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Abstract— In this paper, we propose an adaptive pacing scheme
at the Link layer for IEEE 802.11 based multihop wireless
networks. Our objective is to improve the performance of higher
layer protocols without any modifications to them. Our adaptive
pacing scheme estimates the four-hop transmission delay in the
network path without incurring any additional overheads, and
accordingly paces the packets to reduce the contention in the
network. We implemented the Link layer adaptive pacing scheme
in ns-2.29 network simulator and extensively studied its perfor-
mance for both User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP) traffic in different network scenarios. In
all the cases our scheme shows a significant improvement in the
performance of both UDP and TCP.

I. INTRODUCTION

Wireless Mesh Networking has emerged as a promising
technology to meet the challenges in next generation wireless
networks [1]. In a Wireless Mesh Network (WMN), backbone
network by the mesh nodes is a multihop wireless network.
In WMNs such as community networking, the clients are
connected to the edge nodes of the backbone network. In the
backbone network some nodes are called gateway nodes which
provide Internet connectivity to the clients. This multihop
wireless network has to be utilized efficiently to improve
the overall performance of the network. Most of the Internet
based applications use Transmission Control Protocol (TCP)
as a transport protocol, since it provides end-to-end reliable
transmission of data. Many streaming applications such as
audio and video streaming use User Datagram Protocol (UDP)
as a transport protocol, since they require faster delivery of
data rather than reliable transmission. Hence, the traffic in
WMNs constitute both UDP and TCP flows. The performance
of TCP is greatly affected by the packet loss in the network.
In wired networks, the packet loss is mainly due to the
buffer overflow at the intermediate routers. But in the case
of multihop wireless networks, the packet loss could also
occur due to erroneous wireless channels, unstable network
conditions, and mobility of nodes. The bursty traffic increases
the contention and the packet loss in the network, thereby
affecting the performance of the multihop wireless networks.
It is shown in the literature that, in multihop wireless networks
if the interference range is twice the transmission range, the
contention in the network path can be reduced by evenly
spacing the packets using the 4-hop transmission delay (FHD)
at the source node [2]. The FHD is defined as the time for
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transmitting a packet from a node to the 4th hop node on the
downstream path. The spacing between packet transmissions
can be done at the transport layer by properly estimating
the FHD in the network path. Although, this may give delay
between successive transmission of packets for each flow at
the higher layer, due to very high contention in the network
or traffic from the multiple flows, in reality, this may not take
place at the Medium Access Control (MAC) layer.

In multihop wireless networks like WMNs, a number of
clients can generate TCP and UDP traffic which goes in the
same multihop path from one edge node to another edge node
or edge node to gateway node. Hence, all the packets going
in that path have to be scheduled with an interval of FHD to
reduce the contention between the packets, thereby achieving
better spatial channel reuse. This spacing of packet transmis-
sions is required in multihop wireless networks irrespective of
higher layer protocols used when the flows are running for
more than four hops.

In this work, we aim to reduce the MAC layer contention
by using an adaptive pacing mechanism at the Link layer.
A cross layer approach is used for scheduling packets and
estimating FHD in a path. Our approach estimates the FHD
in the path by measuring the queuing and transmission delay1

incurred at the bottleneck node in a distributed manner. The
main contributions of this paper are as follows:

• In order to reduce the contention in the network for
achieving better spatial channel reuse, we propose a
scheme for pacing of packets (based on their destination)
at the Link layer.

• For the estimation of pacing delay, we do not seek any
additional control packet exchange between the nodes.
The nodes in the network path learn the congestion level
at the bottleneck node in a distributed manner.

The rest of the paper is organized as follows. In Section II,
we briefly discuss the existing work in the literature and
provide the motivation for our work. In Section III, we
describe the design and implementation of our Link layer
adaptive pacing scheme. In Section IV, we demonstrate the
responsiveness of our scheme to the congestion in the network.
In Section V, we evaluate our Link layer pacing scheme for
both UDP and TCP traffic in different network scenarios.
Finally, we conclude the paper in Section VI.

1Transmission delay is the sum of channel access time and transmission
time
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II. RELATED WORK AND MOTIVATION

The performance of TCP over multihop wireless network is
greatly affected by packet loss due to Link layer contentions
rather than loss due to congestion (buffer overflow at the
intermediate nodes). To improve the performance of TCP
over multihop wireless networks, several variants of TCP
such TCP ELFN [3], TCP-Feedback [4], and TCP-AP [5],
were proposed. These protocols try to distinguish between
congestion and non-congestion losses in the network and
appropriately take actions to achieve better performance. The
rate based protocols such as ATP [6], estimate the available
bandwidth between the source and destination, and transmit
the packets at the estimated rate. There are other solutions
such as Distributed Link RED (LRED) [7] and Neighborhood
RED [8] that incorporate Randomly Early Detection (RED)
mechanism in queues to improve the TCP performance. LRED
improves the performance of TCP flows by implementing RED
at the queues and reacting to continuous packet collisions by
increasing the MAC backoff time by one packet transmission
time.

Several researchers identified that the poor performance of
TCP in IEEE 802.11 based multihop wireless networks is due
to the underlying routing and MAC layer protocols [9]. Due
to the broadcast nature of wireless channel, the neighboring
nodes in the network can not transmit simultaneously. So the
packets of the multihop flow contend with each other for the
channel at successive hops, if the data arrived at the source is
bursty in nature. It is well known that, TCP generates bursty
traffic based on the current congestion window size. This leads
to self contention, thus increasing chances for dropping the
packets. To solve the above said problem, TCP-AP spreads the
transmission of successive packets according to the computed
transmission rate. The transmission rate is computed by the
round trip time (RTT) at the TCP sender. As the spreading
of packets is done at the transport layer, it fails to spread the
transmission of packets at the MAC layer. The rate estimate
at the TCP sender assumes the bandwidth of all links in the
path between source and destination is same. This is always
not true as MAC selects the transmission rate based on the
quality of the channel. Further, if there are two or more TCP
flows between same source and destination, the Link layer
contention can not be reduced by TCP-AP.

The spacing of packet transmissions at the MAC is essential
for all higher layer protocols, if the traffic is bursty in nature
or the network is congested. Hence, we propose the adaptive
pacing at the Link layer in IEEE 802.11 multihop wireless
networks. In IEEE 802.11 multihop wireless network, by
perfectly scheduling the transmission of packets (i.e., pacing
packets with FHD), the self contention of packets belonging
to a flow can be reduced which reduces the contention and
achieves a maximum transmission rate of Rmax = 1

FHD
[2].

III. THE ADAPTIVE PACING SCHEME

The implementation of Link layer adaptive pacing scheme is
two fold. One is the pacing of packets at the source node with
FHD and other one is the estimation of FHD at the source node
by propagating the bottleneck node’s congestion information

in a distributed manner. In the absence of congestion in the
network, the FHD is four times the one-hop transmission delay
in the path. But if the network is congested, it should be
calculated as four times the queuing delay, channel access
time, and transmission time at the bottleneck node.

A. Node Architecture and Distributed Scheduler
Here, we provide the implementation details of our Link

layer pacing scheme by providing a node architecture and a
distributed scheduler at the Link layer. It is assumed that each
node, say N maintains a separate queue called Input Queue
for the packets destined to the same destination node and one
Transmission Queue which contains the packets that are ready
for transmission. The scheduler moves the packets from Input
Queue to Transmission Queue. Both these queues serve the
packets in First-In-First-Out (FIFO) fashion. The key idea here
is to introduce delay between arrival and departure of packets
belonging to a particular destination whenever required, to
identify the congestion of the downstream node at the source.
All the incoming packets are placed into the corresponding
Input Queue based on the destination of the packets. Each
node maintains the average time that the packets belonging
to particular destination spent in this node (HT

d) and in the
downstream node (NHT

d). The scheduler moves the packet
from Input Queue to the Transmission Queue based on the
values of HT

d and NHT
d. If NHT

d is greater than HT
d

for destination d at a node, it adds additional delay to move
the packet from its Input Queue to the Transmission Queue.
At the source node the delay incurred in moving the packet
from Input Queue to Transmission Queue is the estimated
value of FHD

d for that destination d. An illustration of node
architecture that consists of queues and the scheduler is shown
in Fig. 1.
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Node N

Queue (Dest:X)

Queue (Dest:Y)
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Scheduler

Flow3 (Dest:X)

Fig. 1: An Illustration of Node Architecture.

B. Estimation of 4-hop Transmission Delay
In our adaptive pacing scheme the bottleneck node queu-

ing and transmission delay is propagated to the source by
incurring additional delay to the transmission of packets at
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the intermediate nodes so that all upstream nodes adjust the
queuing and transmission delay equal to that of the bottle-
neck node. Each node can measure NHT

d by overhearing
the transmission of the downstream node except the node
preceding the destination node. If the downstream node’s
queuing delay and transmission delay is more than the node’s
queuing and transmission delay, the node incurs additional
delay which makes the queuing and transmission delay of
this node equal to the downstream node. By doing this, it
is indirectly notifying its immediate upstream node about the
congestion information at the bottleneck node. This process is
repeated at each upstream node and finally the source node
finds the bottleneck node’s queuing delay and transmission
delay by the estimate of NHT

d. Once the source node gets
the congestion level at the bottleneck node, it estimates the
FHD for destination d (FHD

d).

C. Propagation of Congestion Information
The distributed scheduler discussed above propagates the

congestion information in the network to the source node.
The HT

d and NHT
d are estimated as follows. Whenever

packets are transmitted from the node, the amount of time
that the packet spent in this node is calculated by subtracting
the time of arrival of the packet to this node from the time of
completion of packet transmission in the MAC layer. Let us
denote this by HT

d
current. HT

d is calculated using Weighted
Moving Average (WMA) with weight α as shown below.

HT
d = HT

d

old
× α + HT

d

current
× (1 − α)

The amount of time the packet spent in the downstream node
is the difference between the time at which the packet is
transmitted from this node to the time at which the node
overheard the transmission of the same packet from the
downstream node. Let us denote this by NHT

d
current. NHT

d

is calculated using WMA with weight α as shown below.

NHT
d = NHT

d

old
× α + NHT

d

current
× (1 − α)

The pacing delay to be incurred for each packet belonging to
destination d is PD

d and is calculated as given below with
initial value of PD

d as 0.

PD
d = PD

d + (NHT
d − HT

d)

D. Pacing at Source Node
As discussed earlier, each upstream node in the path from

the bottleneck node ensures that, the amount of time the
packets belonging to a particular destination spent in it is equal
to the amount of time the packets spent at the bottleneck node.
Now, the source node can estimate the FHD

d by multiplying
the estimate of NHT

d at this node by a constant k depending
upon the hop length of the path. If the hop length is less
than four then k is equal to hop length of the path, and four
otherwise. Hence, the pacing delay at the source is calculated
as follows.

PD
d = k × NHT

d

The scheduler moves the packets from the Input Queue to the
Transmission Queue with a pacing delay (PD

d) which makes

the delay between successive transmission of packets for that
particular destination to be FHD

d.

E. Identification of Congestion

To validate the effectiveness of the proposed scheme, we
analyze the FHD estimation at the source node in the following
scenario. Two CBR flows (flow1 and flow2) are generated
on a chain topology of length 10 hops, flow1 from node 0
to node 9 and flow2 from node 6 to node 7. We assumed
a channel capacity of 2 Mbps. The data rate of flow1 is
set to 200 Kbps and varied the data rate of flow2. We ran
the simulation for 90 sec by running flow1 throughout the
simulation time and flow2 from T1=30 sec to T2=60 sec. In
the absence of flow2 the estimated FHD at node 0 is around
0.03 secs, but when flow2 started at T1 the FHD estimation
increases significantly and reduces the transmission rate of
flow1. When flow2 terminates at T2, the FHD estimate again
comes down to 0.03 secs and there is an increase in the
transmission rate. The FHD estimation at the source for data
rates of 20 Kbps and 50 Kbps for flow2 are shown in Fig. 2
and 3, respectively. This experiment shows that the congestion
in the path can be identified at the source by implementing the
distributed scheduler discussed above.

IV. PARAMETER TUNING AND RESPONSIVENESS

A. Simulation Environment

We conducted all simulations using the network simulator
ns-2.29. We implemented the adaptive pacing scheme in the
interface queue of ns-2. For the simulation setup, the trans-
mission range and carrier sense range are set to 250 meters
and 550 meters, respectively. We enabled RTS/CTS handshake
for MAC transmission. The channel capacity is set to 2 Mbps
unless otherwise stated. The packet size for TCP and UDP
traffic are set to 1000 bytes. We assume the Input Queue
and Transmission Queue size to be 25 for all nodes. Unless
otherwise stated, in all considered topologies, each node is
200 meters apart of each of its adjacent nodes. AODV [10] is
used as a routing protocol.

In all experiments we ran the simulation for 500 secs and
ignore the behavior for first 50 secs to neglect the initial
transient. All the results presented in this paper are averaged
over 30 simulation runs with different seed.

B. Parameter Tuning

The value of α used in WMA smoothens the estimates of
NHT

d and HT
d with changes in the network conditions. To

find the best value of α, we conduct an experiment with two
competing TCP NewReno flows in the cross topology shown
in Fig. 4. The measured aggregate goodput and Jain’s fairness
index between the two flows are shown in Fig. 5. One can
observe from the figure that, for the value of α = 0.8, it gives
better aggregate goodput and fairness. We choose the value of
α as 0.8 for the remaining simulation experiments.
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Fig. 2: FHD Estimation in Chain
Topology while flow2 = 20 Kbps.
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Fig. 3: FHD Estimation in Chain
Topology while flow2 = 50 Kbps.
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Fig. 7: Responsiveness of NewReno
with Link Layer Pacing.

C. Responsiveness
The responsiveness denotes how quickly our scheme adapts

to the changes in network congestion. To illustrate the transient
behavior of our proposed scheme, we measure the goodput of
two TCP flows in the same cross topology shown in Fig. 4.
Here the two TCP NewReno flows compete for the channel
access. For this experiment, flow1 runs from beginning of the
simulation to T2=60 secs and flow2 runs from T1=30 secs
to end of simulation T3=90 secs. Fig. 6 and Fig. 7 plot the
goodput vs simulation time for both flows with and without
pacing at Link layer. With pacing at Link layer both TCP
NewReno flows utilize the available bandwidth when there is
no competing flow, and share the bandwidth fairly between
them when they compete for the bandwidth of the channel.
But without pacing at Link layer, flow1 captures the channel
and utilizes almost entire bandwidth even after flow2 starts.
The other observation here is that, when congestion occurs
due to the competing flows, the propagation of congestion
information to the source makes the flows to respond quickly.

V. SIMULATION RESULTS

In this section, we study the performance of Link layer
pacing in different network scenarios for both UDP and TCP
traffic.

A. Chain Topology
We measured the performance of both UDP traffic and TCP

traffic over the chain topology of hop length 10. For UDP
traffic we considered a CBR flow of different data rate and
measured the throughput at the receiver. We measured the
achieved throughput with and without Link layer pacing by
varying the data rate of CBR traffic from 20 Kbps to 400
Kbps. The increase in data rate at the source increases the
throughput at the receiver linearly as long as the time between
packet arrival at the source node is less than FHD in the
path for both the cases. Without Link layer pacing, further
increase in data rate of the source decreases the throughput at

the receiver as it increases the contention in the path. But in the
case of Link layer pacing, though the packet inter arrival time
decreases below FHD, the source node pushes the packets into
the network with interval of FHD. So the throughput at the
receiver remains constant and does not reduce with increase
in data rate of the source. This is shown in Fig. 8.

For TCP traffic, we considered two different experiments,
(1) Measurement of goodput of one TCP NewReno flow by
varying the hop length in a chain topology and (2) Mea-
surement of aggregate goodput and fairness index of TCP
NewReno flows by varying the number of flows between the
end nodes of the chain.

In the first experiment by changing the length of the chain
topology we ran an FTP flow using TCP NewReno connection
between end nodes of the chain and measured the goodput,
with and without Link layer pacing. For comparative purpose
we measured the performance of TCP-AP without Link layer
pacing also. The results are shown in Fig. 9. The goodput of
TCP NewReno over IEEE 802.11 MAC without Link layer
pacing reduces drastically when the number of hops increases
from 4 to 7. This is due to the fact that, the number of hidden
terminal collisions are more near the source node. But the Link
layer pacing reduces the contention in the path and improves
the goodput of TCP NewReno. We noted that TCP NewReno
with Link layer pacing achieves goodput as good as that of
TCP-AP.

In the second experiment, over a chain topology of fixed
length (we took hop length of 10), we measured the aggre-
gate goodput of all flows by increasing the number of TCP
NewReno flows between the end nodes in the chain. As dis-
cussed in the introduction section, spreading the transmission
of packets at the transport layer may not spread the packet
transmissions in the MAC layer. Hence, TCP-AP does not
perform well with multiple flows. But TCP NewReno over
Link layer pacing achieves maximum aggregate goodput. It
is shown in Fig. 10. We analyzed the fairness between these
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flows also. We found that, fairness between the flows increases
while running over Link layer pacing. But when compared to
TCP-AP there is a reduction in fairness between the flows.
But this reduction in fairness compensates the huge increase in
aggregate goodput when compared with NewReno over Link
layer pacing. The measured fairness using Jain’s fairness index
is shown in Fig. 11.

B. Grid Topology
We measured the performance of both UDP and TCP traffic

over the grid topology of size 10 × 10 with inter node distance
of 200 meters. For UDP traffic we considered 20 CBR flows
and measured the aggregate throughput at the receiver for
different data rates. We took packet size of 50 bytes as typical
voice applications generate small size packets. We setup flows
from one edge node to other edge node in the opposite side.
This is to make sure that hop length of all flows are more
than four. We randomly picked five sources in each side of
the grid and randomly picked destination in the opposite side
of the grid. We ran the simulation for 30 such different flow
patterns and took the average of aggregate throughput. We ran
experiments with and without Link layer pacing by varying the
data rate of CBR flows from 1 Kbps to 16 Kbps. Fig. 12 shows
the aggregate throughput for different offered loads. Without
Link layer pacing, as the data rate increases above 3 Kbps,
the overall throughput at the receiver decreases drastically.
But with Link layer pacing the decrease in throughput is less.
Thus, the overall network throughput increases with Link layer
pacing.

For TCP traffic, we measured the aggregate goodput of the
flows by varying the number flows as 8, 20, and 40. The flows
are randomly generated as discussed in UDP experiment and
aggregate goodput is measured for 30 different flow patterns.
TCP NewReno gives better aggregate goodput when running
over Link layer pacing compared to running without Link layer
pacing. It is shown in Fig. 13.

VI. CONCLUSION

In this paper, we proposed a new Link layer pacing scheme
which adaptively estimates the FHD on the path and transmits
the packets with estimated FHD interval. This scheme also
performs the congestion control by propagating the conges-
tion information to the source without any additional control
overhead. As our proposal does the pacing at the Link layer,
it improves the performance of the multihop mesh networks
irrespective of higher layer protocols. Through ns-2 simulation
we showed an improvement in the performance of both UDP
and TCP traffic with Link layer pacing implemented with
IEEE 802.11 MAC in different network scenarios.
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