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Abstract- The performance of Transmission Control Protocol
(TCP) over Ad hoc wireless networks (or simply ad hoc networks)
has been extensively studied through simulations by the research
community. Although many theoretical models, such as [1], have
been proposed for estimating the performance of TCP over wired
networks, researchers have faced many difficulties in modeling
TCP over ad hoc networks. These difficulties are mainly due
to the behavior of the underlying physical and MAC layers.
Recently, [2] attempted to solve this problem by simplifying the
behavior of TCP, besides assuming that no packet losses occur.
In this work, we attempt to provide a theoretical model for TCP
by considering the main phases of TCP, namely the slow start
phase and the congestion avoidance phase, thus providing a more
accurate model that captures all of its main features. To the
best of our knowledge, ours is the first model that considers the
slow start phase while analyzing TCP's performance in ad hoc
networks. We make use of multi-dimensional Markovian chains
to model each of these phases. We then use the resulting steady
state probabilities to estimate the goodput. Furthermore, the
analysis is validated by comparing the theoretical and simulation
results using various error models.

I. INTRODUCTION

The Internet has experienced enormous growth over the
past decade and is now positioned to provide a wide range
of services, such as remote file access, digital libraries, and
videoconferencing [3]. This has led to the emergence of
Transmission Control Protocol (TCP) as the globally accepted
Inter-networking solution for providing reliable communica-
tion over computer networks. Alongside, the recent perfor-
mance improvements in computer and wireless technologies,
have seen advanced mobile wireless communication replace
(complement) traditional wired networks. Thus, there is an
immediate need to study the behavior of traditional transport
protocols like TCP over these advanced networks. Since ad hoc
wireless networks are one of the most commonly found in
many applications, we limit our discussion to these type of
networks in what follows.
Ad hoc wireless networks are formed dynamically by a

group of mobile nodes, without any fixed infrastructure and
centralized administration. In these networks all the nodes
are potentially routers, forwarding traffic on behalf of other
users. These networks have proved to be very useful in on-
the-fly conferences, electronic classrooms, and trade-shows. In
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these applications, where an infrastructure is unavailable or to
deploy one is not cost effective, ad hoc networks come to the
rescue by providing a readily deployable wireless network.
The use of IEEE 802.11 with RTS/CTS makes the behavior
of the protocols run on these networks considerably different
from their wired counterparts. In addition, several problems
arise due to shared nature of the wireless medium, limited
transmission power (range) of wireless devices, packet losses,
node mobility, and battery limitations. In this work, we deal
with the effect of the first three on the performance of TCP
over ad hoc networks.
TCP [4] is a connection-oriented, reliable, full-duplex trans-

port layer protocol that is based on the end-to-end semantic.
The main responsibilities of TCP are congestion control, flow
control, in-order delivery, and reliable transportation of pack-
ets. TCP regulates its packet transmission by expanding and
shrinking its congestion window. It uses an additive-increase
and multiplicative-decrease strategy for changing the size of its
congestion window as a function of the network conditions to
handle the congestion situation in the network. TCP operates in
two phases: slow start and congestion avoidance. In the slow
start phase, starting from one packet, the window is increased
exponentially by one packet for every acknowledgment (ACK)
until the source estimate of the network capacity (also called
the slow start threshold, SSThresh), is reached. Once the
congestion window exceeds the SSThresh, TCP enters into the
congestion avoidance phase, in which for every Round Trip
Time (RTT) the size of the congestion window is increased
by one packet.

The receiver sends a duplicate acknowledgment (DUPACK)
for every out-of-order packet it receives. Two mechanisms are
available for the detection of losses. First, on reception of three
consecutive DUPACKs, interpreting it as a packet loss, the
TCP halves the current congestion window and re-transmits
the lost packet. Second, when no ACK is received before the
re-transmission timeout, TCP updates the SSThresh to half
of the current congestion window and resets the congestion
window to one packet, (i.e., to one Maximum Segment Size,
MSS) and goes to the slow start phase.

In this work, we attempt to provide a theoretical model
for TCP by considering both the slow start and congestion
avoidance phases, thus providing a more accurate model that
captures all of its main features. To the best of our knowledge,
ours is the first model that considers the slow start phase while
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analyzing TCP's performance in ad hoc networks. We make
use of multi-dimensional Markovian chains to model each of
these phases while considering the effect of losses and MAC
contentions. We then use the resulting steady state probabilities
to determine the goodput. Analysis considering various other
enhancements to TCP can be made on similar lines.

A. Prior Work

The performance of TCP is a widely studied problem in
the research community. Many papers exist on the theoretical
analysis of the performance of TCP over wired networks.
[1] presents a simple model of the TCP protocol which
captures the congestion avoidance behavior of TCP but does
not consider the effect of the slow start phase. Also since
the model is for wired networks, it does not capture the
shared nature of the wireless links. Again, one can find a
large number of papers, [5-7], on the measured performance
of TCP over ad hoc networks. However, very little work has
been done on the theoretical front. [8] makes some simplifying
assumptions such as constant congestion window size and
instantaneous ACK delivery in order to get an upper bound
on the throughput of TCP over a IEEE 802.11 multi-hop
string topology. [9] provides a more accurate Markovian model
with the constant congestion window size assumption but for
a two hop network. More recently, [2] extends the analysis
to a general n hop network with the same assumptions.
In addition, no packet losses are considered in any of the
above papers. While considering the effect of packet losses
on the performance, approximating TCP to a fixed congestion
window size transmission does not yield the results required.
Hence, we propose a modeling which considers TCP in its full
form where the congestion window size changes depending on
which phase the system is in.

B. Organization of the Paper

In Section II, we present a multi-dimensional Markovian
model for TCP which considers the behavior of the MAC and
the effect of losses. Section III explains the goodput calcula-
tion using the proposed Markovian model. In Section IV, we
explain how the parameters used in the model are determined.
Section V verifies the theoretical analysis by corroborating
it with simulation results. Finally, Section VI concludes our
work and provides future directions for research.

II. MARKOVIAN MODELING OF TCP

In this section we provide the multi-dimensional Markovian
model which captures the behavior of TCP over ad hoc
wireless networks. We provide the system model and the
assumptions that are considered while modeling. We analyze
each of the phases of TCP and model them separately and
provide the transitions between these phases.

A. System Model and Assumptions

Our system consists of a single TCP flow running over
an ad hoc wireless network. We assume that the source has
infinite data to send, and so the size of TCP packets is always

equal to one MSS. The TCP packet service rate, Ut, is the
typical number of TCP packets the system serves in a unit
time when it is constantly busy. The ACK packet service rate,
Ua, is the typical number ofACK packets the system serves in
unit time when it is constantly busy [2]. The time unit being
considered includes all the delays at the nodes along the path.
Since the service rates are inversely proportional to the size
of the packet and that of the ACK, the relation between Ut
and Ua is Ut = size of ACK . Thus, we limit our attention toUo. size of packet
calculate Ut in what follows since Ua can be derived from the
above relation. Let us consider a very small interval of time,
6, during which an event can occur. An event can be either
an ACK being transmitted by the receiver or a packet being
transmitted by the sender. Thus, the probability that the packet
(ACK) is generated in the small interval d is given by 6Ut
(5Ua). In addition, in order to bring in the channel contentions,
link access probabilities are introduced. Let p (q) denote the
probability that the sender (receiver) captures the channel
given that both the sender and receiver compete for it. Hence,
when both are competing for the channel, the probability that
the sender (receiver) succeeds in the small interval d is given
by p6Ut (qWUa). For simplicity, it is assumed that both the
sender and the receiver compete for the channel with equal
probabilities (i.e., p = q). Let us denote WMax to be the
maximum possible congestion window size. This constraint
can be due to the limitations on the buffer size of either the
sender or the receiver. We also assume that every node in the
network under consideration has the same transmission range,
carrier sense range, and interference range. Further, we exclude
the possibility of out-of-order packet (ACK) delivery.

B. Markov Chains

A Markov chain {x,} is a sequence of random values, xn,
whose value at a time interval, n, depends upon the value
at the previous time. The value of the Markov variable at
the present time is called its state. The state of a Markov
process is a random variable. Markov chains can be seen as a
finite or countably infinite number of states e1, e2, ... ei
such that the future evolution of the process, once it is in
a given state depends only on the present state [10]. Thus,
the probability of transition from state ei to ej is fixed and
does not depend on the path by which the process arrived to
state ei. The matrix containing the transition probabilities from
every state ei to every other state ej is called the transition
probability matrix. An aperiodic, irreducible Markov chain has
a steady state distribution, whose steady state probabilities are
calculated from the global balance equations [11]. Let pi be
the steady state probability of the system being in state ei. Let
Pij be the probability of transition from state ei to ej. Then
we have Ei PiPij = pj for all values of j. Let p be the row
vector of the steady state probabilities and T be the transition
probability matrix. Then the above equation can be expressed
in the matrix form as pT = p.
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Fig. 1. Slow start phase (SS,) with the value of SSThresh being s, for various possible values of w and 1. Here, ES5+j denotes the Errorless round
with congestion window size s + 1.

C. Modeling Slow Start Phase

In the slow start phase, for every packet that is ac-
knowledged, the congestion window size is incremented by
one. However, when the current window size exceeds the
SSThresh, TCP enters the congestion avoidance phase. In
our model, we assume that no packet is lost in the slow start
phase. This assumption is justified by the fact that when ever
the system enters the slow start phase from the congestion
avoidance phase, the SSThresh is made half of the current
congestion window size. So the SSThresh can be considered
to be less than the capacity of the network. This phase
is modeled using a set of three-dimensional Markov states,
[s, w, 1]. We say that the system is in state [s, w, 1] if TCP is
in the slow start phase, where

* s is the current SSThresh, 2 < s < LWMax I
* w is the current congestion window size, 1 < w < s
* I is the number of packets left in the congestion window

to be sent, 0 < I < w.

As depicted in Figure 1, when the system is in states of the
form [s, w, 0] the sender has no packet to send, hence there
is no competition for the channel from the sender. Thus, the
only event possible is the ACK transmission by the receiver,
which occurs with a probability of 5Ua. Similarly, when the
system is in state [s, w, w], the receiver has no ACKs to send.
Hence, there is no competition from the receiver and the only
possible event is a packet transmission by the sender, which
occurs with a probability of Wt. In every other state of the
form [s, w, 1], there is a competition between the sender and
the receiver to capture the link. Whenever an ACK is received
by the sender, w is incremented by one and I is incremented

by two (one for the packet that has been acknowledged and the
other owing to the increase in the congestion window size).
Thus, the transition from [s, w, 1] to [s,w + 1,1 + 2] takes
place with a probability q6Ua (6Ua when I = 0). Similarly,
when a packet is sent by the sender, the congestion window
size remains the same but I is decremented by one. Hence,
the transmission of a packet by the sender is marked by the
transition from [s, w, 1] to [s, w, I- 1], which occurs with a
probability of p6Ut (6Ut when I = w).

The state transition probabilities of the slow start states
are summarized in Table I. The interpretation of the tables
in this work is as follows. The first column gives the states
involved in the transition, namely the start and end states. It is
assumed that both these states are valid. The second column
provides the state transition probabilities from the start state
to the end state. The third column gives the conditions, if
any, for which the probabilities hold. When the state transition
probability varies under different conditions, thefirst sub-row
gives the general conditions that should hold in all cases and
the subsequent sub-rows give additional conditions and the
corresponding probabilities.

D. Modeling Congestion Avoidance Phase

This is the predominant phase for long lasting connections.
For this phase, we discretise the time into units of RTT. Each
round is of a fixed duration, namely RTT. This assumption is
also adopted in [1], [12], and [13]. In a round the congestion
window size is fixed. Thus the congestion avoidance phase
can be considered as consisting of a number of rounds. Let
us denote by Pe the probability that a packet is lost, given
that either it is the first packet in its round or the preceding
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Fig. 2. An Errorless round (ES,) with congestion window size w. We denote (1 -pe)Ut by Ut for simplicity of exposition. Here, SS, 2 denotes the
slow start phase with SSThresh equal to

TABLE I

TRANSITION PROBABILITIES FOR THE SLOW START PHASE

packet in its round is not lost [1]. We also assume that no

ACK/DUPACK can be lost. In the absence of errors, after
every round, the congestion window is increased by one. The
round in which a loss occurs after a sequence of successful
rounds is called the Penultimate round. The subsequent round
in which either a triple DUPACK occurs or timeout occurs

is called the Ultimate round. Note that, in our model, we do
not assume that the ACKs for the packets sent in a round are

received in the same round since it is not necessary that all
the packets be sent at the start of the round itself. We model
this phase in three steps, namely the Errorless round, the
Penultimate round, and the Ultimate round.

Errorless Round

In this type of rounds, after every round the congestion
window size is incremented by one. We model every such
round by a set of three-dimensional Markov states. The

system is said to be in state (w, 1, t) if it is in the congestion
avoidance phase, where

w is the current congestion window size, 2 < w < WMaX
I is the number of packets left in the congestion window
to be sent, w < I < w

t is the time instance with a granularity of 6, 1 < t <
RTT

Note that since the minimum value of SSThresh is two,
the congestion window size in the congestion avoidance
phase can not be less than two. Let us consider the round
with congestion window size, w. As shown in Figure 2, every

round can be modeled as a N x N matrix of states, where
N is given by (RTTT)(2w + 1). The tth row of the matrix
consists of the states (w, w,t), (w, w -1,t), (w, w-2,t),
*,(w, 2, t), (w,1, t), (w, O, t), (w,-1, t), (w,-2, t), ,

(w, -w, t). Essentially, it has the states possible in the time
interval [(t -1)6, t6] of a round. The presence of negative
values of I is explained while dealing with the Ultimate
round. In the absence of errors, within a round the congestion
window size remains unchanged and hence, whenever a

packet is transmitted by the sender the system goes from
state (w, I, t) to (w, I- 1, t + 1). Similarly, when an ACK is
transmitted by the receiver the system goes from state (w, 1, t)
to (w, 1+l, t+1). When the system is in the state (w, 1, RTfT),
in the next d it increments its congestion window size by one

as shown in Figure 3. Note that -Pe is multiplied to the
probability for every successful packet transmission by the
sender, since a packet transmitted by the sender is successfully
received at the receiver with a probability of -Pe. Table II

gives the complete transition probabilities between the
states of the Errorless rounds. Note that when the current

State Transition Transition Probability Conditions
[s, w,]

to 1 - 6Ut I w
[s,w,l] 1 -Ua 1 0

1 -p6Ut- q6Ua otherwise
[s, w,]

to 6Ut I w
[s, w, I-1] p6Ut otherwise

[s,w,i] w < s
to 6Ua 1 = 0

[sw + 11 + 2] q6Ua otherwise
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Fig. 3. The transition between the Errorless rounds through the Penultimate and Ultimate rounds for a range of congestion window sizes. The transition
between ESi and ES±ij takes place only at the end of the round.

congestion window size is WMax, no further increase in the
congestion window size is possible, so it remains WMax as
long as no errors occur, as shown by the self loop in Figure 3.

Penultimate Round

When an error occurs after a sequence of successful
(Errorless) rounds, the system enters the Penultimate round.
We assume that all the packets in the round after the first loss
are also lost. This assumption is justifiable due to the bursty
nature of the losses in ad hoc wireless networks. We model
the part of this round after the error with the help of a set
of four-dimensional Markov states. The system is said to be
in state (w, a, 1, t) if the system is in the penultimate round,
where

* w is the current congestion window size, 2 < w < WMaX
* a is the number of ACKs awaited, 0 < a < w
* I is the number of packets left in the congestion window

to be sent, 0< I < w- a
* t is the time instance with a granularity of 6, 2 < t <

RTT/1.
Note that the minimum value t takes here is two instead of
one, since the system enters into one of these states only
after a loss has occurred in one of the Errorless states. Our
packet loss model means that, every packet transmitted by
the sender when the system is in the state (w, a, 1, t) will
be lost. As shown in Table III when an error occurs in
an Errorless state (w,1,t), the sender will receive w -I
ACKs before any DUPACKs is received. So the system goes
to the state (w,w -1,1 -, t + 1). Whenever an ACK is
received by the sender the current allowable window, 1, is

incremented by one and the number of ACKs awaited, a,
is reduced by one. Similarly, when a packet is transmitted
by the sender, the packet is lost and the current allowable
window, 1, is decremented by one. However, when both a
and I are equal to zero, no event can take place and so the
system retains the values of a and I until the end of the round.

Ultimate Round

Since we assume that in the Penultimate round, every
packet after the lost packet is also lost, a DUPACK can
only be generated by packets sent by the sender in the next
round, namely the Ultimate Round. In this round if more
than three duplicate acknowledgments are generated, then
the congestion window size is halved. However, if a triple
DUPACK is not detected, timeout occurs, the SSThresh is
set to half of the current congestion window size, and the
system goes to the slow start phase with the current window
size as one packet. However, since we consider in-order
delivery of packets and ACKs, any DUPACK can be received
only after all the ACKs, if any, from the previous round are
received. Thus, we model the Ultimate round by two sets of
five-dimensional states. The system is present in the first set
of states, [w, a, Pw, 1, t], until all the ACKs from the previous
round are received, after which it goes to the second set of
states, (w,pw, 1, d, t). The system is said to be in the state
[w, a, Pw, 1, t] if it is in the ultimate round, where

* w is the current congestion window size, 2 < w < WMaX
* a is the number of ACKs awaited from the previous

round, 1 <a < w
* Pw is the permissible window size (which can increase

l

- - - -

iES i

E "I
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TABLE II

TRANSITION PROBABILITIES OF THE ERRORLESS STATES

State Transition Transition Probability Conditions
(w, I, t) t <

to 1- 6Ua 1 < 0
(w, 1, t + 1) 1 - 6Ut I = W

1 -p6Ut- q6Ua otherwise
(w,I,t) t <

to 6Ua 1 < 0
(w, l+ 1,t+1) q6Ua otherwise

(w,I,t) t <
to (1 -pe)6Ut 1 W

(w, I - 1, t + 1) 0 1 < 0
p(l -Pe)6Ut otherwise

(w, I, R )w < WMax
to (1 -6Ua) I = 0

(w+1,l+1,1) 0 1 < 0
(1 -6Ut) I =w

( -p6Ut- q6Ua) otherwise
(wi,1, ) w < WMax

to 6Ua I {O, -1}
(w+1,1+2,1) 0 1 < -1

q6Ua otherwise
(w, I, 'T) W < WMax

to (1 -pe)6Ut ww
(w+,l,) 0 1 < 0

p(l-Pe)6Ut otherwise
(Wmax 1, )

to (1 -6Ua) I = 0
(Wmax, 1, 1) 0 1 < 0

(1 _6ut) I =w
( -p6Ut- q6Ua) otherwise

(Wmax 1, )

to 6Ua I {O, -1}
(WMax, l+ 1, 1) 0 1 < -1

q6Ua otherwise
(Wmax 1,

RTT

to (1 -pe)6Ut 1 w
(Wmax,l- 1, 1) 0 1 < 0

p(l -Pe)6Ut otherwise

as packets from the previous round are acknowledged) as

above, 0< Pw < w- a

I is the number of packets that are left in the permissible
window to be sent, 0 < I < Pw

t is the time in the granularity of 6, 1 <t < RTT

As shown in Table IV, at the end of the Penultimate round
if there are still ACKs to be received, in the next 6, the system
changes the state from (w,a,l, RTT) to [w,a,l,l,1] if no

event takes place or to [w, a, I- 1, -1, 1] if a packet is
transmitted by the sender or to [w, a -1,1 + 1,1 + 1,1] if
an ACK is transmitted. Also if an error occurs at the end of
an Errorless round, then the system goes to the corresponding
state, as shown in Table V, depending on whether ACKs are

expected from the previous round. As is clear from Table IV,
whenever an ACK is received, a is decremented by one, and
Pw and I are each incremented by one. Similarly, whenever
a packet is sent by the sender, I is decremented by one. The
system remains in these states as long as all the ACKs from the
previous round are received. If before the end of this round, all
the ACKs have been received, then the system goes to the next
set of states, (w,Pw, l, d, t). The system is said to be in state

TABLE III

TRANSITION PROBABILITIES OF THE PENULTIMATE STATES

(W,Pw, l, d, t), if the system is in the Ultimate round and all
the ACKs from the previous round have been received, where

w denotes the congestion window size at which this state
is entered, 2 < w < WMax
Pw denotes the permissible window size which is less
than w owing to the fact that some packets were lost in
the previous round, 0 <p < w

I denotes the number of packets that are left in the
permissible window to be sent, < I < Pw
d denotes the number of duplicate acknowledgments that
were received, 0 < d < 3
t denotes the time in the granularity of 6, 1 < t < RTT

If at the end of the Penultimate round, the system is in states
of the form, (w, 0,1, RTT), no more ACK are awaited. Hence,
the system goes directly to either (w, l- 1, -1, 0,1) or

(W, l, l, 0,1) depending on whether a packet is transmitted
or not. Similarly if the system is in states of the form,
(w, 1,l, RT7T), where only one ACK is awaited, then if in
the next 6, the sender receives an ACK then the system goes

directly to the state, (w, I + 1, + 1, 0, 1). When the system is
in one of the states of the form, (w,pw,l,d,t), if the sender
receives a DUPACK both I and d are incremented by one.

However, if the sender transmits a packet, the number of
packets that can be sent from the permissible window, 1, is
decremented by one, as shown in Table IV. The system waits
until the triple DUPACK detection takes place or until the
end of the round whichever is earlier. When it occurs the
congestion window is halved and the transition as shown in
Table VI takes place. Since the congestion window is made
half, there exists a possibility that more packets than that
permitted by the updated congestion window size would have
been sent in the Ultimate round. This explains the negative
states of the form (w, -1,t),(w, -2,t),... ,(w, -w,t). As
shown in Table II, when the system is in one of the negative
states, the only event that can occur is the transmission of an

ACK by the receiver. Thus, the only transitions possible are

from (w, 1, t) to (w, I + 1, t) (when an ACK is received at the
sender) with a probability of 6Ua and (w, l, t) to (w, l, t + 1)

State Transition Transition Probability Conditions
(wi, t) t <

to Pe6Ut 1 w
(w, w I,l-1, t + 1) PeP6Ut otherwise

(W, 0, 0, t) t <
Hi

to 1
(w,0,0,t+ 1)
(W, a,I, t) w 7A a & t < RTT

to 6Ua 1 = 0
(w, a -1, I + 1, t + 1) q6Ua otherwise

(w, a, l, t) t < RTT
to 6Ut a = 0

(w, a, -1, t + 1) p6Ut otherwise
(w, a, l, t) t < RTT

to -6Ut a = 0
(w, a, 1, t + 1) 1 - 6Ua 1 = 0

1 -p6Ut- q6Ua otherwise
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TABLE IV

TRANSITION PROBABILITIES FOR THE ULTIMATE ROUND WHEN THE CONGESTION WINDOW SIZE IS W

State Transition Transition Probability Conditions

[w, a, Pw,I1, t] t <RT
to 1 - 6Ut = Pw

[w, a,Pw,l,t + 1] 1 - 6Ua 1 = 0
1 -p6Ut- q6Ua otherwise

[w, aIpw,I1, t] t <RT
to 6Ut =Pw

[w, a, pw, I-1, t + 1] p6Ut otherwise
[w,a,pw,l,t] t < R7T and a > 2

to Wua Pw =0
[w,a -1l,Pw + 1,1 + 1,t+ 1] q6Ua otherwise

[wI 1, PW 1, t] t <RT
to Wua Pw =0

(w,PW + 1, I + 1, 0, t + 1) q6Ua otherwise
(w, O, O, O, t) t <RT

to 1
(w,0,0,0,t+ 1)
(W,pw, 1, d, t) t <RT

to 1 - 6Ut = Pw
(w,pw, 1, d, t + 1) 1- 6Ua 1 = 0

1 -p6Ut- q6Ua otherwise

(w, PW, 1, d, t) t <RT
to 6Ut =Pw

(w, pw, I-1, d, t + 1) p6Ut otherwise
(w,pw, 1, d, t) t < RTand d < 2

to 6Ua 1 = 0
(w,pw, I + 1, d + 1, t + 1) q6Ua otherwise

(when no event occurs) with a probability of 1 - Ua.

E. Transition between the Slow Start Phase and Congestion
Avoidance Phase

While the system is in the slow start phase, if the current
congestion window excess the SSThresh, as shown in Ta-
ble VI, the system goes from the slow start state, [s, s, 1], to
one of the Errorless round state, (s + 1,1 + 2,1). That is the
system goes into one of the Errorless states. If by the end of
the Ultimate round a triple DUPACK indication does not occur

then, as shown in Table VI, timeout occurs and the system
makes its SSThresh equal to half of the current congestion
window, sets the congestion window size as one packet and
goes to the slow start phase. Also if at the end of the round,
the system remains in one of the negative states corresponding
to the Errorless round, we assume that timeout occurs and the
system goes to the slow start phase, as shown in Figure 3.

To sum it up, Figure 4 gives the transitions amongst the slow
start phase and the different rounds of congestion avoidance
phase.

F Assumptions (Re-Visited)

We summarized the various assumptions in the above mod-
eling of TCP over ad hoc networks. The justifications for the
various assumptions have already been stated earlier.

Every node in the network under consideration is as-

sumed to have the same transmission range, carrier sense

range, and interference range.

No out-of-order packet/ACK delivery can occur.

We assume that ACKs/DUPACKs cannot be lost.

TABLE V

TRANSITION PROBABILITIES BETWEEN THE PENULTIMATE ROUND AND

ULTIMATE ROUND

State Transition Transition Probability Conditions
(wa, 1 7) a 0

to (1- 6Ua) I = 0
[w,a, I,1,1] (1 p6Ut- q6Ua) otherwise

(wa,, 77) p6ut a#A 0
to

[w, a, I -1,1I- 1, 1]
(wa, ) a > 1

to 1U, I = 0
[w, a -1, 1 + 1, 1 + 1, 1] q6Ua otherwise

(W,O, O,R )
to 1

(w, 0, 0, 0, 1)
(w, 0,,IT)

to 1 - 6Ut
(WI 1,1, , 1)

(w, 0,,IT)
to 6Ut

(w,l 1,1I - 1, 0, 1)
(w,1,1, R )

to 6Ua 1 0
(W, I + 1, 1 + 1, 0, 1) q6Ua otherwise

(w, I,7j) PeP6Ut I < w

to
[w,w -1,I- 1,1I- 1, 1]

(w, w, R7 ) Pe6Ut
to

(w,w- 1,w- 1,0,1)
(,pw, 1, 3, t) t <RT

to 6Ua 1 = 0
(Lwl2j, Lw12 -Pw + 1, 1) q6Ua otherwise

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on May 06,2010 at 09:49:49 UTC from IEEE Xplore.  Restrictions apply. 



w < SSThresh+l

No triple DUPACK
detection occurs and
is nlot the enld of
the rounld

Fig. 4. State transition between the different rounds. Here SS, ES, PS,
and US denotes the Slow start, Errorless, Penultimate, and Ultimate states,
respectively.

TABLE VI

TRANSITION PROBABILITIES BETWEEN THE SLOW START PHASE AND

THE CONGESTION AVOIDANCE PHASE

State Transition Transition Probability Conditions

(2w~pwP 1
, d,to 1

1w, 1, 11

to1
[w, 1, 11

(2w, 1, I) < 0
to1

[w, 1, 11
(2w + 1, 1, ;)I < o
to1

[w, 1, 11
[s, s, 1]

to 6Ua 1 = 0
(s + 1,1 + 2, 1) q6Ua otherwise

[2w,pw, 1, d, ]
tow1

[w,_1,_11 __________________

* In the Penultimate round we assume that all the packets
in the round after the first loss are also lost.

* Finally, in the slow start phase and the DUPACK gener-
ating round, i.e. the Ultimate round, we assume that no
packets are lost.

III. GOODPUT CALCULATION

Goodput is defined as the number of packets that suc-
cessfully reach the receiver in unit time. To determine the
goodput from the above model, we have to find the steady
state probabilities of the above states. First, we proceed by
proving that stationary states do exist in our case and then we
give the goodput equation.
Lemma 3.1: The Markov chain thus formed is aperiodic

and irreducible and hence has stationary solutions.

Proof: It is sufficient to prove that there exists a n* for
which Tn has all non-zero entries, where T is the transition
matrix [10]. First, note that for every pair of states e 1 and e2
there exists an m such that in m steps, the system can go
from e1 to e2, provided Pe is not zero or one. Now consider a
state e3 C { [s, w, 1] s, w, and I are valid}. Since for every
e1 and e2, there exists an m1 and m2 such that in m1 (in2)
steps we can go from e1 (e3) to e3 (e2), there exists a path of
length n = ml + m2 between e1 and e2 that goes through e3.
Consider the maximum such n over all pairs e1 and e2, W.
Now we can conclude that Tn has all positive entries, since
for every pair e1 and e2 whose corresponding n is less than
n*, make the system stay in e3 for n*-n steps using the self
loop on e3. Thus, Tn has all non-zero entries. a

A. Goodput Equation

Let us denote the steady state probability of the
states [s,w,1], (w,1,t), [w,a,pW,l,t], and (w,pw,1,d,t) by
Q(s, w,l1), I(w,l,t), ](w,a,pW,l,t), and 9(w,pw,l,d,t)
respectively. From these variables, the goodput (GP) can be
calculated from the following equation.

GP = Z pl(w, I)Q(s, w, 1) + Ep2(w, l)I(w, 1, t)
1>0 1>0

+ P3(Pw,l)F(w,a,pw,l,t) +
1>0

SP3(Pw, l)9(w,pW, 1, d, t)
1>0

(1)

where

Pi(W,l) { Ut if I= w
pUt otherwise

P2(w (Ut if I = w

p2(w,l)= Axp(l-Pe)Ut otherwise

P3(pw, Ut if I = Pw
P3(Pw,l)= {s il P

pUt otherwise

Note that, in the goodput calculation, we have excluded the
Penultimate round states and considered only the Slow Start
states, the Errorless round states, and the Ultimate round states.
This is because we have assumed that all the packets that are
transmitted by the sender are lost when the system is in one
of the four-dimensional states, (w, a, 1, t), that represent the
Penultimate round. The throughput calculation can be done
on similar lines by including the Penultimate round in the
calculation.

IV. DETERMINING THE PARAMETERS

The values that the parameters Ut, Ua, p, and q take, depend
on the number ofhops and the link bandwidth. Channel spatial
reuse and local channel contention affect the values that these
parameters take. As described earlier we need to calculate only
the value of Ut, since the value of Ua can be easily calculated
from the expression Ut size of ACK The value of Ut isUo1 size of packet
given by
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j(M+1)2+(r j)M2 1
(rM+j)2 (2

where N =rM+j, M > 0 andj {1,2,3, ,r} and
p = q is given by

={ 2h if h < r+1
q 2h
q r otherwise

where h is the number of hops and r is given by
[InRange/d] + 1. InRange denotes the interference range of
each node in the network under consideration. The derivation
of the above expressions is similar to that given in [2] and has
been omitted due to space constraint.

V. COMPARISON OF THE MODEL AND THE SIMULATION
RESULTS

We use ns-2 to simulate TCP over a N-hop chain network.
Note that by considering a chain topology, amongst other
things, we exclude the possibility of out-of-order packer deliv-
ery. FTP is used as the application layer protocol to generate
TCP traffic. The default configuration values were considered.
The number of nodes in the chain was varied. The adjacent
nodes in the chain are 200m apart. The channel capacity is
assumed to be 2Mbps and the nominal transmission radius is
250m. Nodes have a carrier sense radius of 550m and inter-
ference range (InRange) of 550m. Note that in this setting
the value of r is four. The MAC and routing protocol used in
our simulations are IEEE 802.11 and AODV, respectively. The
value of the size of a packet and ACK are taken as 1460 bytes
and 40 bytes, respectively. Each simulation is run for 900
seconds and the goodput is calculated between 50 seconds to
900 seconds. Each point in the graphs is obtained out ofresults
from thirty runs, each with a different seed. All the results in
this section have been obtained at 95% confidence level. The
theoretical results are obtained using matlab. In order to get
the results in matlab, we need the value of T, where T was
earlier defined as the average transmission time for one packet
over one hop link. However, its value depends on the channel
contention, MAC and routing overheads, and link bandwidth.
Hence, we decide the value of T based on simulation results.T
We have also considered various values of WMax. However,
the results have no significant variations for various values of
WMax.
We use two error models to evaluate our analytical model'.

The first error model is a uniform error model with a probabil-
ity of loss given by p. We introduce this error at every node of
the chain. So every node drops a packet with a probability p.
Thus the effective end-to-end loss probability, Pe, is given by
1 (1 p)N, where N is the number of hops. By introducing
the error model at every node, we are effectively covering a
large range of end-to-end loss probabilities. The second error
model is a two state Markov error model, where the probability
of going from the good to bad state is p and the probability of
going from the bad to good state is q. The motive behind the

1The p and q used here to describe the error models, are different from
those used in the previous sections.

choice of this error model is ingrained in the type of errors
we have considered in the theoretical model. The two state
Markov error model captures the assumption that every packet
in the round after the first lost packet is also lost. We introduce
this error model at the receiver to see the effect of q as a
function of N.

Figure 5 shows the comparison of simulation and theoretical
results of the TCP goodput as the number of hops changes
from 1 to 12, when the uniform error model is introduced
at every node. Here, we consider the value of p to be 0.01.
The theoretical results are presented for two different values
of I 1200kbps and 600kbps, where the end-to-end error
probability, Pe, is taken as 1(1 _ p)Nf. Note that when
the number of hops is less than four, the simulation results
closely match with the theoretical results corresponding to
T = 1200kbps, and as the number of hops increase they are

closer to the theoretical results corresponding to T 600kbps.
This can be explained by the fact that in our simulation setting
r = 4 and for N < r no link is simultaneously used due to
the hidden terminal problem. However, when N > r, although
channel spatial reuse improves the utilization, the higher local
contentions will have an opposite effect. Note that as the
number of hops increases, the effect of the MIAC and routing
protocols on the goodput increases, as observed in [7]. This
effect is further increased in the presence of errors, as is clear
from the gap between the theoretical (for 1 = 600kbps) andT
simulation results as the number of hops increases. This is
because, in the presence of errors, a large amount of MAC
and routing overhead (which include re-transmission at the
MAC layer and false route error messages) is introduced in
the system. This increases the time, T, it takes to service a
packet which in turn decreases the effective bandwidth, 1

available.
Figure 6 considers the case when p = 0.05. Note that

although similar behavior is observed in this case, we notice
the gap between the theoretical results with T = 600kbpsT
and the simulation results at higher hop lengths, is more in
this case. This is due to the fact that as the number of hops
increases, the effective end-to-end error probability increases
drastically. For example, in our case when p = 0.05 the
effective end-to-end error probability is 0.05, 0.14,

0.26, 0.37, and 0.46 when the number of hops is
1, 3, 6, 9, and 12, respectively. Hence, nearly half of the
packets transmitted are lost when the number of hops is 12.
This high rate of packet loss further increases the MAC and
routing overhead.

Figures 7 and 8 show the comparison of simulation and
theoretical results of the TCP goodput as the number of
hops increase, when a two state Markov error model is
introduced at the receiver, with the value of p as 0.01 and
0.05, respectively. We consider the values of q from the
set {1,0.95,0.9,0.85,0.8,0.75}. Again, we plot the theo-
retical results corresponding to the values of ±, 1200kbps
and 600kbps, where Pe is taken to be p. We observe the
similar behavior even in this case. However, one interesting
observation is that the effect of the values of q considered
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Fig. 5. Goodput v s Hop Length (for fixed p=0.01) w~ith uniform error model.

Fig. 6. Goodput vs Hop Length (for fixed p=0.05) with uniform error model.

Fig. 7. Goodput vs Hop Length (for fixed p=0.01) with two state Markov

error model.

Fig. 8. Goodput vs Hop Length (for fixed p=0.05) with two state Markov

error model.

here, on the goodput decreases as the hop length increases.
One common observation, which is in agreement with [2], is
that the goodput decreases very fast initially as a function of

the number of hops and stabilizes at a larger number of hops.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a multi-dimensional Markovian
model for the performance of TCP over ad hoc wireless
networks. This model captures all the essential features of
TCP and the effect of IEEE 802.11. We considered both the
slow start phase and the congestion avoidance phase in our
model formulation. Multi-dimensional Markov chains are used
to model each of these phases along with the transitions be-
tween them. We used the resulted steady state probabilities to
calculate the goodput. Further, we corroborated the theoretical
results with simulation results. We observed that the effect of
the MAC layer on the performance of TCP increases with the
number of hops and with increased errors.
A number of directions for future work remain to be

explored. One such direction is to include the behavior of
MAC and the routing protocols, which will help in providing
a more accurate model and in determining the value of TT
theoretically instead of depending on simulations. Another
direction is to extend this model to hold for multiple TCP
flows. Also, in our model we have assumed that all the packets
in the round that follow a lost packet are also lost. It would
be of interest to remove this assumption and bring in various
other error models while modeling the system.
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