig. 4b).

Hence, when the throughput is very low, (1 - k2) will be

close to 1 and we should favor for increasing cwnd size.

When the throughput is close to tputmax, we should favor

decreasing cwnd size to proactively avoid the congestion.

4.1.3 Degree of aggressiveness (k3)

Retransmission timeout (RTO) has a significant impact on

the performance of TCP and UL-TCP, in particular, in high

BDP networks, it takes several RTTs to reach the optimal

cwnd size from one MSS after an RTO. To avoid (or

reduce the number of) RTOs, we bring cwnd size into

feedback to control the aggressiveness needed in increasing

cwnd size. The idea is to maintain an approximate size of

the cwnd at which timeout is likely to occur and taking it as

a reference point, update the cwnd size based on how close

the cwnd size is to this reference point. For this purpose,

we maintain the values for the parameters cwndprev (the

cwnd size at which the previous timeout has happened) and

cwndmean (the mean of the cwnd sizes at which all the

previous timeouts have happened). From these parameters,

on the arrival of each ack, using an auto-regressive tech-

nique, as shown in Eq. 2, we obtain the cwnd size at which

the next timeout is likely to occur (cwndcutoff).

cwndcutoff ¼ f ðtÞ � cwndprev þ ð1� f ðtÞÞ � cwndmean ð2Þ

Here, 0 \ f(t) \ 1, where f(t) is a monotonically

decreasing function with time t. The idea behind this

equation is that initially cwndcutoff will be close to the

cwndprev. However, if there is no timeout for a long time,

cwndprev may become a bottleneck. Hence, as time

progresses, cwndcutoff is gradually shifted towards the

average cwnd size at which most of the timeouts happened.

Using cwndcutoff as a reference point, we capture the degree

of aggressiveness needed in cwnd increase into k3. On a

linear scale between 0 and 1, with the normalized values of

cwndcutoff and minimum cwnd (i.e., one MSS) as the upper

and lower bounds, respectively, the current cwnd size is

mapped to k3 (see Fig. 4c). Any cwnd size above cwndcutoff

is mapped to 0. This metric is essential as timeouts result

in a drastic throughput drop, especially in high BDP

networks.

Wireless Netw

123

4.2 Mapping network conditions into a single

parameter c

Here, we discuss how to combine the parameters k1, k2,

and k3 into a parameter c, which provides the network

response. A high c indicates a favorable sign for cwnd

increase and a low c indicates a favorable sign for cwnd

decrease. The first three cases shown below combine k1

and k2 into c, then the fourth case combines k3 and c.

case 1: During the congestion, RTT values will start

growing. In this case, meank will be higher than mean.

Therefore, we detect the congestion if meank [
mean ? SD and favor cwnd decreasing actions. We

determine the degree of intensity needed in decreasing

cwnd size, by taking c = min {k1, k2}. As k2 will also be

low during congestion, we take the minimum of k1 and

k2 to quickly react to the congestion.

case 2: When the meank is lower than mean - SD, the

network is probably not congested and hence, the

feedback should favor the cwnd increase actions. In this

case, we take c = max {k1, 1 - k2}. This case is very

useful in quickly increasing the cwnd after congestion.

Just after congestion, the RTTs fall and hence, k1 will be

high. Besides, just after congestion the throughput will

be low and so 1 - k2 will be high indicating that there is

a lot of unused bandwidth in the network. We take the

maximum of these two values as a feedback to the

CALA to quickly increase the cwnd.

case 3: For the remaining values of meank (i.e.,

mean - SD \ meank \ mean ? SD), we take c ¼
k1þk2

2
; which gives equal importance to both the RTT

and throughput parameters. For instance, when both k1

and k2 are high, a high value of k1 indicates that the

network is not congested. However, k2 is high implies

that we are close to the maximum throughput and so we

should be cautious, and c ¼ k1þk2

2
takes both these factors

into account.

case 4: Finally, we take the k3 into account as shown

below. As mentioned earlier in this section, RTOs are

expensive, so we try to avoid them by giving them more

importance. The c that we got from previous steps, will

be adjusted as c = cþk3

2
: When k3 is close to 1, c will be

adjusted between 1 and 0.5 and thus increase actions will

be further favored. When k3 is close to 0, c will be

mapped between 0.5 and 0, and decrease actions will be

further favored.

To summarize, the above mechanism for mapping k1,

k2, and k3 to c ensures a value close to 1 to favor increasing

the cwnd size and a value close to 0 to favor decreasing

the cwnd size. The mapping of c to b, which represents the

input to the CALA learning algorithm, is done based on the

state of the automaton. We define two states increase and

decrease for the automaton. The mapping of c to b in these

two states is described in detail in the following section.

4.3 Learning algorithm and action selection

In this section, we provide the details of the CALA

learning algorithm that is used to update the l and r of the

action probability distribution. As the number of actions is

infinite, the CALA maintains the action probability distri-

bution instead of probability for each action, where the

probability distribution is assumed to follow a normal

distribution. In CALA, the functions for updating the

action probability distribution are simple. Further, CALA

does not require the discretization of the action set. Further,

there exists proof for the convergence of CALA learning

algorithm that follows a normal distribution. The learning

algorithm given in [22] is based on two reinforcements

from the environment bx(n) and bl(n), which represent the

reinforcement obtained from the environment at time step

n, when actions selected are x(n) and l(n), respectively.

Since we obtain only one reinforcement x(n), we use

variants of the original equations. As mentioned in [22], we

substitute bl(n) = 0 and obtain the Eqs. 3 and 4 which

correspond to the updating functions for l(n) and r(n) of

the action probability distribution at any time step n,

respectively. In our problem, l(n) and r(n) represent the

mean and deviation of an effective amount of update

(either increase or decrease) in the cwnd size. Note that

when b is close to 1, the magnitude of change in l will be

high and when b is close to 0, the magnitude of change in

l is low.

lðnþ 1Þ ¼ lðnÞ þ k
bxðnÞ

/ðrðnÞÞ
xðnÞ � lðnÞ

/ðrðnÞÞ ; ð3Þ

rðnþ 1Þ ¼ rðnÞ þ k
bxðnÞ

/ðrðnÞÞ
xðnÞ � lðnÞ

/ðrðnÞÞ

� �2

� 1

" #

� k� K � ðrðnÞ � rLÞ;
ð4Þ

where

/ðrÞ ¼ rL if r� rL;
r if r [rL [0:

�

In the above equations, x(n) is the action taken at any

time step n, k is the learning parameter controlling the step

size (0\ k\1), K is a sufficiently large positive constant,

and rL is the lower bound on r.

4.4 Discussion about the learning mechanism

The intuition behind the updating functions of the action

probability distribution is as follows. Equation 3

Wireless Netw

123

essentially shifts l(n) towards x(n) which is an amount of

update in congestion window at time step n. For a favor-

able response (i.e., b(n) is close to 1), the shift in l(n)

towards x(n) will be high. For unfavorable responses, (i.e.,

b(n) is close to 0), there will be either no shift in l(n) or a

small shift in l(n) towards x(n). Equation 4 updates

(expands or shrinks) the region of action probability dis-

tribution. An increase in r(n) essentially expands the action

probability distribution and vice versa. When the selected

action, x(n) falls outside the region, then the region will be

expanded for further exploration. The magnitude of the

expansion depends on the response from the network. The

expansion in the region is large when the response is

favorable, otherwise the expansion is small. Similarly, the

region will shrink to a large extent when x(n) falls inside

the region and gets favorable response, otherwise it shrinks

by a small value. The reduction term in Eq. 4 is to make

sure that r(n) will stay close to rL.

We define two states, increase and decrease, for the

automaton. When x(n) - l(n) [0, the automaton is said

to be in the increase state. Otherwise it is in the decrease

state. The network response, c is treated differently in these

two states. In increase state, when c value is close to 1, in

order to favor aggressive increase in cwnd size, the mag-

nitude of increase in l should be high. On the other hand,

when c value is close to 0 then there should not be any

increase in l or the magnitude of increase in l should be

low; this is to ensure no significant change in l and in

effective amount of update in cwnd size. Hence, we

directly take c as b (b = c) when the automaton is in

increase state. In decrease state, we map c to b as shown in

Eq. 5. The intuition is that, when the network is extremely

congested (meank [mean ? SD), a significant reduction

in l is required to reduce the cwnd size aggressively.

Hence, we take b as 1 and l ¼ l
2
: Otherwise, the degree of

reduction in l should be decided based on the extent to

which c is close to 0. Hence, we take (1 - c) as b.

b ¼ 1 and l ¼ l
2

if meank [meanþ SD;
1� c otherwise.

�
ð5Þ

4.5 Convergence proof and selection of parameters

The convergence proof for CALA learning algorithm is

well studied in the literature [22]. The outline of the con-

vergence proof is as follows. The convergence proof is

divided into two steps. The first step consists of obtaining

an ordinary differential equation (ODE) that approximates

the behavior of CALA learning algorithm. Approximating

stochastic algorithms, such as CALA learning algorithm by

an ODE to understand its long-term behavior is a well

studied method in [25, 26]. The second step analyzes the

asymptotic property of the algorithm based on this

approximating ODE to infer the long-term behavior of the

algorithm. The convergence proof concludes by showing

for small values of rL and k and for a sufficiently high K

value, the CALA learning algorithm converges to an

optimal value.

In this work, in order to maintain the convergence

property, we have taken the values for the parameters k, rL,

and K as 0.01 (a small value), 0.01 (1
100

of a packet), and

2,000 (a large constant with respect to rL), respectively. The

intuition behind choice of the values for these parameters is

as follows. In all the cases, the rate of increase or decrease

in l value depends on k and the degree of favorable

response (c) obtained from the network. In all our simula-

tions, we have fixed the k value as 0.01. The selection of the

learning parameter has a trade-off between the accuracy of

action selection and speed of learning. Lower values of k
improve the accuracy of learning. They avoid the unnec-

essary reduction in l for the short term fluctuations in the

network. Higher values of k cause the automaton to adapt to

the changes in the network rapidly. However, in this case

the accuracy is low, further any short term fluctuations in

the network immediately cause either sudden rise or fall in

the congestion window which adversely affects the

achievable goodput. The value for K affects r. For a specific

k value, smaller values for K shifts r to rL very slowly. As a

result, it takes several loss cycles, where a loss cycle begins

with slow-start phase and ends with an RTO, to shift r
towards rL. In order to shift r to rL in fewer cycles, thus

reducing the packet loss, for the k value of 0.01, we take K

value as 2,000. As rL represents the lower bound on r, as

UL-TCP needs to operate in ad hoc networks along with the

single-hop wireless networks, rL should take a smaller

value. Hence, we take the value for rL as 1
100
; thus keeping

the updates in cwnd as low as 0.01 of a packet.

4.6 Final protocol

The working mechanism of UL-TCP is given in Algo-

rithm 1. At the connection startup, as UL-TCP needs to

operate in wide range of wireless networks, the learning

algorithm must be provided with a sufficiently large action

set. Hence, we initialize the mean (l) and standard devia-

tion (r) of the probability distribution with MSS
2

and one

MSS, respectively. Because of these initial values, during

connection startup, UL-TCP prefers actions for cwnd

increase with a high probability, and increases cwnd with

larger increments. We initialize cwndprev with a relatively

large value 2,000, which helps the protocol to perform a

definite increase in cwnd during the connection startup.

UL-TCP will be in the loop until the end of the TCP ses-

sion or abrupt connection close due to 12 successive

retransmission timeouts. One important note is that, we

Wireless Netw

123

allow a continuous decrease in cwnd size up to half of

cwnd size that was at the start of decreasing the cwnd. For

example, assume that cwnd size at the start of decreasing is

30 packets. In our algorithm, we allow continuous decrease

in cwnd size, at successive time instances, up to 15 packets.

This avoids any drastic fall in cwnd size and helps to

quickly reach the maximum capacity offered by the

network.

5 Simulation results

We conducted simulation experiments using ns-2.28. For

the single-hop wireless networks (WLAN, cellular, and

satellite networks) we take a dumbbell topology, which is

shown in Fig. 5. Here, over a wireless link, the senders are

connected to a router R1, where the R1 is connected over a

wired link to the second router R2. The receivers are

connected over wired links to R2. All the wired links have

100 Mbps bandwidth. All the nodes use drop-tail queues.

Unless otherwise specified, the maximum queue size is

taken as 64 packets and the packet size is taken as 1,460

bytes. In the ad hoc networks, we consider chain, grid, and

random topologies. All simulations are conducted for

600 s. Each simulation scenario is ran for 30 different seed

values and results are obtained with 95% confidence level.

We use FTP traffic over TCP in all the cases. We compare

UL-TCP against TCP-Newreno in both single-hop and

multi-hop wireless networks. Also, in all single-hop wire-

less network studies, we use Sack enabled ATL [19] for

comparison as it was proposed for WLANs, satellite, and

cellular networks and had a performance gain over Snoop,

WTCP, Peach?, and Westwood. However, as we show in

this section, ATL shows a significant increase in packet

loss and an unfairness to the competing TCP-Newreno

flows. Hence, our aim is to reduce the packet loss and

improve fairness to the competing flows while trying to

attain the goodput of ATL.

Algorithm 1 Algorithm 1: The pseudo code of unified learning-TCP

SD

SDSD

SD

SD

SD

V. SIMULATION RESULTS

R1 R2

Senders
Receivers

100 Mbps

100 Mbps

Fig. 5 Dumbbell topology

Wireless Netw

123

(1) Goodput is the number of bytes successfully trans-

mitted per unit time.

(2) Packet loss percentage is the ratio of the total bytes

retransmitted to the total bytes transmitted. Apart

from Goodput, packet loss percentage is also an

important metric to be considered in wireless net-

works. As a reliable transport protocol recovers the

lost packets by several retransmissions, when the loss

is high, the packet retransmissions consume a

considerable amount of battery power. Due to this

the node may drain off its battery faster, thereby

reducing the network lifetime.

(3) Bandwidth stolen is a measure of inter-protocol

fairness. If a TCP-Newreno flow has a goodput of T1

when competing with another TCP-Newreno flow and

T2 when competing with an aggressive protocol, then

bandwidth stolen by the aggressive one is (T1 - T2)/

T1 if T1 [T2, and 0 otherwise.

Note that in order to introduce the wireless losses, we use

the uniform error model available in ns-2.28.

The following are main advantages of the proposed UL-

TCP over TCP-Newreno and ATL.

• Unlike in TCP-Newreno, increments and decrements in

cwnd size are not restricted in UL-TCP. Depending on

the network, it can learn effective amount of update in

cwnd size through l and r of the action probability

distribution. Hence, it can increase the cwnd size by

higher amounts when it is operating in high BDP

networks. However, in low BDP networks it can even

increase cwnd size by a few bytes.

• Unlike in TCP-Newreno and ATL, UL-TCP can

proactively decrease the cwnd size when incipient

congestion is detected, thereby it can avoid packet loss

during the congestion events. Also this mechanism

helps UL-TCP to overcome the problem of congestion

window synchronization [27], which is a well known

problem of TCP and ATL as their operations are

deterministic in nature.

• Unlike in TCP-Newreno and ATL, the action selection

in UL-TCP is probabilistic in nature. Thus, the nodes

that detect the incipient congestion respond differently.

Some of the nodes that detected the congestion

decrease the cwnd size, while the other nodes increase

cwnd size. This leads to better fairness (intra- and inter-

protocol) among the competing flows as no single flow

can completely dominate all the other flows. Also, it is

well known that the shorter hop TCP flows often starve

the longer hop TCP flows. This case is unlikely to arise

in UL-TCP as the shorter hop flows cannot completely

take away the bandwidth at the bottleneck node. Hence,

there is a high chance for the longer hop flows to get a

fair share of bandwidth at the bottleneck node.

• Like slow-start threshold in TCP-Newreno, UL-TCP

uses cwndcutoff to adjust the aggressiveness needed in

increasing cwnd size. However, by considering the

history of several timeout events and the elapsed time,

UL-TCP can set a more appropriate value for cwndcutoff

and can avoid timeouts. This is extremely useful in

satellite (high BDP) networks as timeouts result in a

drastic throughput drop in these networks.

5.1 Behavior of UL-TCP

In this section, through simulation studies, we show that

the proposed learning mechanism updates the congestion

window size efficiently. First, we monitor the fluctuations

in b (which represents the network response), the pro-

gression of meank (which is mean of recent k RTTs), and

progression of congestion window size, for a flow running

over a satellite link. Here, uplink and downlink bandwidths

are kept fixed at 500 Kbps. Figure 6 plots the fluctuations

in b and progression of cwnd size which show just opposite

trends. As expected, we can observe that as cwnd size

increases, due to increasing level of congestion in the

network, b decreases. Also, the trend shown by the pro-

gression of meank exactly matches with the progression of

cwnd (refer Fig. 7).

Figures 8 and 9 show the progression of cwnd size and

the corresponding fluctuations in b and l, for a single UL-

TCP connection running over a 1 Mbps satellite link. As

mentioned earlier, the trends shown by the progression of

cwnd and fluctuations in b are just opposite. In Fig. 9, we

can see the fluctuations in l of the action probability dis-

tribution from which an action is drawn. Note that the

action refers to an effective amount of change in the cwnd

size. In the figure, we can observe that as l increases, there

is a corresponding increase in cwnd and vice versa. It is

clearly seen that l is operating at lower values when

timeout happens (around 120 s). However, there after, we

0

20

40

60

80

100

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

F
lu

ct
ua

tio
ns

 in
 β

Time in Seconds

Fluctuations in β
Congestion Window

Fig. 6 Satellite link (500 Kbps): progression of cwnd versus

fluctuations in b

Wireless Netw

123

can see a steady increase in l and subsequently in cwnd

size. As l falls much below zero, cwnd decreases drasti-

cally. As mentioned earlier in Sect. 6, we will not allow a

continuous drop below half of cwnd size that was at the

start of decreasing. The flat lines in the cwnd size pro-

gression explain this fact. Figures 10 and 11 show the

similar results but for a flow running for four hops in an ad

hoc wireless network. We notice many fluctuations in b
compared to the studies on satellite and cellular links. This

is mainly due to the variations in link availability and the

presence of multiple wireless links in the ad hoc networks

that lead to self contentions among the packets of a flow.

However, the trends in the progression of cwnd size and

fluctuations in b and l are same as in the previous study

over a satellite link.

5.2 Simulations in satellite networks

As mentioned earlier, we use a dumbbell topology for the

studies on the satellite networks. We use the satellite MAC

available in ns-2 to get more accurate results. In satellite

MAC, the link delays will be automatically set based on the

location of the satellite and the terrestrial node and the

delay turned out to be around 250 ms as we used Geo-

synchronous satellite. In the initial study, we take the

uplink bandwidth as 11 Mbps and later it is varied up to 40

Mbps to observe the effect of higher bandwidths on

0

20

40

60

80

100

0 200 400 600 800 1000 1200

1

1.2

1.4

1.6

1.8

2
C

on
ge

st
io

n
W

in
do

w
 (

P
ac

ke
ts

)

M
ea

n
of

 K
 R

T
T

 s
am

pl
es

 (
S

ec
on

ds
)

Time in Seconds

Mean of K RTTs
Congestion Window

Fig. 7 Satellite link (500 Kbps): progression of cwnd versus fluctu-

ations in meank

0

40

80

120

160

200

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

F
lu

ct
ua

tio
ns

 in
 β

Time in Seconds

Fluctuations in β
Congestion Window

Fig. 8 Satellite link (1 Mbps): progression of cwnd versus fluctua-

tions in b

0

40

80

120

160

200

0 200 400 600 800 1000 1200

-400
-320
-240
-160
-80
0
80
160
240
320
400

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

F
lu

ct
ua

tio
ns

 in
 µ

 (
B

yt
es

)

Time in Seconds

Congestion Window
Fluctuations in µ

Fig. 9 Satellite link (1 Mbps): progression of cwnd versus fluctua-

tions in l

0
1
2
3
4
5
6
7

0 200 400 600 800 1000 1200

0
0.2
0.4
0.6
0.8
1

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

F
lu

ct
ua

tio
ns

 in
 β

Time in Seconds

Fluctuations in β
Congestion Window

Fig. 10 Ad hoc network: progression of cwnd versus fluctuations

in b

0
1
2
3
4
5
6
7

0 200 400 600 800 1000 1200

-10
-5
0
5
10
15

C
on

ge
st

io
n

W
in

do
w

 (
P

ac
ke

ts
)

F
lu

ct
ua

tio
ns

 in
 µ

 (
B

yt
es

)

Time in Seconds

Fluctuations in µ
Congestion Window

Fig. 11 Ad hoc network: progression of cwnd versus fluctuations

in l

Wireless Netw

123

performance. We used a constant downlink bandwidth of

40 Mbps.

First, we study the performance of UL-TCP for varying

wireless loss probabilities, in the presence of background

traffic. We have taken nine UDP flows to generate the

background traffic, where each flow operates at 20 packets

per second. Figure 12 shows the goodput of a single UL-

TCP flow (also TCP-Newreno and ATL) in the presence of

these nine UDP flows. At all loss probabilities, UL-TCP

shows significantly higher goodput than TCP-Newreno.

We observed that at the typical satellite link loss proba-

bility of 0.01 [19], UL-TCP shows four times higher

goodput than TCP-Newreno. Also, we observed that ATL

shows almost five times higher goodput over TCP-Newreno

and up to 25% higher goodput over UL-TCP. As wireless

losses become dominant at the higher values of loss

probability, the goodput of these three protocols decreases

with increasing values of loss probability. Figure 13 shows

the comparison of packet loss for these three protocols. We

notice that UL-TCP shows marginally higher packet loss

(up to 6%) over TCP-Newreno. ATL, on the other hand,

has a significantly higher packet loss of almost four times

and three times over TCP-Newreno and UL-TCP,

respectively.

Next, we study the inter-flow fairness of UL-TCP and

ATL and show that the goodput improvement shown by

UL-TCP is not at the cost of unfairness to the competing

TCP flows. We measure the mean goodput of five TCP-

Newreno flows in the presence of five other TCP-Newreno

flows. Then we measure the mean goodput of the same five

TCP-Newreno flows in the presence of five UL-TCP flows,

and subsequently in the presence of five ATL flows. We

then measure the bandwidth stolen by UL-TCP and ATL in

Fig. 14. We can observe that UL-TCP achieves better

fairness than ATL. UL-TCP steals a maximum of 18% of

bandwidth from the competing TCP-Newreno flows at link

loss probability of 0.001 and in all other cases it steals

about 10%. However, ATL steals a maximum of 92% of

bandwidth from the competing TCP-Newreno flows, which

is certainly unacceptable. The reason for the ATL’s

unfairness is the following. ATL increases its cwnd

aggressively, thereby causes congestion losses and forces

the competing flows to half their cwnd even before they get

their fair share of the bottleneck bandwidth. This is clearly

visible at low loss probabilties where congestion losses are

dominant. Since wireless losses are dominant at high loss

probabilities, the effect of ATL’s aggressiveness is not that

visible, hence it steals low bandwidth at high loss proba-

bilities. Figure 15 shows the corresponding cumulative

goodput attained by both UL-TCP and TCP-Newreno when

we have five flows of each type competing together. At all

loss probabilities, UL-TCP has a significant improvement

0

1

2

3

4

5

6

0.0001 0.0005 0.001 0.005 0.01 0.05

G
oo

dp
ut

 (
M

bp
s)

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 12 Single flow: goodput in satellite networks for varying loss

probability

0

2

4

6

8

10

12

14

0.0001 0.0005 0.001 0.005 0.01 0.05

Lo
ss

 P
er

ce
nt

ag
e

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 13 Single flow: packet loss percentage in satellite networks for

varying loss probability

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.0005 0.001 0.005 0.01 0.05

B
an

dw
id

th
 S

to
le

n
(%

)

Wireless Loss Probability

ATL

UL-TCP

Fig. 14 Five UL-TCP (ATL) flows competing with Five Newreno

flows. Bandwidth stolen in satellite networks

Wireless Netw

123

in cumulative goodput over TCP-Newreno. Also, we can

notice that ATL achieves higher cumulative goodput by

causing severe unfairness to the competing TCP-Newreno

flows.

Our final study related to satellite networks is the fol-

lowing. As there is a large variation in the satellite link

bandwidth from as much as 0.01–50 Mbps, we study the

goodput achieved by a UL-TCP flow with varying link

bandwidth at a typical satellite link loss probability of 0.01.

In Fig. 16, we can notice that TCP-Newreno is not

responding to the increase in bandwidth. On the other hand,

both UL-TCP and ATL show an improvement in goodput

with the increase in bandwidth. As UL-TCP tries to balance

between goodput and fairness (also packet loss), the

goodput improvement is not proportional to the increase in

bandwidth. Figure 17 shows the comparison of the corre-

sponding packet losses. At all link bandwidths, ATL shows

significantly higher losses over UL-TCP and TCP-

Newreno, where as UL-TCP shows slightly higher packet

loss over TCP-Newreno.

To summarize the results, we observed that UL-TCP

shows a significant improvement in goodput and in fairness

to the competing flows while showing a marginal increase

in packet loss over TCP-Newreno. Further, UL-TCP shows

a significant reduction (up to 70%) in packet loss and

improvement in fairness (up to 88%) over ATL while

losing in the goodput up to 21%.

5.3 Simulations in cellular networks

In this section, we discuss the performance of UL-TCP in

cellular networks. We take the same dumbbell topology

(Fig. 5). To the best of our knowledge, there is no cellular

MAC available in ns-2.28. Hence, as mentioned in [2], we

model the cellular link by introducing the typical charac-

teristics of cellular link such as delay and bandwidth, over

a wired link. As suggested in [2], delay and bandwidth

values over uplink are taken as 100 ms and 500 Kbps,

respectively and downlink delay and bandwidth are taken

as 100 ms and 1 Mbps, respectively. Simulation setup for

the studies varying the wireless loss probabilities and

multi-flow cumulative goodput and fairness is same as that

of the corresponding satellite network studies.

Figures 18 and 19 show the goodput and packet loss for

a single UL-TCP/TCP-Newreno/ATL flow for varying

wireless loss probability. The trends are similar to those of

the corresponding study in satellite networks. UL-TCP

shows significantly higher goodput than TCP-Newreno,

with an improvement of 78% at the typical cellular wireless

loss probability of 0.001 [19]. ATL shows higher goodput

over TCP-Newreno (up to 133%) and UL-TCP (up to

25%). However, ATL shows significantly higher packet

0

1

2

3

4

5

6

7

8

9

10

0.0001 0.0005 0.001 0.005 0.01 0.05

C
um

ul
at

iv
e

G
oo

dp
ut

 (
M

bp
s)

Wireless Loss Probability

ATL with Newreno

UL-TCP with Newreno

Newreno with UL-TCP

Newreno with ATL

Fig. 15 Five UL-TCP (ATL) flows competing with Five Newreno

flows. Cumulative goodput in satellite networks

0

5

10

15

20

25

10 15 20 25 30 35 40

G
oo

dp
ut

 (
M

bp
s)

Wireless Link Bandwidth (Mbps)

ATL
UL-TCP

TCP-Newreno

Fig. 16 Single flow: goodput in satellite networks at varying

bandwidth

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25 30 35 40

Lo
ss

 P
er

ce
nt

ag
e

Wireless Link Bandwidth (Mbps)

ATL
UL-TCP

TCP-Newreno

Fig. 17 Single flow: packet loss percentage in satellite networks at

varying bandwidth

Wireless Netw

123

loss than both TCP-Newreno (up to 200%) and UL-TCP

(up to 113%). As this high packet loss is recovered through

several retransmissions, the ATL nodes spend significant

portion of their battery power on recovering from losses.

Figure 20 shows the bandwidth stolen by ATL and UL-

TCP, respectively, when they are competing with TCP-

Newreno flows. The trends are similar to those of the

corresponding study for satellite networks. UL-TCP shows

a significantly better fairness to the competing TCP-New-

reno flows than ATL. The bandwidth stolen by UL-TCP is

high when congestion losses are dominant (i.e., for the loss

probabilities 10-4 - 10-2). The five UL-TCP flows toge-

ther steal a maximum of 18% of bandwidth from the

competing five TCP-Newreno flows. The five ATL flows

on the other hand steal up to 68.8% of TCP-Newreno’s

bandwidth, which is quite high. The corresponding cumu-

lative goodput results are shown in Fig. 21. At all loss

probabilities, UL-TCP shows higher cumulative goodput

than TCP-Newreno. These results confirm the fact that

ATL achieves higher goodput while causing severe

unfairness to the competing TCP-Newreno flows.

Due to the variations in the number of active users and

also due to mobility of nodes, the cellular links are prone to

bandwidth fluctuations [2]. Hence, we conduct a study by

oscillating the bandwidth around the mean value of 500

Kbps. For example, [4, 6] in Fig. 22 means that the

bandwidth will oscillate between two values, 600 and 400

Kbps, staying for 5 s at each value before changing to the

other. The goodput comparison at the typical cellular loss

probability of 0.001 is shown in Fig. 22. UL-TCP performs

better than TCP-Newreno for all the ranges of band-

width oscillations and shows almost two times higher

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.0001 0.0005 0.001 0.005 0.01 0.05

G
oo

dp
ut

 (
K

bp
s)

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 18 Single flow: goodput in cellular networks for varying loss

probability

0

2

4

6

8

10

12

0.0001 0.0005 0.001 0.005 0.01 0.05

Lo
ss

 P
er

ce
nt

ag
e

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 19 Single flow: packet loss percentage in cellular networks for

varying loss probability

0

10

20

30

40

50

60

70

0.0001 0.0005 0.001 0.005 0.01 0.05

B
an

dw
id

th
 S

to
le

n
(%

)

Wireless Loss Probability

ATL

UL-TCP

Fig. 20 Five UL-TCP (ATL) flows competing with Five Newreno

flows. Bandwidth stolen in cellular networks

0

50

100

150

200

250

300

350

400

450

500

0.0001 0.0005 0.001 0.005 0.01 0.05

C
um

ul
at

iv
e

G
oo

dp
ut

 (
K

bp
s)

Wireless Loss Probability

ATL with Newreno

UL-TCP with Newreno

Newreno with UL-TCP

Newreno with ATL

Fig. 21 Five UL-TCP (ATL) flows competing with Five Newreno

flows. Cumulative goodput in cellular networks

Wireless Netw

123

goodput than TCP-Newreno. As the bandwidth fluctuations

increase, due to the aggressive nature, goodput of both UL-

TCP and ATL started decreasing, but the aggressiveness of

UL-TCP is not leading to an excess packet loss (refer

Fig. 23), whereas ATL’s packet loss is increasing expo-

nentially with increasing variations. ATL experiences

about six times higher packet loss over TCP-Newreno and

about five times higher packet loss over UL-TCP.

In order to study the effect of link outage (due to

mobility) on the performance of UL-TCP, we conduct the

following study. We take a fixed value of 10 ms for link

outage time and vary the link active time from 50 to 600 s.

During the link active time, the link operates at 1 Mbps and

during the link outage time the link bandwidth is set to 0.

The goodput and the corresponding packet loss percentage

for a single flow are shown in Figs. 24 and 25, respectively.

All the three protocols show an increase in goodput for

increasing values of link active time. For smaller values of

link active time, the goodput shown by UL-TCP is same as

that of ATL. However, due to its extreme aggressiveness,

ATL shows higher goodput and experiences significantly

higher packet loss over UL-TCP and TCP-Newreno for

increasing link active times. UL-TCP, on the other hand,

shows consistently higher goodput with a moderate

increase in packet loss over TCP-Newreno. UL-TCP

maintains cwnd size at which the timeout may happen and

cautiously increases cwnd size as it approaches to that

value. Because of this, for smaller values of link active

times, it gets benefited as it experiences lesser amount of

losses and thus attaining higher goodput compared to TCP-

Newreno. As it can adjust the cwnd size in a better way

when the network is stable, it continues to show higher

100

150

200

250

300

350

400

[5,5] [6,4] [7,3] [8,2] [9,1]

G
oo

dp
ut

 (
K

bp
s)

Range of Bandwidth Oscillations (Kbps)

ATL

UL-TCP

TCP-Newreno

Fig. 22 Single flow: goodput in cellular networks with bandwidth

oscillations

0

2

4

6

8

10

12

14

16

[5,5] [6,4] [7,3] [8,2] [9,1]

Lo
ss

 P
er

ce
nt

ag
e

Range of Bandwidth Oscillations (Kbps)

ATL

UL-TCP

TCP-Newreno

Fig. 23 Single flow: packet loss percentage in cellular networks with

bandwidth oscillations

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550 600

G
oo

dp
ut

 (
K

bp
s)

Link Active Time in Seconds

ATL

UL-TCP

TCP-Newreno

Fig. 24 Single flow: goodput of a TCP connection for varying

duration of connection uptime over a cellular link

0

1

2

3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400 450 500 550 600

Lo
ss

 P
er

ce
nt

ag
e

Link Active Time in Seconds

ATL

UL-TCP

TCP-Newreno

Fig. 25 Single flow: packet loss percentage of a TCP connection for

varying duration of connection uptime over a cellular link

Wireless Netw

123

goodput over TCP-Newreno, with increasing link active

times.

5.4 Simulations in wireless LANs

In this section, we study the performance of UL-TCP over

Wireless LANs. We use IEEE 802.11 MAC operating at 2

Mbps in these simulations. The rest of the simulation setup

details are same as those of satellite networks. The results

are consistent with our studies in the satellite and cellular

networks.

Figures 26 and 27 show the goodput and packet loss,

respectively, for varying wireless loss probabilities. UL-

TCP shows up to 20% higher goodput over TCP-Newreno

and almost same goodput as that of ATL. However,

ATL shows almost four times higher packet loss over

TCP-Newreno and about two times higher packet loss over

UL-TCP, whereas UL-TCP shows about 40% higher losses

over TCP-Newreno. Next, we will study the behavior of

UL-TCP at higher loads in the network. We carry out this

study by increasing the number of TCP flows with a typical

loss probability of 10-4 [19]. Figures 28 and 29 show the

cumulative goodput and packet loss, respectively. UL-TCP

shows consistently higher goodput over TCP-Newreno for

increasing number of flows. It shows the maximum

improvement in goodput of about 10% when there are 30

flows. ATL also shows about 12% higher goodput over

TCP-Newreno and its goodput is approaching to that of

UL-TCP with increasing number of flows. ATL experi-

ences about three times higher packet loss over TCP-

Newreno. On the other hand, UL-TCP shows a marginal

increase in packet loss for most of the cases, and experi-

ences a maximum of 38% higher packet loss over TCP-

Newreno.

We also conducted a study to measure the fairness of

UL-TCP to the competing flows in WLANs. Like our

fairness related studies in satellite and cellular networks,

here also we observed that UL-TCP is perfectly fair to the

competing flows. As the trends are similar, we avoid giving

the corresponding results (graphs) in this paper.

5.5 Simulations for short-lived flows in satellite,

cellular, and wireless LANs

Short-lived flows can be expressed as a Pareto distribution

which is a power-law distribution used in a large number of

real-world situations. Pareto distribution is defined in terms

of mode (a modal value which is also the minimum value)

and shape factor (defines the concentration of data towards

mode). In order to evaluate the performance of UL-TCP for

300

400

500

600

700

800

900

1000

0.0001 0.0005 0.001 0.005 0.01 0.05

G
oo

dp
ut

 (
M

bp
s)

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 26 Single flow: goodput in WLAN for varying loss probability

2

4

6

8

10

12

14

16

18

20

0.0001 0.0005 0.001 0.005 0.01 0.05

Lo
ss

 P
er

ce
nt

ag
e

Wireless Loss Probability

ATL

UL-TCP

TCP-Newreno

Fig. 27 Single flow: packet loss percentage in WLAN for varying

loss probability

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

5 10 15 20 25 30

G
oo

dp
ut

 (
M

bp
s)

Number of TCP Connections

ATL

UL-TCP

TCP-Newreno

Fig. 28 Cumulative goodput for varying number of flows in WLAN

Wireless Netw

123

short-lived flows, we conduct two different studies. Table 2

shows the simulation parameters used in these experiments.

In the first study, we take a fixed mode value of 50 (i.e.,

minimum 50 packets for each flow) and vary the shape

factor between 1 and 3. We do this experiment for 50 flows

which start at a random time selected from an exponential

distribution with mean value 2 s. Figure 30 shows the

average flow completion time in Satellite, Cellular, and

WLANs. As the deviations in file sizes from mode are high

for smaller values of shape factor, we can observe higher

completion times initially. For the larger values of shape

factor, the file sizes will be closely populated around mode,

therefore the completion times are relatively small. In the

next study, we have taken a fixed value for shape factor as

1.2 as this is the point at which there are moderate devia-

tions from mode 50 (in the previous study) and varied the

number of flows between 20 and 100. These results are

presented in Fig. 31. We can observe that, as the number of

flows increases in the network, the download time is also

increasing. One common observation in these two is that

UL-TCP and TCP are doing almost close, and ATL is

doing well among all. Note that as mentioned in Sect. 5,

UL-TCP learns the network conditions after first few

RTOs, but the short term flows typically end even before

the initial timeout. However, the initial values for l and r,

and cwndprev will help UL-TCP to perform similar to TCP

at the connection startup. As the number of flows is

increasing (in Fig. 31), RTOs are likely to happen sooner,

therefore UL-TCP performs well over TCP at higher

number of flows.

5.6 Simulations over multi-hop wired network

In general, the flows originated in a wireless network run

for several hops in the wired network. While it is common

to find the resources of a wireless network as bottleneck,

sometimes it is true with the resources in wired part.

Therefore, in this section we study the performance of UL-

TCP in a multi-hop wired network. We take a simple

parking-lot topology with four wired routers (each router is

serving five nodes) and a last-hop wireless network (which

consists of twenty nodes). In order to create the bottleneck

in the wired network, the bandwidth and delay for the

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30

Lo
ss

 P
er

ce
nt

ag
e

Number of TCP Connections

ATL

UL-TCP

TCP-Newreno

Fig. 29 Average packet loss percentage for varying number of flows

in WLAN

Table 2 Simulation parameters

Network Wireless loss

probability

Uplink (downlink)

bandwidth

Link delay

Satellite 10-2 500 Kbps (1 Mbps) 250 ms

Cellular 10-3 500 Kbps (1 Mbps) 100 ms

WLAN 10-4 11 Mbps Not applicable

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.4 1.8 2.2 2.6 3

D
ow

nl
oa

d
T

im
e

(in
 s

ec
on

ds
)

Shape Factor of Pareto Distribution

TCP-Newreno over Satellite
UL-TCP over Satellite

ATL over Satellite
TCP-Newreno over Cellular

UL-TCP over Cellular
ATL over Cellular

TCP-Newreno over WLAN
UL-TCP over WLAN

ATL over WLAN

Fig. 30 Download time for varying shape factor with fixed number

of flows 20 and mode 50 packets

-20

-10

 0

 10

 20

 30

 20 40 60 80 100

D
ow

nl
oa

d
T

im
e

(in
 s

ec
on

ds
)

Number of Flows

TCP-Newreno over Satellite
UL-TCP over Satellite

ATL over Satellite
TCP-Newreno over Cellular

UL-TCP over Cellular
ATL over Cellular

TCP-Newreno over WLAN
UL-TCP over WLAN

ATL over WLAN

Fig. 31 Download time for varying number of flows with fixed

values for shape factor and mode as 1.2 and 50 packets, respectively

Wireless Netw

123

wired links are taken as 10 Mbps and 10 ms, respectively,

and the parameters of wireless links are retained as men-

tioned in the initial section (for example, we used uplink

and downlink bandwidths for a satellite link as 11 and 40

Mbps, respectively). A flow starts randomly at a wireless

node and runs for several hops in the wired network before

reaching the destination. It is obvious from this topology

that each flow experiences a different level of congestion.

We conduct this study for 20 flows, where the starting times

of the flows are derived from an exponential distribution

with mean 2 s. We measured intra-flow fairness and average

goodput over all the flows going to a specific hop-length.

Note that intra-flow fairness is different from the bandwidth

stolen which is used in previous sections. While bandwidth

stolen represents the inter-flow fairness (flows of different

type), intra-flow fairness shows the fairness between the

flows of same type, which is obtained using Jain’s fairness

index formula (fairness index =
½
Pn

i¼1
xi�2

n
Pn

i¼1
xi

2
; where n is the

number of flows and xi represents the throughput of ith

flow.) Figure 32 shows the intra-flow fairness and goodput

results, which are obtained over a satellite link. We can

observe that, while achieving better fairness among the

competing flows, UL-TCP shows moderate improvement in

goodput over TCP-Newreno; also, the goodput of the flows

running for shorter hops is higher than that of the flows

running for longer hops. As we observed similar trends in

the other networks also, we do not keep those results.

5.7 Simulations in ad hoc wireless networks

We now study the performance of UL-TCP in ad hoc net-

works and compare it with that of TCP-Newreno. Note that

ATL was not designed for ad hoc networks. Even if ATL is

extended to ad hoc networks, the aggressive nature of ATL

would not be suitable for these networks. Hence, we use

Learning-TCP [16] for comparison as it was shown to per-

form better over TCP-Reno in ad hoc networks. Unlike UL-

TCP, Learning-TCP has a fixed number of actions, therefore

it can not make finer updates in cwnd size. We perform

simulations on chain and grid topologies and then under

random placement with mobility. The transmission and

carrier sense ranges of the nodes are set to 250 and 550 m,

respectively. The routing and MAC protocols used are ad hoc

on-demand distance vector routing (AODV) protocol and

IEEE 802.11 with 2 Mbps, respectively. The nodes use

TwoRayGround as a propagation model and drop-tail queues

with maximum queue size of 50 packets. One main advan-

tage of UL-TCP over TCP-Newreno in ad hoc networks is its

finer updates in cwnd size and its proactive nature of han-

dling incipient congestion in the network, which should

intuitively result in a higher goodput for UL-TCP accom-

panied with a lower packet loss. Figures 33 and 34 show the

goodput and packet loss for these three protocols with

varying hop lengths over a chain topology. Here, the nodes

are static and the loss probability at each node is fixed at

10-4. For all hop lengths, UL-TCP outperforms the other two

protocols. It shows up to 95% higher goodput and up to 75%

lower packet loss than TCP-Newreno. Note that unlike in

single-hop networks, UL-TCP achieves a significant reduc-

tion in packet loss over TCP-Newreno. Learning-TCP shows

up to 30% higher goodput, however at higher hop lengths its

goodput approaches that of TCP-Newreno.

Since the nodes are mobile in ad hoc networks, here we

study the performance of UL-TCP in the presence of node

mobility. We take a random topology in a terrain size of

500 m 9 1,500 m and take 75 nodes that are randomly

distributed in this area. Mobility model used is the random-

0

100

200

300

400

500

600

700

1 2 3 4

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
K

bp
s)

F
ai

rn
es

s
In

de
x

Hops

Fairness TCP-Newreno
Fairness UL-TCP

Fairness ATL
Goodput TCP-Newreno

Goodput UL-TCP
Goodput ATL

Fig. 32 Fairness and goodput over a multi-hop wired network with

last-hop satellite link

50

100

150

200

250

300

350

400

4 6 8 10 12 14 16 18 20

G
oo

dp
ut

 (
K

bp
s)

Hop Length

UL-TCP

Learning-TCP

TCP-Newreno

Fig. 33 Single flow: goodput for varying hop length in a static ad hoc

network

Wireless Netw

123

way point model with a pause time of 0 s. We conducted

this study for various mobilities, 0, 2, 4, 6, 8, and 10 m/s in

the presence of 20 flows starting at a random time chosen

from [0, 5] seconds time interval. Each flow runs for 600 s

before it terminates. Figure 35 shows the cumulative

goodput of these 20 flows. Here also UL-TCP is the best

followed by Learning-TCP and TCP-Newreno. The

improvement in the goodput for UL-TCP and Learning-

TCP over TCP-Newreno are up to 23% and up to 4%,

respectively. Figure 36 shows the corresponding packet

loss percentage, where in we can observe that UL-TCP and

Learning-TCP show a significant reduction in packet loss

of up to 78 and 70%, respectively, over TCP-Newreno.

Our next study is related to the performance of UL-TCP

for varying amount of load in the network. We take a static

11 9 11 grid topology and a fixed loss probability of 10-4

at each node. On this 11 9 11 grid, we vary the number of

0

1

2

3

4

5

6

7

8

4 6 8 10 12 14 16 18 20

Lo
ss

 P
er

ce
nt

ag
e

Hop Length

UL-TCP

Learning-TCP

TCP-Newreno

Fig. 34 Single flow: packet loss percentage for varying hop length in

a static ad hoc network

120

150

180

210

240

270

300

0 2 4 6 8 10

G
oo

dp
ut

 (
K

bp
s)

At Constant Mobility (m/s)

TCP-Newreno

Learning-TCP

UL-TCP

Fig. 35 Cumulative goodput of 20 flows for varying mobility in an

ad hoc network

0

0.4

0.8

1.2

1.6

2

2.4

2.8

0 2 4 6 8 10

Lo
ss

 P
er

ce
nt

ag
e

At Constant Mobility (m/s)

TCP-Newreno

Learning-TCP

UL-TCP

Fig. 36 Average packet loss percentage of 20 flows for varying

mobility in an ad hoc network

5

10

15

20

25

30

35

40

45

6 8 10 12 14 16 18

G
oo

dp
ut

 (
K

bp
s)

Number of Flows

UL-TCP

Learning-TCP

TCP-Newreno

Fig. 37 Average goodput of the flows in an 11 9 11 grid ad hoc

network for varying number of flows

0

1

2

3

4

5

6

7

8

6 8 10 12 14 16 18

Lo
ss

 P
er

ce
nt

ag
e

Number of Flows

TCP-Newreno

UL-TCP

Learning-TCP

Fig. 38 Average packet loss percentage of the flows in an 11 9 11

grid ad hoc network for varying number of flows

Wireless Netw

123

flows from 6 to 18, where each flow runs from one end to

the other end of the grid (i.e., 10 hops). This is an extre-

mely congested network. Figures 37 and 38 show the

average goodput and packet loss percentage for varying

number of flows. UL-TCP stands best among the three by

showing almost three times higher goodput and up to 80%

reduction in packet loss over TCP-Newreno. Learning-TCP

performs same as UL-TCP at lighter loads, however as we

increase the load, its performance degrades drastically.

6 Conclusions and future work

In this paper, we proposed UL-TCP, a unified reliable data

transport protocol for heterogeneous wireless networks. It

does not rely on any explicit network support and seek any

changes in network components, thus enabling its easier

deployment. It can operate aggressively in high BDP net-

works, whereas in low BDP networks it can act conserva-

tively. When the incipient congestion is detected, it reduces

cwnd proactively to avoid multiple losses and timeouts,

thereby conserving battery power and bandwidth in the net-

work. Through extensive simulations, we showed that UL-

TCP achieves significantly higher goodput over TCP-New-

reno with a marginal increase in packet loss in single-hop

wireless networks. In ad hoc networks UL-TCP shows a

significant gain in goodput while achieving a significant

reduction in packet loss over TCP-Newreno. We also com-

pared UL-TCP against the Sack enabled ATL [19], which

was proposed for single-hop wireless networks and observed

significantly higher goodput for ATL over TCP-Newreno.

However, this improvement is achieved at the cost of a very

high packet loss and up to 90% unfairness to the competing

TCP-Newreno flows which are certainly unacceptable. When

UL-TCP is compared with ATL, UL-TCP shows a significant

gain in terms of reduction in packet loss and improvement in

fairness while not losing much of its goodput.

While in this work we evaluated UL-TCP through

extensive simulations, in future, we plan to implement UL-

TCP in Linux kernel and evaluate its performance over a

real test-bed. We also plan to derive the values of param-

eters used in UL-TCP through theoretical analysis.

Acknowledgments The authors would like to thank the anonymous

reviewers for their valuable comments and suggestions. This work

was supported by the Department of Science and Technology, New

Delhi, India.

References

1. Tian, Y., Xu, K., & Ansari, N. (2005). TCP in wireless envi-

ronments: Problems and solutions. IEEE Communications Mag-
azine, 43(3), S27–S32.

2. Gurtov, A., & Floyd, S. (2004). Modeling wireless links for

transport protocols. ACM Sigcomm Computer Communication
Review, 34(2), 85–96.

3. Barakat, C., Altman, E., & Dabbous, W. (2000). On TCP per-

formance in a heterogeneous network: A survey. IEEE Commu-
nication Magazine, 38(1), 40–46.

4. Akyildiz, I. F., Zhang, X., & Fang, J. (2002). TCP-peach?:

Enhancement of TCP-peach for satellite IP networks. IEEE
Communication Letters, 6(7): 303–305.

5. Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control

for high bandwidth-delay product networks. In Proceedings of
ACM Sigcomm (pp. 89–102).

6. Jain, A. K., & Floyd, S. (2002). Quick-start for TCP and IP. In

Internet draft draft-amit-quick-start-01.txt, IETF.

7. Tan, K., Song, J., & Zhang, Q. (2005). A compound TCP

approach for high-speed and long distance networks. In Pro-
ceedings of ACM Mobihoc (pp. 288–299).

8. Sinha, P., Nandagopal, T., Venkitaraman, N., Sivakumar, R., &

Bharghavan, V. (1999). WTCP: A reliable transport protocol for

wireless wide-area networks. In Proceedings of ACM Mobicom
(pp. 231–241).

9. Goff, T., Moronskim, J., & Phatak, D. S. (2000). Freeze-TCP: A

true end-to-end TCP enhancement mechanism for mobile envi-

ronments. In Proceedings of IEEE infocom (pp. 1537–1547).

10. Mondal, S. A. (2009). Improving performance of TCP over

mobile wireless networks. Wireless Networks Journal, 15(3),

331–340.

11. Balakrishnan, H., Seshan, S., Amir, E., & Katz, R. H. (1995).

Improving TCP/IP performance over wireless networks. In Pro-
ceedings of ACM Mobicom (pp. 2–11).

12. Barked, A., & Badrinath, B. R. (1995). I-TCP: Indirect TCP for

mobile hosts. In Proceedings of IEEE ICDCS (pp. 136–143).

13. Bhandarkar, S., Sadry, N. E., Reddy, A. L. N., & Vaidya, N. H.

(2005). TCP-DCR: A novel protocol for tolerating wireless

channel errors. IEEE Transactions on Mobile Computing, 4(5),

517–529.

14. ElRakabawy, S. M., Klemn, A., & Lindemann, C. (2005). TCP

with adaptive pacing for multihop wireless networks. In Pro-
ceedings of ACM Mobihoc (pp. 288–299).

15. Nahm, K., Helmy, A., & Kuo, C. J. (2005). TCP over Multihop

802.11 networks: Issues and performance enhancement. In Pro-
ceedings of ACM Mobihoc (pp. 277–287).

16. Venkata Ramana, B., Manoj, B. S., & Murthy, C. S. R. (2005).

Learning-TCP: A novel learning automata based reliable trans-

port protocol for ad hoc wireless networks. In Proceedings of
IEEE Broadnets (pp. 521–530).

17. Xu, K., Tian, Y., & Ansari, N. (1995). Improving TCP perfor-

mance in integrated wireless communications networks. In Pro-
ceedings of IEEE ICDCS (pp. 136–143).

18. Mascolo, S., Casetti, C., Gerla, M., Snadidi, M., & Wang, R.

(2001). TCP westwood: Bandwidth estimation for enhanced

transport over wireless links. In Proceedings of ACM Mobicom
(pp. 287–297).

19. Akan, O. B., & Akyildiz, I. F. (2004). ATL: An adaptive transport

layer suite for next-generation wireless internet. IEEE Journal on
Selected Areas in Communications, 22(5), 802–817.

20. Yang, Y. R., & Lam, S. S. (2000). General AIMD congestion

control. In Proceedings of IEEE ICNP (pp. 187–198).

21. Narendra, K. S., & Thathachar, M. A. L. (1989). Learning
automata: An introduction. New Jersey: Prentice Hall.

22. Thathachar, M. A. L., & Sastry, P. S. (2004). Networks of
learning automata: Techniques for online stochastic optimiza-
tion. Kluwer: New Jersey.

23. Brakmo, L., & Peterson, L. (1995). TCP vegas: End-to-end

congestion avoidance on global internet. In IEEE Journal on
Selected Areas in Communications, 13(8), 1465–1480.

Wireless Netw

123

24. Samaraweera, N. K. G. (1999). Non-congestion packet loss

detection for TCP error recovery using wireless links. Proceed-
ings of IEE Communications, 146(4), 222–230.

25. Benveniste, A., Metivier, M., & Priouret, P. (1987). Adaptive
algorithms and stochastic approximations. New York: Springer.

26. Kushner, H. J., & Yin, G. G. (1997). Stochastic approximation
algorithms and applications. New York: Springer.

27. Chandrayana, K., Ramakrishnan, S., Sikdar, B., Kalyanaraman,

S., Balan, A., & Tickoo, O. (2006). On randomizing the sending

times in TCP and other window based algorithms. Computer
Networks Journal, 50(3), 422–447.

Author Biographies

Venkataramana Badarla
received the B. Tech. degree in

Computer Science and Engi-

neering from Nagarjuna Uni-

versity, India, in 1995 and the

M.E. degree in Systems and

Information from Birla Institute

of Technology and Science

(BITS), Pilani, India, in 1997.

Between 1997-02, he worked as

a software engineer and a fac-

ulty member. He worked on his

PhD during 2002-07 in the

Department of Computer Sci-

ence and Engineering at the

Indian Institute of Technology (IIT) Madras, India, where he focused

on provisioning of efficient data transport over ad hoc wireless net-

works. During August 2006 – May 2007, he was a project officer at

IIT, Madras, India. He is currently working as a research fellow at the

Hamilton Institute, National University of Ireland Maynooth, Ireland.

He received a Best paper of the conference award from 14th IEEE

Conference on Networks (ICON 2006). His research interests include

experimental evaluation of the MAC and routing protocols over

multi-hop wireless networks and sensor networks.

C. Siva Ram Murthy received

the PhD degree from the Indian

Institute of Science, Bangalore,

India. He has been with the

Department of Computer Sci-

ence and Engineering, Indian

Institute of Technology Madras,

Chennai, India, since 1988,

where he is currently a profes-

sor. His research interests

include parallel and distributed

computing, real-time systems,

lightwave networks, and wire-

less networks. He has published

more than 125 papers in refer-

eed international journals and more than 125 papers in refereed

international conferences in these areas. He has coauthored the text-

books Parallel Computers: Architecture and Programming, (Prentice-

Hall of India, New Delhi, India), New Parallel Algorithms for Direct

Solution of Linear Equations, (John Wiley & Sons, Inc., New York,

USA), Resource Management in Real-time Systems and Networks

(MIT Press, Cambridge, USA), WDM Optical Networks: Concepts,

Design, and Algorithms (Prentice Hall, New Jersey, USA), and Ad

Hoc Wireless Networks: Architectures and Protocols (Prentice Hall,

New Jersey, USA). He is a recipient of Best Ph.D. Thesis Award from

the Indian Institute of Science, Indian National Science Academy

(INSA) Medal for Young Scientists, Dr. Vikram Sarabhai Research

Award, and IBM Real-Time Innovation Faculty Award. He is a fellow

of the Indian National Academy of Engineering, an associate editor of

the IEEE Transactions on Computers, and a subject area editor of the

Journal of Parallel and Distributed Computing. He is a senior member

of the IEEE.

Wireless Netw

123

	A novel learning based solution for efficient data transport �in heterogeneous wireless networks
	Abstract
	Introduction
	A brief introduction to various wireless networks
	Limitations of TCP in wireless networks
	Wireless losses
	Bandwidth-delay product
	Reactive nature of TCP
	Asymmetric paths

	Goals
	Throughput improvement
	Fairness
	No support from the network

	Related work
	Overview of our protocol
	A brief introduction to learning automata
	Details of UL-TCP

	Protocol details
	Inferring network conditions
	Mapping of congestion (&lgr;1)
	Mapping of throughput fluctuations (&lgr;2)
	Degree of aggressiveness (&lgr;3)

	Mapping network conditions into a single parameter &ggr;
	Learning algorithm and action selection
	Discussion about the learning mechanism
	Convergence proof and selection of parameters
	Final protocol

	Simulation results
	Behavior of UL-TCP
	Simulations in satellite networks
	Simulations in cellular networks
	Simulations in wireless LANs
	Simulations for short-lived flows in satellite, cellular, and wireless LANs
	Simulations over multi-hop wired network
	Simulations in ad hoc wireless networks

	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

