Low-delay Dynamic Routing Using Fountain Codes

Venkataramana Badarla, Vijay Subramanian, Douglas J. Leith

Abstract— This paper considers augmenting current maxi-
mum throughput routing algorithms to use fountain coding
at senders. We demonstrate that this joint routing/coding
approach is able to achieve significantly improved delay per-
formance.

Keywords— Dynamic routing, Fountain codes

I. INTRODUCTION

Following the seminal work of Tassiulas [2], in recent
years a body of powerful theoretical results has been devel-
oped for maximum throughput routing (e.g. see Stolyar [4],
Neely [3] and references therein). Under quite mild condi-
tions this yields distributed dynamic routing algorithms
that are guaranteed to maximise network throughput. By
using dynamic multi-path routing these algorithms can
offer considerable gains in throughput over conventional
single-path routing. Indeed, they are guaranteed to achieve
the network capacity and so their throughput performance
cannot be bettered by any algorithm. However, despite the
appealing simplicity and strong theoretical basis for these
routing algorithms, the literature is confined to analytic
results with almost no simulation or experimental studies
exploring their practical utility (a notable exception is the
recent work in [6]).

In this paper we consider the application of maximum
throughput routing algorithms and highlight some funda-
mental difficulties with current algorithms, in particular a
tendency towards extensive routing loops and poor delay
performance. Motivated by these observations, we pro-
pose augmenting current maximum throughput routing al-
gorithms to use fountain coding at senders. We demon-
strate that this joint routing/coding approach is able to
achieve significantly improved delay performance. To our
knowledge this paper is the first to consider the integrated
use of sender-side coding with maximum throughput rout-
ing. We note briefly that we consider sender-side coding
rather than network coding here — the reason being our
focus on improving delay performance rather than increas-
ing network capacity. Extending the proposed approach to
include network coding is feasible but left as future work.

Before proceeding we look at an illustrative example.
Consider the simple network topology in Fig. 1(a) where
the network capacity between the source and destination is
1000 packet /s (constrained by the link connecting the desti-
nation node 5 with node 3). For poisson arrivals, the delay
performance of the max-weight maximum throughput rout-
ing algorithm (see Algorithm 1) is shown in Fig. 1(b). We
measure delay as the time between a packet being trans-
mitted by the source and being delivered in-order to upper

Work supported by Science Foundation Ireland grant IN3/03/1346.
The authors are with the Hamilton Institute, National University of
Ireland, Maynooth, Co. Kildare, Ireland.

e (D) |

10

B

-3 @ o
=] S S

[oe]
Percentage of Packets
B
o

e

N
=]

1 '.' —— joint routing/coding
e - max-weight routing
@ G0 1000 2000 3000 4000 5000 6000
DEST Delay (ms)
(a)Topology (b)Cumulative distribution of packet delay

Fig. 1. Example illustrating performance issues. Link rates in (a)
marked in x1000 packets/s. Delay data in (b) is for poisson arrivals,
mean rate 900 packets/s, block size n = 50 packets.

layers at the destination. It can be seen that 75% of pack-
ets require more than 2000ms to reach the destination. In
general, while the routing algorithm is guaranteed to max-
imise network throughput this guarantee says little about
the delay performance and, as can be seen from this exam-
ple, in practice delay performance may be poor.

Closer inspection reveals that packets tend to circulate
for long periods in the loop connecting nodes 2-3-4. On
average the number of packets exiting this loop from node
3 to the destination node 5 matches the arrival rate from
source node 1 into node 2 and so network throughput is
indeed maximised in line with analytic guarantees. Never-
theless, it is easy to see that up to 7000 packets/s can flow
around the 2-3-4 loop without impacting the capacity be-
tween the source and destination. Consequently, the packet
flow arriving at the destination can suffer from extensive
packet re-ordering. Note that when in-order (or near in-
order) packet delivery is required (as is the case for the vast
majority of existing applications), packet reordering trans-
lates into delay as packets must be held in a reassembly
queue (akin to a playout buffer) at the destination before
they can be delivered to the upper layers.

For comparison, also shown in Fig. 1(b) is the corre-
sponding delay performance when sender-side coding is
used in conjunction with maximum throughput routing.
The dramatic improvement in delay performance is evi-
dent.

Algorithm 1 Max-weight algorithm at node n, time ¢

1. For each neighbour m, compute the utility U, n(t) =
Y men, (@n(t) = gm(t)) X Rym. Rnm is the link rate
from n to its neighbour m, ¢, the number of packets
queued at node n, IV, the set of neighbours of node n.

2: Determine m that maximises U, ,,,(¢). Denote by m*.

3: Transmit min(gy, (t), Ry m~) packets to node m*

ITI. RouTING AND CODING
A. Low-delay fountain coding

Maximum throughput routing maximises the rate at
which packets are delivered to a destination, but provides
no guarantee of in-order arrival at the destination (quite
the opposite in fact, as the previous example illustrates).
An ideal fountain code enables n information packets to
be reconstructed from any n + § coded packets, with over-
head § small. One immediate consequence is that a foun-
tain coded packet stream is insensitive to packet reordering.
The use of fountain codes in combination with maximum
throughput routing therefore offers the potential for signif-
icant gains in delay performance while yielding excellent
throughput performance. It is this key observation that
motivates the approach studied in this paper.

We note, however, that current practical (as opposed
to ideal) fountain codes are not suitable for our purpose.
Popular examples of practical fountain codes include LT
codes[5] and Raptor codes[7]. One feature of these practical
codes is that large block sizes n are required in order to ob-
tain reasonably small overhead §. For example, block sizes
of 10000 packets and larger are commonly considered in the
literature. For smaller block sizes, the overhead quickly be-
comes large e.g. even highly optimised LT codes can have
overheads of greater than 40% [8]. The reason that block
size matters is that all of the information packets are gen-
erally only recovered once a complete block (i.e. n+ §) of
coded packets has been received. That is, the coding in-
troduces a decoding delay that is proportional to the block
size. For large block sizes, the decoding delay is large and
so the net delay performance of joint coding/routing may
not be any better than that with routing alone. We there-
fore begin by considering the design of low-delay, small
block-size fountain codes.

In LT codes a coded packet e; is generated from the sum
of a randomly selected subset of the information packets.
That is, e; = g;u where u is the vector of information
packets and g; is a vector with 0 or 1 entries — in mod-
ulo 2 arithmetic summing two packets simply corresponds
to xoring the corresponding bits in each packet and so is
computationally cheap. Raptor codes are similar, except
that they make use of intermediate coded symbols. Stack-
ing n + § received coded packets into a vector e, we have
that e = Gu where row i of G is the (0,1) vector g;. The
information packets can be recovered (i.e. decoded) when-
ever sufficient coded packets are received that the matrix
G is full rank. Decoding involves solving n linear equations
e = Gu which in general is an O(n®) operation using, for
example, Gaussian elimination.

A key design driver for LT and Raptor codes is the re-
quirement for efficient decoding e.g. linear time O(n) de-
coding. This is vital when large block sizes n are used and
leads to the use of matrices G which are sparse so as to
be decodable using Belief Propagation (BP). However, our
interest is in small block sizes n in order to ensure small
decoding delay. When n is small, we can afford more ex-
pensive decoding algorithms such as Gaussian elimination

BPon LT code —+—
= E GE on LT code
3
10" FGE on new code, loss rate 50%]
& on new code, loss rate 10% — @ o
=] e
102 - D
I = |
10 . |
k J—
0
i} 10° = = =
a s
S -1
107 &
i
a
102 ‘ |
10 100 1000

Block size (packets)

Fig. 2. Decoding delay of LT (using both Belief Propagation and
Gaussian Elimination decoding) and equiprobable codes (using Gaus-
sian Elimination decoding).

(GE). This allows us to make use of matrices G which are
non-sparse.

In particular, we consider generating coded packets as
follows. First the n information packets are transmitted
unencoded (i.e. we use a systematic code). Subsequent
coded packets are then formed by tossing a coin for each
information packet and xoring the selected packets. That
is, each element in vector g; takes value 1 with probability
0.5 (and so also takes value 0 with probability 0.5, hence 0
and 1 are equiprobable). It is shown in [9] that this class
of fountain codes has lower overhead § (and so decoding
delay) than any sparse code. Use of a systematic code
further reduces decoding delay when the level of packet re-
ordering is low. Fig. 2(a) illustrates the superior decoding
delay of this code in comparison with LT codes using BP
decoding and LT codes using GE decoding.

B. Pipelining blocks

When using small blocks, transmission of a large file re-
quires the use of multiple blocks. We take advantage of
pipelining of blocks to reduce the coding overhead further.
Specifically, once the initial uncoded packets of a block
are transmitted, we wait for an ACK from the destina-
tion before sending coded packets. While waiting for the
ACK we commence sending packets from the next block,
if available. The destination sends an ACK for each re-
ceived packet. The ACK indicates the block j to which
the packet belongs, the block k next in line for decoding,
the rank of the currently received G matrix for block k.
On receiving an ACK with j not equal to k, indicating re-
ordering/loss crossing block boundaries, the sender trans-
mits coded packets from block k. The number of coded
packets sent is determined by the rank of the already re-
ceived G matrix. Once these have been sent, say at time ¢,
to allow for the network round-trip time no further coded
packets are transmitted until a packet sent after time ¢ is
ACKed.

C. Routing

When block k is finally decoded at the destination, due
to pipelining of transmissions there may still be packets
associated with that block in-flight within the network.
Since forwarding of these packets uses network resources

Link Rates

— 1Mbps 6Mbps
2Mbps T 11 Mbps

Fig. 3. Roofnet-like topology (91 nodes, node locations derived from
Roofnet GPS data, two-ray ground path propagation model)

without yielding benefit it makes sense for forwarders to
simply drop these packets once an ACK indicates that a
block is decoded. However, this violates a key assump-
tion in the stability results for maximum throughput rout-
ing: namely, that the set of available routing actions at
time ¢ is independent of previous routing actions. To pre-
serve stability guarantees we make routing decisions based
on virtual queues that mirror the real router queues ex-
cept that in-flight packets are not dropped from the vir-
tual queues. Standard stability results then ensure that
the virtual queues within the network are guaranteed to be
bounded. Since the size of the virtual queues always up-
per bounds the size of the real queues, it follows that the
real queues are also guaranteed to be bounded i.e. network
stability is ensured.

III. PERFORMANCE

For the simple network topology in Fig. 1(a), the im-
provement in delay performance when combined cod-
ing/routing is used can be seen in Fig. 1(b). We also con-
sider the more realistic topology shown in Fig. 3. This
topology is related to the Roofnet network — the node lo-
cations are based on Roofnet GPS positions and network
connectivity is derived from a two-ray radio propagation
model. A block size of 50 packets is used.

Fig. 4.(a) plots the mean packet delay vs offered load for
a flow between one randomly selected source-destination
pair (nodes 81 and 91, marked in Fig. 3). It can be
seen that joint routing/coding consistently achieves signif-
icantly improved delay performance compared with plain
maximum-throughput routing. The corresponding good-
put measurements are shown in Fig. 4.(a) — here goodput
is the mean rate at which in-order packets are delivered to
upper layers at the destination. The latter confirm that the
improved delay performance with coding is not achieved at
the cost of high coding overheads and reduced network ca-
pacity.

Fig. 5 shows the delay and goodput distributions taken
over 12 different source-destination pairs with the arrival
rate fixed at 90% of network capacity between each pair.
Once again, a substantial improvement in delay perfor-
mance is consistently observed with joint routing/coding.

16000 T T T T 28
14000 max weight routing ~ —<— 1 26 o
joint routing/coding —m— e \$
12000 * 24 - 1
/ \
X @) \
% 10000 ® 22 o
£ I P ?
5 8000 i1s - :
3 SlEow)
8 6000 o / PR L)f
_x a \
4000 % - g 16 max-weight routing —%— |-\~
2000 g g T o 14 joint routing/coding —— 3
0 12 ; ; ; ;
2 22 24 26 28 3 2 22 24 26 28 3
Arrival rate at sender (x100 pkis/s Arrival rate at sender (x100 pkts/s)
(a)Delay (b)Goodput

Fig. 4. Roofnet topology, flow between nodes 81 and 91.

08l - -max weight routing
|— joint routing/coding

" [+ - max-weight routing
— joint routing/coding

Cumulative distribution

Cumulative distribution

0.2

2000 4000 6000 8000 10000 12000 14000 16000 18000 Y07 02 03 04 05 06 07 05 09 1

Delay (ms)

(a)Delay

Ratin of aondnit to thronahnit

(b)Goodput Efficiency

Fig. 5. Roofnet topology, average over 12 randomly selected source-
destination pairs. Poisson arrival rate 90% of capacity.

IV. CONCLUSIONS

In this paper we highlight some fundamental difficul-
ties with current maximum throughput routing algorithms,
in particular a tendency towards extensive routing loops
and poor delay performance. We propose a joint rout-
ing/coding approach and demonstrate that this achieves
significantly improved delay performance while maintain-
ing excellent throughput performance.

REFERENCES

[1] A. Brzezinski et. al, ”Enabling distributed throughput maxi-
mization in wireless mesh networks: a partitioning approach,”
in Proc. ACM Mobicom, pp. 26-37, 2006.

[2] L. Tassiulas and A. Ephremides, ”Stability Properties of
Constrained Queueing Systems and Scheduling for Maximum
Throughput in Multihop Radio Networks,” IEEE Trans. on Au-
tomatic Control, vol. 37, no. 12, pp. 1936-1949, December 1992.

[38] M. J. Neely, E. Modiano, and C. Li, ”Fairness and Optimal
Stochastic Control for Heterogeneous Networks”, in Proc. IEEE
INFOCOM, 2005

[4] A. L. Stolyar, ”Maximizing Queueing Network Utility subject to
Stability: Greedy-Primal Dual Algorithm,” Queueing Systems,
vol. 50, no.4, pp. 401-457, 2005.

[5] M. Luby, “LT codes”, in Proc. The 43rd Annual IEEE Sympo-
stum on Foundations of Computer Science, pp. 271-280, 2002.

[6] B. Radunovic, C. Gkantsidis, P. Key, P. Rodriguez, “An Op-
timization Framework for Opportunistic Multipath Routing in
Wireless Mesh Networks”, in Proc. IEEE INFOCOM Minisym-
posium, 2008.

[7] A. Shokrollahi, "Raptor codes,” IEEE Trans. Information The-
ory, vol. 52, no. 6, pp. 25512567, June 2006.

[8] E.Hyytia, T.Tirronen, J.Virtamo, “Optimal Degree Distribution
for LT Codes with Small Message Length”, in Proc. IEEE IN-
FOCOM , 2007

[9] V.G. Subramanian, D. J. Leith. “On a class of optimal rateless
codes”, in Proc Allerton Conference, 2008.

