
An Experimental Investigation of TCP
Performance in High Bandwidth-Delay Product

Paths

Baruch Even,
Hamilton Institute,

baruch@ev-en.org

Supervisor: Professor Douglas Leith
Department of Computer Science

Faculty of Science
National University of Ireland, Maynooth

Maynooth, Ireland

ii

February, 2007

This thesis is dedicated to my parents who made my education priority and to my
wife who made it a pleasure.

i

ACKNOWLEDGMENTS

I would like to acknowledge those who helped make this thesis transition from thought
to action:

First and foremost, My supervisor Prof. Douglas Leith whose guidance helped me
steer in the right direction and find the way on the long journey, and whose insight
helped me tackle some seemingly dead-ends.

Prof. Robert Shorten for his help during the research and the writing stages.

Prof. Barak Pearlmutter for watering the seed of thought of going for a Masters degree
and his help to make this effort bear fruits.

Rosemary Hunt and Kate Moriarty for all their administrative help that let me focus
on my work rather than form filings.

And also my friends at the Hamilton Institute who made my stay in Ireland much more
enjoyable: Anthony, Carlos, David, Eric, Florian, Gavin, Ian, Mehmet, Parisa, Peter,
Rade, Santiago, Selim, Steven and Tianji.

This work was supported by Science Foundation Ireland grants 00/PI.1/C067 and
04/IN3/I460.

ii

Contents

1 Introduction 1

1.1 Introductory Remarks . 1

1.2 Structure of Thesis . 2

1.3 Contribution of thesis . 2

2 An Overview of Congestion Avoidance in TCP 4

2.1 TCP Overview . 4

2.2 TCP Variants . 9

2.3 Additional TCP Details . 13

2.4 High speed protocols . 16

2.4.1 Scalable-TCP [13] . 17

2.4.2 HS-TCP [8] . 18

2.4.3 H-TCP [14] . 18

2.4.4 BIC-TCP [26] . 19

2.4.5 FAST-TCP [12] . 20

2.5 Summary . 20

3 Network Stack 21

3.1 Introduction . 21

3.2 Slow-path processing . 22

3.3 Test Setup . 23

iii

3.4 Baseline . 25

3.5 Proposed fixes . 27

3.5.1 Walk SACKed Holes List 27

3.5.2 Retransmit hints . 30

3.5.3 SACK hints . 35

3.6 Conclusions . 35

4 The cost of aggressive window growth 38

4.1 Introduction . 38

4.2 Properties of standard TCP flows . 39

4.2.1 A model of a network of TCP flows 40

4.2.2 Properties of standard TCP 45

4.3 Test setup . 48

4.4 Properties of H-TCP . 49

4.4.1 Long-term λ Unfairness . 50

4.4.2 Short-term Unfairness . 51

4.5 Summary . 53

5 Summary and Conclusions 61

Bibliography 62

iv

List of Figures

2.1 Exponential Growth of TCP Slow Start 7

2.2 TCP Flow States . 8

2.3 Tahoe TCP . 11

2.4 Reno TCP . 11

2.5 TCP Packet Format . 14

2.6 TCP sliding window . 16

2.7 cwnd history of a standard TCP flow on a network with 500Mbps
bandwidth and 220ms RTT . 17

3.1 Network Topology . 23

3.2 Processing stages of an incoming packet and location of the receive
queue . 26

3.3 Overall performance in Mbit/s for a specified line rate. Before the
changes and after. 26

3.4 Baseline Kernel at 950Mbps, 220ms rtt and 20% queue size 28

3.5 TCP performance with SACK hole list modification at 950Mbps, 220ms
rtt and 20% queue size . 32

3.6 TCP performance with SACK Holes and Retransmit Hints modifica-
tions at 950Mbps, 220ms rtt and 20% queue size 34

3.7 With SACK Holes, Retransmit Hints and SACK Hints at 950Mbps,
220ms rtt and 20% queue size . 37

4.1 Evolution of window size . 40

v

4.2 Average time between congestion events for standard TCP for one flow
as the bottleneck link bandwidth is varied. Measurements taken from
experimental testbed, RTT is 220ms, router queue is sized at 20% of
the bandwidth-delay product . 46

4.3 Throughput ratios with λ unfairness for standard TCP with bandwidths
of 50Mbps, 100Mbps and 300Mbps. Network with 10 flows in total,
5 flows with λ = 1 and 5 flows with a λ ranging between 1 and 0.145.
Measurements taken from experimental testbed, RTT is 220ms, router
queue sized at 20% of bandwidth-delay product 48

4.4 Distribution of peak window sizes for standard TCP at 50Mbps and
100Mbps. Measurements taken from experimental testbed, network
with 10 flows, RTT is 220ms, router queue sized at 20% of bandwidth-
delay product . 54

4.5 Average time between congestion events for H-TCP for one flow as
the bottleneck link bandwidth is varied. Measurements taken from
experimental testbed, RTT is 220ms, router queue is sized at 20% of
the bandwidth-delay product. 55

4.6 Throughput ratios with λ unfairness for H-TCP with bandwidths of
100Mbps and 300Mbps. Network with 10 flows in total, 5 flows with
λ = 1 and 5 flows with a λ ranging between 1 and 0.145. Measure-
ments taken from experimental testbed, RTT is 220ms, router queue
sized at 20% of bandwidth-delay product. 55

4.7 H-TCP alpha and cwnd evolution for 15 seconds from congestion event 56

4.8 Example evolution of flow cwnds. Network with 10 flows in total,
five flows with λ = 0.5 and five with λ = 1. Measurements taken
from experimental testbed, RTT is 220ms, router queue sized at 20%
of bandwidth-delay product. 56

4.9 Actual versus demanded synchronisation rate as number of flows is
varied. Measurements taken from experimental testbed, RTT is 220ms,
bandwidth 300Mbps, router queue sized at 20% of bandwidth-delay
product. 57

4.10 cwnd distribution for different number of flows. Measurements taken
from experimental testbed, RTT is 220ms, bandwidth 300Mbps, router
queue size at 20% of bandwidth-delay product. 57

vi

4.11 Time between congestion events for different number of flows. Mea-
surements taken from experimental testbed, RTT is 220ms, bandwidth
300Mbps, router queue size at 20% of bandwidth-delay product. . . . 58

4.12 Impact of BDP on aggressiveness of H-TCP flows, 5 flows on each
host all with 220ms RTT and bandwidth of 100 or 300 Mbps 59

4.13 Impact of backoff factor at 300Mbps, 220ms RTT with λ = 0.5 60

vii

List of Tables

3.1 Hardware and Software Configuration. 24

viii

Chapter 1

Introduction

1.1 Introductory Remarks

The performance of the Internet is determined not only by the network and hardware
technologies that underlie it, but also by the software protocols that govern its use.
In particular, the TCP transport protocol is responsible for carrying the great majority
of traffic in the current internet, including web traffic, email, file transfers, music and
video downloads. TCP provides two main functions. First, it provides functionality to
detect and retransmit packets lost during a transfer thereby providing a reliable trans-
port service to higher layer applications. Second, it enforces congestion control. That
is, it seeks to match the rate at which packets are injected into the network to the avail-
able network capacity. A particular aim here is to avoid so-called congestion collapse,
prevalent in the late 1980s prior to the inclusion of congestion control functionality in
TCP.

Over the last decade or so, the link speeds within networks have increased by several
orders of magnitude. While the TCP congestion control algorithm has proved remark-
ably successful, it is now recognised that its performance is poor on paths with high
bandwidth-delay product, e.g. see [13, 8, 14, 26, 12] and references therein. With the
increasing prevalence of high speed links, this issue is becoming of widespread con-
cern. This is reflected, for example, in the fact that the Linux operating system now
employs an experimental algorithm called BIC-TCP[26] while Microsoft are actively
studying new algorithms such as Compound-TCP[25].

While a number of proposals have been made to modify the TCP congestion control
algorithm, all of these are still experimental and pending evaluation as they change the

1

congestion control in new and significant ways and their effects on the network are not
well understood. In fact, the basic properties of networks employing these algorithms
may be very different to networks of standard TCP flows. The aim of this thesis is to
address, in part, this basic observation.

1.2 Structure of Thesis

This thesis is organised as follows. In chapter 2 we give an overview of congestion
control mechanisms in the TCP protocol. In chapter 3 we construct and test an exper-
imental testbed for investigating the performance of high-speed TCP algorithms. A
key issue here is that the computational burden created by the standard Linux network
stack (similar comments also apply to other operating systems) is too great to support
proper TCP operation at speeds above about 100Mb/s. Before we can study the be-
haviour of the TCP congestion control algorithm, it is therefore necessary to develop
a more efficient network stack implementation. In chapter 4 we use the developed
testbed to study in detail the performance of the H-TCP high-speed algorithm in un-
synchronised network conditions. A summary and conclusion are presented in chapter
5.

1.3 Contribution of thesis

The contribution of this thesis includes the following:

(i) We document the performance degradation of the standard Linux network stack
on high bandwidth-delay product paths. By careful instrumentation of the net-
work stack it is established that this degradation is primarily associated with the
excessive computation burden imposed by the standard SACK processing algo-
rithm. A modified SACK processing implementation is developed and its perfor-
mance validated on commodity hardware for paths with delay up to 220ms and
bandwidth up to 1Gbs (corresponding to a maximum bandwidth-delay product
of approximately 20000 packets).

(ii) Based on this modified Linux kernel an instrumented testbed network is de-
veloped. To allow controlled study of the impact of synchronisation rate on
behaviour, a modified FreeBSD dummynet implementation is also developed.

2

(iii) Using the developed testbed network we investigate the performance of both
standard TCP and H-TCP in unsynchronised conditions. We demonstrate that
the unfairness in long-term average throughput between flows with different
synchronisation rates is amplified by the more aggressive increase rate of the
H-TCP algorithm. Large short-term fluctuations in the rate of a flow are often
a feature of networks in which high-speed protocols are deployed, leading to
short-term unfairness between competing flows. The distribution of rate varia-
tion depends, amongst other things, on the network backoff factors, with larger
reducing short-term unfairness but reducing the responsiveness of the network.

In terms of publications, the testbed development work in this thesis was reported at
the Terena Networking Conference, 2005 in a presentation entitled Fair & useful com-
parisons: how should we evaluate new TCP proposals ? and in a paper Evaluating the
performance of TCP stacks for high-speed networks that appeared in the Proceeding
of the Workshop on Protocols for Fast Long Distance Networks (PFLDnet), 2006.

3

Chapter 2

An Overview of Congestion Avoidance
in TCP

In this chapter we describe the features of TCP relevant to congestion control. This
chapter is organised as follows. Section 2.1 provides some background information
on TCP and describes the features that can exist in a typical TCP flow. In section 2.2
we look at the main TCP variants. Section 2.3 provides additional details of TCP that
are relevant to our discussion. Section 2.4 reviews recent proposals for changes to the
TCP congestion control algorithm to improve performance in high bandwidth-delay
product networks. Finally section 2.5 summarises the contents of this chapter.

2.1 TCP Overview

TCP is one part of two well known protocol standards commonly referred to as TCP/IP.
TCP sits on top of the IP layer and passes segments onto the IP layer for further pro-
cessing. These segments are then passed onto the lower level layers and eventually
onto the network. TCP was officially adopted as a standard in RFC1 793 [19] in 1981
and was designed to deal with message flow control and error correction, ensuring re-
liable delivery of a message from a source application to a destination application. IP
was also officially adopted as a standard in RFC 791 [18] in 1981. IP deals with logical
addressing and specifies source and destination addresses. These addresses are used to

1The Requests for Comments (RFC) document series is a set of technical and organizational notes
pertaining to the Internet. These documents are maintained by the Internet Engineering Task Force
(IETF).

4

route a message to its destination and to provide a return address for any response.

The origins of TCP/IP stem from DARPA research into resilient networks for use in
a battlefield environment [5]. The goal of this research was to design a protocol suite
that could cope with network link failure and ensure delivery of data to its destination.
As TCP/IP evolved it moved from the research environment to be deployed in isolated
networks that were eventually interconnected to become what we now know as the
Internet[5].

TCP is a bi-directional, reliable, end-to-end protocol for controlling data transmission.
TCP sources break messages from higher protocol layers into datagrams that are en-
capsulated in packets which are then transmitted over the network. These packets are
reassembled by the TCP receiver into the original message and passed onto the higher
level protocol layers. For every packet sent on the network by a source an acknowl-
edgement (ACK) is expected to be transmitted back from the destination. This ACK
(or lack thereof) is used by the source to determine if the acknowledged packet was
successfully received at the destination. In this manner packets can be tracked and
retransmitted if required.

To facilitate further discussion of TCP, the general features of TCP will be highlighted.
We do not describe a specific TCP variant here but provide an overview of features a
TCP variant can possess. These features will be dealt with in an historical and chrono-
logical manner. Refer to [6] for a more detailed description of the TCP protocol. In
order to describe the TCP protocol some concepts are needed:

• Round Trip Time (RTT): the time taken for a packet to be sent from a source to
a destination and for the corresponding acknowledgement to be received by the
source, assuming no packet loss.

• Advertised window (wnd): the amount of data a destination has advertised that
it is willing to receive. This is reported in every ACK sent by the destination to
the source2.

• Source congestion window (cwnd): the number of packets in flight i.e. trans-
mitted but not yet acknowledged, assuming the source is not restricted by the
advertised window.

• Send window (swnd): the minimum of wnd and cwnd.
2For ease of understanding, all window sizes are described in terms of packets in this thesis. In a

real TCP implementation these window sizes can be in terms of bytes.

5

• Additive Increase Multiplicative Decrease (AIMD): TCP increases its conges-
tion window by adding to it on receipt of ACK’s and decreases the send window
by a multiplicative factor on receipt of an indication of packet loss.

• Slow Start: In Slow Start mode the congestion window is doubled every RTT
which leads to an exponential rate of increase.

• Slow start threshold (ssthresh): the threshold in packets below which the source
remains in slow start mode.

• Fast Retransmit: a mechanism whereby the source retransmits a packet after
receiving a number of duplicate ACK’s (normally three) rather than waiting for
a retransmit timer to timeout.

• Fast Recovery: the mode entered after a packet drop is detected via Fast Retrans-
mit. In this mode the congestion window is restricted in value until the dropped
packet is successfully retransmitted.

• Retransmission Time-Out (RTO): the interval a source waits without receiving
an ACK before marking a packet as lost, retransmitting it and entering Slow
Start mode. TCP calculates RTO based on current RTT and RTT variance.

• Congestion Avoidance: the mode the source enters after Fast Recovery. The
source uses an AIMD strategy, linearly increasing its congestion window at a
rate of one packet per RTT.

• TCP state machine: TCP is state based and maintains a local data structure to
track the state of a connection. States include CLOSED, ESTABLISHED, LIS-
TEN, and other intermediary states.

• TCP Control Block (TCB): an internal data structure that holds TCP state infor-
mation and internal variables.

• Maximum Sized Segment (MSS): the maximum packet size that can be sent by
a TCP source.

During the initial phase of a TCP connection the receiver (or receivers when the data
flow is bi-directional) provides details of the amount of incoming data that it can pro-
cess (wnd). This informs the source of the maximum data that the destination is cur-
rently willing to receive. In early implementations of TCP, sources transmitted data in
a burst with further bursts on receipt of change in the advertised window size. This

6

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

Time [s]

Cw
nd

 [p
kt

s]

Flow 1

Time 0.24s. Source sets
cwnd to cwnd/2
ssthresh to ssthresh/2

Figure 2.1: Exponential Growth of TCP Slow Start

caused problems as the source tended to overwhelm the network. To address this issue
Jacobson et al [11] proposed a series of measures.

Jacobson et al [11] proposed Slow Start mode. In this mode the congestion window
increases on the receipt of an ACK according to the following formula

cwnd(n+1) = cwnd(n) + 1 (2.1)

where n indexes the ACK’s received. Assuming the advertised window is greater than
the current cwnd, the source will send as many packets onto the network as allowed
by its cwnd. The source will transmit new packets every time a new ACK is received
and increments cwnd according to (2.1). As cwnd packets are sent in an RTT, the
congestion window increases by cwnd packets per RTT. This leads to a doubling of
the amount of packets sent in the next RTT causing exponential growth of cwnd, see
for example Figure 2.1. The source increases its send window in this manner until one
of two conditions is met:

1. ssthresh is reached. In this case the source transitions to Congestion Avoidance
mode and will continue in this mode until condition 2 is met.

2. Packet loss is detected by the source. In this case the source reduces its cwnd by

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Time [s]

Cw
nd

 [p
kt

s]

Flow 1

Time 0.68s ! 0.75s.
Fast Recovery

Time 0.75s ! 1.96s.
Congestion Avoidance

Figure 2.2: TCP Flow States

half and transitions to Fast Recovery mode.

Packet loss was originally detected at the source by the expiry of a retransmission
timer. This timer is set based on current network conditions and is tied to variations in
RTT. See [6] [11] for more details. This was found to be an inefficient mechanism for
detection of packet loss and the Fast Retransmit mechanism was proposed to address
this issue [11]. With Fast Retransmit a packet is retransmitted if three duplicate ACK’s
are received. This occurs as the destination only ACK’s the last packet in sequence that
it has received. If the destination receives packets out of order, due to a packet being
dropped, it will send duplicate ACK’s for the last packet received in order. The receipt
of three of these duplicate ACK’s is an indication of a dropped packet as detailed in
RFC 2001 [24]. The source then sets ssthresh and cwnd to half its current value of
cwnd. See, for example, time period 0.31s in Figure 2.1.

Following Fast Retransmit the source enters into Fast Recovery mode. The dropped
packet(s) are retransmitted and the source remains in Fast Recovery mode until the
retransmitted packet is acknowledged by the destination. See time period 0.68s - 0.75s
in Figure 2.2.

Following successful retransmission of lost packet(s)the source then enters into Con-

8

gestion Avoidance mode. The congestion window increases according to the following
formula

cwnd(n+1) = cwnd(n) + 1/cwnd(n) (2.2)

As with Slow Start the source transmits a new packet every time an ACK is received
but in this mode cwnd is only increased by 1/cwnd. As cwnd packets are sent in an
RTT, cwnd increases by one packet per RTT. This leads to a near linear increase in
cwnd with a slope of 13. See time period 0.75s - 1.96s in Figure 2.2. The source
remains in Congestion Avoidance until a packet drop is detected. In this way the TCP
flow will cycle between Fast recovery and Congestion Avoidance until the end of the
flow unless there is a retransmission timeout for a packet, in which case the TCP flow
control will reset cwnd to one and restart the flow in Slow Start mode.

As the TCP source send rate is clocked by incoming ACK’s the source can react to
prevalent network conditions. This feedback control mechanism, called the TCP self
clocking mechanism, leads to a situation whereby the source increases its congestion
window at a slower rate under heavy network load than under light network load.

2.2 TCP Variants

In order to understand the current status of TCP it is important to look at its devel-
opment and in particular the reasoning behind specific design features. Early imple-
mentations of TCP used a go-back-n model (send sequence goes back n packets) when
packets were lost. These implementations had no congestion control and led to a se-
ries of ’congestion collapses’ on the Internet. During these congestion collapses the
data throughput of connections was severely reduced due to excessive retransmission
of packets. These issues were addressed by a version of TCP called Tahoe [11] in
which the problem of congestion was approached by a ‘Conservation of Packets’ prin-
ciple whereby new packets were not put into the network until the old ones left. Tahoe
is thus a self clocking system, formed by the transmission of data and the receipt of
acknowledgements.

Tahoe offered a means of combating congestion through dynamically altering the size
of the protocol’s send window. As can be seen in Figure 2.3 the algorithm follows

3The increase is linear in RTT but not in time as the RTT will vary over time as network queues fill
and empty.

9

these simple rules:

1. As an initial condition or if the RTO expires, set cwnd to one.

2. In Slow Start increase cwnd by one packet for each ACK until ssthresh is reached.

3. On reaching ssthresh enter Congestion Avoidance mode.

4. In Congestion Avoidance increase cwnd by 1/cwnd for each ACK received.

5. On detection of a packet loss, cwnd is reset to one, Slow Start is entered and
ssthresh is set to half its current value.

Congestion Avoidance and Slow Start are independent algorithms with different objec-
tives but in practice they are implemented together. Slow Start probes the network so
that the TCP source can get an initial indication of the network bandwidth available.
Congestion Avoidance more gently probes the network so that the TCP source can
adapt to changing network conditions. A TCP connection will start in Slow Start mode
but switch to Congestion Avoidance mode after cwnd reaches the value of ssthresh.
In addition to these enhancements Tahoe also includes Fast Retransmit, better RTT
variance estimation, and exponential retransmit timer back-off. These enhancements
dramatically enhanced the throughput performance of TCP [11].

Historically, the next major variant of TCP is called Reno TCP [24]. This variant of
TCP is similar to the Tahoe TCP, except it also includes Fast Recovery [24]. Reno
TCP does not return to Slow Start after Fast Recovery (which ends on the receipt of
the retransmitted packet), instead it reduces the congestion window to half the current
window size as can be seen in Figure 2.4. Note that in this example the TCP flow goes
into Timeout mode following Slow Start due to excessive packet transmission during
Slow Start. Reno also includes delayed ACKs which will be discussed in the next
section.

TCP Tahoe and Reno experience poor performance when multiple packets are lost
from one window (cwnd) of data4. With the limited information available from cu-
mulative acknowledgments, a TCP source can only learn about a single lost packet
per round trip time. An aggressive source could choose to retransmit packets early,
but such retransmitted packets may have already been successfully received. TCP
NewReno [9] address this issue by modifying the action taken when receiving new

4Note that cwnd represents the number of packets in flight for the flow until a packet(s) is dropped.

10

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Time [s]

cw
nd

 [p
kt

s]

Flow 1

Figure 2.3: Tahoe TCP

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Time [s]

cw
nd

 [p
kt

s]

Flow 1

Figure 2.4: Reno TCP

11

ACK’s. In order to exit Fast Recovery, the source must receive an ACK for the highest
sequence number sent before entering Fast Recovery. Thus, unlike TCP Reno, new
”partial ACK’s” (those which represent new ACK’s but do not represent an ACK of all
outstanding data) do not take TCP NewReno out of Fast Recovery. In this way, Reno
retransmits one packet per RTT until all lost packets are retransmitted.

Although TCP NewReno addresses the issue of multiple drops within a window of
data, it does not use all the information on dropped packets available at the receiver.
It takes a full round trip for a sender to learn about each lost packet. When multiple
segments are lost this inefficiency can reduce throughput substantially. This is of par-
ticular importance on high bandwidth-delay product paths as many of the proposed
TCP algorithms for such paths are more aggressive than standard TCP and frequently
generate multiple packet losses during normal operation. Improving performance with
multiple drops is addressed by the Selective Acknowledgment (SACK) mechanism
[15], combined with a selective repeat retransmission policy.

SACK is an extension to TCP intended to improve TCPs handling of the multiple
packet loss case. When the sender and receiver support SACK, the receiver transmits
TCP ACK packets that include a list of up to four ranges of packet sequence num-
bers. These ranges specify packets that have been successfully received, and the gaps
between these ranges can be used by the sending machine to infer which packets are
likely to have been lost and therefore should be retransmitted. This has the benefit
of allowing the source to intelligently retransmit packets and react more efficiently to
multiple dropped packets.

In more detail, the SACK data in a TCP ACK consists of the start and stop packet
sequence numbers of up to four non-overlapping blocks of packets. The SACK blocks
are not necessarily listed in sequence order as the first SACK block is required to
include the sequence number of the most recently received packet. The receiver is not
guaranteed to keep the packet that it SACKed in previous ACKs and it may do so if
facing a memory pressure. The sender can’t drop the packets that were SACKed since
it might need to retransmit them anyway if the receiver did drop the packets eventually.

Often the TCP packet includes the time-stamp option for sequence wrapping detection,
in which case the ACK packet has space for only three SACK blocks.

12

2.3 Additional TCP Details

In this section we briefly describe some additional features of TCP relevant to this
thesis. To start with we look at the TCP packet format which is shown in Figure 2.5.
The TCP packet comprises the following fields:

• Source Port and Destination Port. Identifies points at which upper-layer source
and destination applications receive TCP services.

• Sequence Number. Specifies the number assigned to the first byte of data in the
current message. In the TCP handshake phase, this field also can be used to
identify an initial sequence number to be used in an upcoming transmission.

• Acknowledgment Number. Contains the sequence number of the next byte of
data the source of the packet expects to receive.

• Length. Indicates the number of 32-bit words in the TCP header.

• Unused. Reserved for future use.

• Flags. Carries a variety of control information, including the SYN and ACK bits
used for connection establishment, and the FIN bit used for connection termina-
tion.

• Window Size. Specifies the size of the source’s receive window (that is, the
buffer space available at the destination for incoming data).

• Checksum. Used to determine whether the header was damaged in transit.

• Urgent Data Pointer. Points to the first urgent data byte in the packet.

• Options. Specifies various TCP options such as the MSS, the window scale value
and the time the packet was sent. Also used by SACK to inform the source of
non-contiguous blocks of data that have been received in order to allow retrans-
mission of only the lost segments.

• Payload. Contains upper-layer information

13

Source Port� Destination Port�

Sequence Number�

Acknowledgement Number�

Len� Unused� Flags� Window Size�

Ugent Data Pointer�Checksum�

Payload�

TCP Options�

32 Bits�

Figure 2.5: TCP Packet Format

TCP maintains an internal state machine to track the state of a TCP connection. This
information is stored in the TCB and is updated as the connection changes state such
as whether a connection is established or closed or in a variety of other states [6].
For example, TCP initiates a three part handshake to establish a connection with a
destination. This handshake is used to set up initial conditions for the connection and
works in the following way:

• The source sends a synchronisation packet (SYN) to the receiver so that its se-
quence numbers can be captured by the receiver and used to track incoming
packets. The source’s state is SYN SENT. The receiver’s state is SYN RECVD.

• The receiver sends a SYN ACK packet so that its sequence numbers can be
captured by the source and used to track incoming packets. From the receiver’s
perspective the connection is complete and its state is now ESTABLISHED.

• The source sends an ACK packet and the connection is completed. The source’s
state is now ESTABLISHED.

The TCB also contains per connection information such as the cwnd, wnd and the
RTT. TCP uses these variables to manage flow control in order to ensure a suitable

14

amount of data is transmitted onto the network and to reduce packet retransmission to
a minimum.

In addition to congestion control the areas addressed by TCP flow control includes
receiver overflow. If traffic is sent at too fast a rate for the receiver to process, its
buffers may overflow and packets will need to be retransmitted. The receiver buffer
size is first advertised during the initial TCP handshake and subsequently updated in
every ACK transmitted to the source.

To manage a flow, TCP uses a sliding window mechanism to control the sending of
packets as shown in Figure 2.6. The send window (swnd) slides over the data stream as
ACK’s are received or wnd changes and TCP thereby uses the send window to control
the amount of packets that can be in transit in the network.

Another characteristic of TCP worthy of note deals with the unnecessary transmission
of packets both from the source and the destination that affected early versions of TCP.
This phenomenon known as ’Silly Window Syndrome’ causes inefficient usage of the
network and impacts the source and destination as they have to process a large number
of small packets. On the receiver side two mechanisms are used to address this issue.
The first is used after advertising a zero window. The receiver waits to transmit an ACK
until a minimum of half of the receiver’s buffer becomes free or it has MSS bytes ready
to transmit (in this case the receiver is also a source). With the second mechanism the
receiver delays sending new advertised windows until two packets have been received
or for a certain time (normally 200ms). For further details see [4].

On the source side, the Nagle algorithm [16] dictates when to transmit a packet. If the
source has less than one MSS of data to send, a new packet will not be sent if there
is any outstanding unacknowledged data. If the data to be sent is greater than one
MSS, it is sent immediately. This algorithm deals with situations where applications
are sending data at either slow or fast rates. When an application is sending at a slow
rate data is ’clumped’ and transmitted when required. This situation typically happens
with interactive applications such as telnet. For applications with a requirement for
faster data rates, the data is transferred in full MSS segments. This typically occurs in
an application such as FTP where large data transfers are required. For more detail on
both these mechanisms see [6].

The features above affect TCP network congestion analysis. In particular, for fast data
rate applications, the receiver side changes cause one ACK to be sent for every two
packets sent. This means that the update rule for cwnd, (2.1) and (2.2), are only called

6This diagram is based on a paper on TCP performance by Geoff Huston [10]

15

Sent and�
Acknowledged Data�

Unsent data, cannot�
be sent until the�
window opens�

Send window size (swnd) is the minimum of the receiver window�
size (wnd) and the current congestion window size (cwnd)�

Sent data, buffered and awaiting�
acknowledgement�

Unsent data, can be sent�
immediately�

Received ACK�
advances the�
trailing edge of the�
window�

Receiver’s advertised�
window advances the�
leading edge of the�
window�

Sender advances this�
pointer as data is�
transmitted onto the�
network�

Figure 2.6: TCP sliding window6

at half the rate of the situation where the ACK’s are not delayed. Turning this feature
on or off for a TCP flow can have a large effect on its performance.

2.4 High speed protocols

A basic design property limits the scalability of the existing TCP congestion control
algorithm on bandwidths with a high Bandwidth Delay Product (BDP). Namely, the
linear rate of increase whereby the congestion window is increased by one packet per
round-trip time means that following backoff of the congestion window it can take
a substantial period of time before the window recovers. For example, this can take
about 20 minutes for a network with bandwidth of 500Mbps and 220ms RTT as can be
seen in Figure 2.7 on the following page. With the increasing prevalence of high speed
links, this issue is becoming of widespread concern. This is reflected, for example,
in the fact that the Linux operating system now employs an experimental algorithm
called BIC-TCP[26] while Microsoft are actively studying new algorithms such as
Compound-TCP[25].

A number of proposals have been made to modify the TCP congestion control algo-
rithm to improve performance in high bandwidth-delay product paths. All of these
are still experimental and pending evaluation as they change the congestion control
in new and significant ways and their effects on the network are not well understood.
Here we give a brief overview of several proposed modifications that have received
considerable attention over the last few years.

16

 0

 2000

 4000

 6000

 8000

 10000

 12000

 500 1000 1500 2000 2500 3000 3500 4000

cw
nd

 [p
kt

s]

Time [s]

Figure 2.7: cwnd history of a standard TCP flow on a network with 500Mbps band-
width and 220ms RTT

2.4.1 Scalable-TCP [13]

The basic idea in Scalable-TCP is to make the recovery time after a congestion event
independent of window size. Specifically, Scalable-TCP proposes that the TCP cwnd

be updated as follows

Ack: cwnd ← cwnd + α

Loss: cwnd ← β × cwnd

Suggested values for the parameters α and β are 0.01 and 0.875, respectively. A mode
switch is used whereby the standard TCP cwnd update rules are used when cwnd is
less than a threshold, Low Window, and the Scalable-TCP update rules are used for
larger cwnd values.

17

2.4.2 HS-TCP [8]

HS-TCP uses the current TCP cwnd value as an indication of the bandwidth-delay
product on a path. The AIMD increase and decrease parameters are then varied as
functions of cwnd:

Ack: cwnd ← cwnd +
fα(cwnd)

cwnd
Loss: cwnd ← gβ(cwnd) × cwnd

In [8] logarithmic functions are proposed for fα(cwnd) and gβ(cwnd), whereby fα(cwnd)

increases with cwnd and gβ(cwnd) decreases. Similarly to Scalable-TCP, HS-TCP
uses a mode switch so that the standard TCP update rules are used when cwnd is
below a specified threshold.

2.4.3 H-TCP [14]

HTCP uses the elapsed time ∆ since the last congestion event, rather than cwnd, to
indicate path bandwidth-delay product and the AIMD increase parameter is varied as a
function of ∆. The AIMD increase parameter is also scaled with path round-trip time
to mitigate unfairness between competing flows with different round-trip times. The
AIMD decrease factor is adjusted to improve link utilisation based on an estimate of
the queue provisioning on a path. In more detail,

Ack: cwnd ← cwnd +
2(1 − β)fα(∆)

cwnd
Loss: cwnd ← gβ(B) × cwnd

with

fα(∆) =

1 ∆ ≤ ∆L

max(f̄α(∆)Tmin, 1) ∆ > ∆L

gβ(B) =

0.5 |B(k+1)−B(k)

B(k) | > ∆B

min(Tmin
Tmax

, 0.8) otherwise

where ∆L is a specified threshold such that the standard TCP update algorithm is
used while ∆ ≤ ∆L. A quadratic increase function f̄α is suggested in [14], namely
f̄α(∆) = 1 + 10(∆ − ∆L) + 0.25(∆ − ∆L)2. Tmin and Tmax are measurements of

18

the minimum and maximum round-trip time experienced by a flow. B(k + 1) is a
measurement of the maximum achieved throughput during the last congestion epoch.

2.4.4 BIC-TCP [26]

BIC-TCP employs a form of binary search algorithm to update cwnd. Briefly, a vari-
able w1 is maintained that holds a value halfway between the values of cwnd just
before and just after the last loss event. The cwnd update rule seeks to rapidly in-
crease cwnd when it is beyond a specified distance Smax from w1, and update cwnd

more slowly when its value is close to w1. Multiplicative backoff of cwnd is used on
detecting packet loss, with a suggested backoff factor β of 0.8. In more detail,

Ack:

δ = (w1 − cwnd)/B

cwnd ← cwnd + fα(δ,cwnd)
cwnd

Loss:

w1 =

1+β
2 × cwnd cwnd < w1

cwnd otherwise

w2 = cwnd

cwnd ← β × cwnd

with

fα(δ, cwnd) =

B
σ (δ ≤ 1, cwnd < w1)

or (w1 ≤ cwnd < w1 + B)

δ 1 < δ ≤ Smax, cwnd < w1

w1
B−1 B ≤ cwnd − w1 < Smax(B − 1)

Smax otherwise

BIC-TCP also implements an algorithm whereby upon low utilisation detection, it
increases its window more aggressively. This is controlled with the Low Util and
Util Check parameters. In order to maintain backwards compatibility, it uses the
standard TCP update parameters when cwnd is below threshold Low Window.

19

2.4.5 FAST-TCP [12]

FAST-TCP is a delay based algorithm. In outline,

Each RTT: cwnd ← [cwnd +
Tmin

T̄
cwnd + fα(B)]/2

Loss: cwnd ← 0.5 × cwnd

where Tmin and T̄ are the minimum and average observed latencies of the flow re-
spectively. The function fα(B) depends upon the measured throughput B achieved
by the flow: currently, fα(B) is set to 8, 20 and 200 for achieved throughputs of less
than 10Mbit/sec, less than 100Mbit/sec and greater than 1Gbit/sec respectively. (These
thresholds are specified by the sysctl entries (m0a, m0u, m1l), (m1a, m1l, m1u) and
(m2a, m1l, m2u) respectively). FAST-TCP also includes rate pacing. Note that rate-
pacing is a functional change and is thus viewed here as being part of the congestion
control algorithm (unlike network stack issues such as efficient SACK processing im-
plementation which fundamentally involve no functional change, only a change in
computational burden).

2.5 Summary

In this chapter we provided an overview of TCP congestion control. We noted that
there are many variants of TCP. The main variants of TCP in use today are flavours of
TCP Reno and TCP Sack. The main difference between these TCP variants lies in the
manner in which they deal with lost packet recovery. For this thesis we concentrated
on New Reno and Sack. We also discussed some general features of TCP such as the
TCP packet format, the TCP state machine, TCP receiver overflow, the TCP sliding
window and the ’Silly Window Syndrome’ that are relevant to congestion control.
Recently proposed changes to improve performance on high bandwidth-delay product
paths are reviewed.

20

Chapter 3

Network Stack

3.1 Introduction

In this paper we focus on the Linux 2.4/2.6 network stack implementation as it is
widely used in TCP research for high-speed networks. Specifically, measurements
were taken using commodity high-end servers, see Table 3.1 on page 24 for details, and
a Linux 2.6.6 kernel modified to include instrumentation of network stack operation
and timing. Many of the issues discussed are, however, also relevant to other operat-
ing system network stacks. The efficiency of the TCP implementation for high-speed
networks has received considerable attention with, for example, widespread support
within gigabit-speed (and above) network interface cards for hardware offload to re-
duce the processing burden within the operating system kernel. However, the bulk of
this work has focused on fast path optimisation. While fast path performance is key in
situations where packet loss is rare (e.g. server farms), we demonstrate that slow path
performance is now the bottleneck in wide-area transfers where the probing action of
the AIMD strategy in TCP’s congestion control action means that packet loss is an
intrinsic feature of normal operation.

We offer a look into the performance issues and offer possible fixes to enable a com-
modity machine to handle a 1Gbps link with maximum utilisation.

21

3.2 Slow-path processing

The terms slow-path and fast-path describe two paths in the Linux kernel code to han-
dle received segments. The slow-path is the basic code path which is used to handle
all possible cases and is thus encumbered with many conditionals that may reduce per-
formance. The fast-path is a subset of the slow-path that, after verifying some basic
conditions, then assumes that it can skip treatment for special cases such as lost or
out-of-order packets, thereby reducing the number of conditionals and the amount of
code needed to run in that path and reducing the time it takes to process a “normal”
packet.

On the sending side, the slow path is executed for TCP ACK packets received follow-
ing a packet loss. In particular, the slow path is executed for all ACK packets contain-
ing SACK information. SACK processing is memory and computationally expensive
due to the need to walk the list of packets in flight in order to mark the appropriate
packets as SACKed, and additional walks to retransmit segments as needed. This pro-
cessing has received little attention for performance, most of the effort so far being
directed at the fast-path.

In Linux 2.6.6 processing of a TCP ACK packet containing SACK information re-
quires the following main operations:

• SACK marking (tcp sacktag write queue) walks the list from the start
for each SACK block in the TCP ACK and marks the appropriate packets as
SACKed. We have found that in the normal loss case there are frequently sev-
eral runs of lost packets and thus three SACK blocks to process. Hence, the
scoreboard code will routinely walk the segment list three times for each TCP
ACK packet.

• Marking head lost packets (tcp mark head lost) will mark as lost packets
that are not SACKed. To do this it walks the list of packets from the start and
marks packets in sack holes as lost.

• Cleaning the receive queue (tcp clean rtx queue) walks the list again to
remove any and all packets that were acknowledged for each ACK packet.

• Retransmit (tcp xmit retransmit queue) walks the whole list of packets
in flight for each ACK packet received in recovery mode and tries to resend
packets marked as lost and not yet retransmitted. This code then also walks the

22

list a second time from the start in order to find packets for forward transmits
(i.e. transmission of new packets rather than retransmission of previously sent
packets) during the recovery stage.

The result of these SACK processing actions can be a walk of up to five times of the
scoreboard which is a simple linked list of all packets in flight. When the number of
packets in flight is large, as it is in high bandwidth-delay product paths, walking such
a list five times places a significant burden not only on CPU resources but also on
memory resources as the scoreboard is too large for the CPU cache leading to memory
stalls waiting for data.

3.3 Test Setup

In order to study TCP operation, an experimental testbed has been developed. The
testbed implements a simple dumbbell topology as shown in Figure 3.1. We recognise
that this topology is a limited one, but it does provide a good test-bed for raw perfor-
mance testing. The machines and software setup is described in Table 3.1 on the next
page.

Dummy
Net

DestSource

Figure 3.1: Network Topology

A FreeBSD DummyNet router was used to emulate paths with propagation delays of
220ms and bandwidths ranging from 10Mb/s-950Mb/s. The value of 220ms should be
representative of trans-continental links and provides for a good test-case, e.g. Ireland-
California. The router was configured to have a 20% capacity of the link BDP.

Test durations are chosen long enough to provide consistent measurements of average
throughput. We have found that 10 minutes are sufficient to get repeatable results with
H-TCP. We have chosen H-TCP as an example high-speed protocol but many of our
results apply equally to other algorithms.

To achieve the information needed to understand the dynamics of the software we used
OProfile[1] for kernel profiling and a specialised tracing system to log information
from within the kernel.

23

Description
CPU Intel Xeon CPU 3GHz

Memory 512 Mbytes
Motherboard Dell PowerEdge 1850

FreeBSD DummyNet 4.10
Linux Kernel Linux 2.6.6

txqueuelen 1,000
max backlog 300

NIC Intel 82540EM Gigabit Ethernet
NIC Driver e1000 version 5.2.39-k2

TX & RX Descriptors 4096
Congestion Control Algorithm H-TCP

Table 3.1: Hardware and Software Configuration.

OProfile is a statistical profiler that uses CPU features to detect various events, the
events of interest to us being power and cache misses. The power event is emitted
when the CPU is running an instruction, while the cache miss event is emitted for
any miss to the L1 CPU cache. Both events give an impression of where the CPU
is spending its time and where algorithms might need improvement with regard to
their memory access patterns. Each of these events is logged once every configurable
number of emits, thus giving a statistical profiling of the code and for a long enough
test case this highlights the hot-spots in the code. The data collected includes the EIP
processor register which points to the instruction that was executed at the event firing
time. At the end of a test OProfile analyses the data collected and provides a report
showing the number of events flagged for each function and a breakdown of the events
per source line.

In addition to OProfile we used a simple logging system based on RelayFS[27] to
transfer fine-grained monitoring data from the kernel to user space for later analysis.
The data was logged in binary format and converted into usable text logs after the test
finished in order to have the minimal impact on the test. The data logged from the
kernel included

• TCP internal variables for the test flows. This includes the congestion window
cwnd, snd una and changes in TCP state (e.g. between Congestion Avoidance
and Fast Recovery).

• Network stack variables. In particular, the receive queue size.

24

• SACK processing timing information. High precision time stamp information
for entry and exit to the SACK code elements allowed fine-grained measure-
ment of processing time of functions such as tcp sacktag write queue.
We also logged accounting information on the number of SACKs walked in the
scoreboard marking code and on the SACK options received in order to be able
to make better informed decisions on caching.

The method used to add the logging code was to have a Python script running in the
build process to modify the source file to include the logging required for the test so
we could have different kernels with different logs as needed.

3.4 Baseline

Our results are all for the Linux Kernel 2.6.6. They can be ported forward but we
needed a stable environment to work on in order to offer comparable results.

The baseline kernel is already a modified kernel, we have applied the following patches
to it:

Increase rate-halving limit. The cwnd limit used for rate halving during a loss event
was increased from one half of ssthresh to ssthresh. This was to enable easy compari-
son of TCP graphs and is not deemed to affect the overall performance.

Disable Throttle action. The host receive queue is where incoming packets are buffered
before processing. In Linux the receive queue includes a throttle action whereby once
the queue fills all subsequent packets are dropped until the queue empties. This throttle
action is a DoS protection but has serious adverse effects on performance and caused
a great disruption to the TCP ACK clock. In all of our tests throttle action is therefore
disabled so that the receive queue operates a pure FIFO discipline. We note that this
change has now become standard in later Linux distributions.

Initial performance results for Linux 2.6.6 on a 950Mbps 220ms rtt link show that after
about 100Mbps the sender side fails to fill the link, see Figure 3.3 on the following
page. We see that up to the 100Mbps mark the actual rate of the transfer is very close
to the line rate, but after that the transfer rate is unable to keep up with the line rate.

Figure 3.4 on page 28 shows the broken behaviour in more detail. Figure 3.4(a) on
page 28 shows the cwnd time history from which it can be seen that the cwnd stays at
very small value for extended periods (many 10s of seconds) following a loss event.

25

Device

IP

TCP

Queue

Figure 3.2: Processing stages of an incoming packet and location of the receive queue

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800

Ra
te

 (M
bp

s)

Line rate

Before
After

Figure 3.3: Overall performance in Mbit/s for a specified line rate. Before the changes
and after.

During these periods, the packet sequence number is not advanced and the transfer is
stalled. In Figure 3.4(b) on page 28 we zoom-in into the fifth loss-event of Figure 3.4(a)
on page 28. This plot shows us the total time to process an ACK packet within the
kernel (measured as the time spent in the tcp ack function), the time to walk the
list for marking the SACK scoreboard and the time spent in the retransmit function.
We also see the number of packets traversed in the send buffer during our scoreboard
handling and we see that it has a strong correlation to the total time spent processing
ACKs.

It can be seen from figure 3.4(b) on page 28 that the number of packets walked in
the SACK scoreboard marking reaches 60,000 and at that the time to process a single
ACK reaches about 333 µs whereas the time between arrival of TCP ACK packets is
only about 13 µs. This results in the host receive queue (where incoming packets are

26

buffered before processing, see figure 3.2 on the preceding page) overflowing very
quickly since the kernel is unable to process the received ACKs fast enough. This
results in the loss of many ACKs, losing us SACK information, damaging the TCP
ACK clock and stalling the transfer.

Algorithm 3.4.1 Scoreboard marking (original)
for i = 0 to nsacks do
for j = 0 to npkts do
if end(pktj) >= end(sacki) then

break //End of SACK block, go to next SACK block
end if
if end(pktj) < snd una then

continue //Old SACK information, skip
end if
if pktj is in sacki then

continue //Packet not in SACK block, skip
end if
if pktj is not SACKed then

Mark as SACKed
end if

end for
end for

3.5 Proposed fixes

In this section we discuss the modifications we have developed to improve SACK
process performance. Before proceeding, however, as a reference point we provide
pseudo-code description of the algorithms in the base kernel in Algorithm 3.4.1 and
Algorithm 3.4.2. These are simplifications of the actual code which omit details of the
exact representation of the data structures but they are complete enough for present
purposes.

We consider the following proposed fixes.

3.5.1 Walk SACKed Holes List

In the scoreboard marking process we require to mark packets as SACKed or lost
based on the SACK information contained in the TCP ACK packet. We can safely

27

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700
 0

 5000

 10000

 15000

 20000

 25000

Se
gm

en
ts

(c
w

nd
, s

sth
re

sh
)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
Receive Queue

(a) CWND trace

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

m
ic

ro
se

co
nd

s

Pa
ck

et
s

microseconds

Total time to process ACK
Time to handle scoreboard
Time to decide retransmits

Sacks Walked in scoreboard

(b) Trace of loss event 5

Figure 3.4: Baseline Kernel at 950Mbps, 220ms rtt and 20% queue size

28

Algorithm 3.4.2 Retransmit (original)
count ← lost pkts
if count > 0 then
for i = 0 to n do
if pkts in flight > snd cwnd then

return
end if
if pkti is marked lost and was not retransmitted then

retransmit pkti

count ← count − 1
if count == 0 then

break
end if

end if
end for

end if
if can’t send more then

return
end if
for i = 0 to n do
if cannot send forward retransmits then

break
end if
if pkts in flight > snd cwnd then

break
end if
if pkti was SACKed, marked lost or already retransmitted then

continue
end if
retransmit pkti

end for

29

ignore packets that are already SACKed since marking them again will not have any
effect. Since we expect that the number of packets lost is small relative to the number
of packets received we can make use of a linked-list containing only the packets not
yet SACKed. A walk of this list will then scale with the number of packets lost rather
than the number of packets in flight, which should yield a significant performance
improvement in high bandwidth-delay paths where we may have many thousands of
packets in flight.

The solution that we employ is insert a new pointer field into the data structure for a
packet. We then use this to create a new linked list which is a subset of the full packets
in flight list. The new list can be kept up to date by removing packets from it as they
are SACKed, so that we maintain a linked-list only of packets that are not SACKed.
By using this new list for SACK scoreboard marking, our walks can completely ignore
all of the SACKed packets.

In addition to this major change, rather than walking the scoreboard list for every
SACK block since we know that SACK blocks are non-overlapping we can sort the
SACK blocks into order and then walk the list a single time. This immediately yields
roughly a factor of three speedup.

The pseudo-code of the resulting modified algorithm is shown in Algorithm 3.5.1.

The impact of this change on the processing time for ACK packets is shown in Fig-
ure 3.5(a) on page 32, and detail from a trace of a single loss event is also shown in
Figure 3.5(b) on page 32.

3.5.2 Retransmit hints

We can see in Figure 3.5(b) on page 32 that the retransmit process is now the bottleneck
with processing times between 100 µs to 1,000 µs. The retransmit process starts from
the beginning of the packets in flight list and tries to find a packet that wasn’t SACKed
and wasn’t retransmitted already in order to retransmit it. As we advance in time it
takes longer and longer to find a packet that qualifies since all the ones at the start were
either SACKed or retransmitted already (those that were retransmitted already will not
be eligible for further retransmission for at least another RTT to allow feedback on the
success or otherwise of the first retransmission to return).

The solution that we employed is to cache a pointer to the packet that was last retrans-
mitted. This provides a hint to the retransmit algorithm as to where it can start the

30

Algorithm 3.5.1 Scoreboard marking (SACK holes)
Sort SACK blocks sack0 to sackn

sackhole ← head of sackhole list
if sackhole == NULL then

sackhole − head ← pkt − head
sackhole ← sackhole − head

end if
pkt ← sackhole
for i = 0 to nsacks do
while not end of scoreboard do
if sackhole == NULL then
while pkt is SACKed do

pkt ← next(pkt)
end while
sackhole ← pkt

end if
pkt ← sackhole
if end(sackhole) >= end(sacki) then

break //End of SACK block, go to next SACK block
end if
if end(sackhole) < snd una then

sackhole ← next(sackhole)
continue //Old SACK information, skip

end if
if sackhole is in sacki then

Mark as SACKed
else //sackhole not in sacki

Mark sackhole as lost //Used to be in a different code section
end if
sackhole ← next(sackhole)

end while
end for

31

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700
 0

 5000

 10000

 15000

 20000

 25000

Se
gm

en
ts

(c
w

nd
, s

sth
re

sh
)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
Receive Queue

(a) CWND trace

 0.1

 1

 10

 100

 1000

 10000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
 0

 100

 200

 300

 400

 500

 600

m
ic

ro
se

co
nd

s

Pa
ck

et
s

microseconds

Total time to process ACK
Time to handle scoreboard
Time to decide retransmits

Sacks Walked in scoreboard

(b) Trace of loss event 5

Figure 3.5: TCP performance with SACK hole list modification at 950Mbps, 220ms
rtt and 20% queue size

32

search from next time. That is, when we walk the scoreboard we update the hint and
use it in the next call to the function as the starting point when searching for packets
to retransmit. The hint is reset when entering a loss event or when the scoreboard
management modifies the status of a retransmitted packet. The pseudo-code of the
modified algorithm is shown in Algorithm 3.5.2.

Algorithm 3.5.2 Retransmit (Retransmit Hints)
count ← lost pkts
if count > 0 then
for i = retrans hint to n do
if pkts in flight > snd cwnd then

return
end if
if pkti is marked lost and was not retransmitted then

retransmit pkti

retrans hint ← i
count ← count − 1
if count == 0 then

break
end if

end if
end for

end if
if can’t send more then

return
end if
for i = i to n do
if cannot send forward retransmits then

break
end if
if pkts in flight > snd cwnd then

break
end if
if pkti was SACKed, marked lost or already retransmitted then

continue
end if
retransmit pkti

end for

The improvement in performance can be seen in Figure 3.6(a) on the following page
and Figure 3.6(b) on the next page.

33

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700
 0

 5000

 10000

 15000

 20000

 25000

Se
gm

en
ts

(c
w

nd
, s

sth
re

sh
)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
Receive Queue

(a) CWND trace

 0.1

 1

 10

 100

 1000

 10000

 0 100000 200000 300000 400000 500000 600000 700000
 0

 50

 100

 150

 200

 250

 300

 350

m
ic

ro
se

co
nd

s

Pa
ck

et
s

microseconds

Total time to process ACK
Time to handle scoreboard
Time to decide retransmits

Sacks Walked in scoreboard

(b) Trace of loss event 9

Figure 3.6: TCP performance with SACK Holes and Retransmit Hints modifications
at 950Mbps, 220ms rtt and 20% queue size

34

3.5.3 SACK hints

In Figure 3.6(b) on the preceding page we can see that there is still a substantial pro-
cessing burden as the number of SACKs walked is in the order of a thousands. This
is due to a large number of losses: while the code walks only the unSACKed packets,
there are many of these.

By looking at the packet traces we found that the SACK blocks in ACK packet i and
the SACK blocks in ACK packet i + 1 are frequently the same apart from an advance
of the left edge of the first SACK block. In this case we can improve efficiency by
simply starting the walk for ACK packet i + 1 from the same location in the list where
we finished for ACK packet i. We make sure that we only use the hint from the last
packet when this assumption is correct. If the SACK blocks are not a simple case of
increasing the first SACK block we ignore the hint and do the full walk of the SACK
holes list. The pseudo-code of the modified algorithm is shown in Algorithm 3.5.3.

The performance with this change is shown in Figure 3.7(a) on page 37 and Fig-
ure 3.7(b) on page 37. Comparing Figure 3.6(b) on the previous page to Figure 3.7(b)
on page 37, it can easily be seen that there is a sharp drop in the number of SACKs
walked. The resulting improvement in ACK processing time now ensures that there is
no build up of backlogged ACK packets in receive queue, as can be seen if we compare
the queue size in Figure 3.6(a) on the previous page and Figure 3.7(a) on page 37. We
still see spikes in the number of SACKs walked, but these are only intermittent and the
receive queue build-up is not large enough to result in queue overflow.

Note that in Figure 3.7(a) on page 37 we can see sharp drops in cwnd down to a
few hundreds of packets, followed by a rapid rise back up to the slow-start threshold.
The reason for such drops is not completely known but we suspect it has to do with
the cwnd being capped to the number of packets in flight which decreases during the
recovery stage.

3.6 Conclusions

The overall impact of these changes on throughput can be seen in Figure 3.3 on
page 26. Evidently, the sender is now able to completely fill the link up to speeds
of 1Gb/s and delay of 220ms. This corresponds to a bandwidth-delay product of ap-
proximately 20,000 packets. Further work is needed to test performance at higher
rates.

35

Algorithm 3.5.3 Scoreboard marking (SACK holes and SACK hints)
Sort SACK blocks sack0 to sackn

if sack hint is set then
sackhole ← sack hint

else
sackhole ← head of sackhole list
if sackhole == NULL then

sackhole − head ← pkt − head
sackhole ← sackhole − head

end if
end if
prev ← sackhole
for i = 0 to nsacks do
while not end of scoreboard do
if sackhole == NULL then
while prev is SACKed do

prev ← next(prev)
end while
sackhole ← prev

end if
if end(sackhole) >= end(sacki) then

break //End of SACK block, go to next SACK block
end if
if end(sackhole) < snd una then

prev ← sackhole
sackhole ← next(sackhole)
continue //Old SACK information, skip

end if
if sackhole is in sacki then

Mark as SACKed
else //sackhole not in sacki

Mark sackhole as lost //Used to be in a different code section
end if
sack hint ← prev
sackhole ← next(sackhole)

end while
end for

36

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600
 0

 5000

 10000

 15000

 20000

 25000

Se
gm

en
ts

(c
w

nd
, s

sth
re

sh
)

By
te

s (
se

qu
en

ce
)

time (seconds)

snd_cwnd
Receive Queue

(a) CWND trace

 0.1

 1

 10

 100

 1000

 10000

 0 100000 200000 300000 400000 500000 600000 700000
 0

 50

 100

 150

 200

 250

 300

 350

m
ic

ro
se

co
nd

s

Pa
ck

et
s

microseconds

Total time to process ACK
Time to handle scoreboard
Time to decide retransmits

Sacks Walked in scoreboard

(b) Trace of loss event 9

Figure 3.7: With SACK Holes, Retransmit Hints and SACK Hints at 950Mbps, 220ms
rtt and 20% queue size

37

Chapter 4

The cost of aggressive window growth

4.1 Introduction

In recent years, several new TCP congestion control algorithms have been proposed
for deployment in long-distance and high-speed networks. As we have already dis-
cussed in earlier chapters, a primary objective in developing these algorithms has been
to achieve improved scaling of performance with increasing bandwidth. In particular,
a basic problem with standard TCP, when deployed on high bandwidth-delay prod-
uct links, is that the time taken by a flow to recover after a back-off event can be
prohibitively long, thereby leading to long data transfer times. Many authors have
therefore focused on developing AIMD-like algorithms whose probing behaviour be-
comes more aggressive as bandwidth increases: BIC-TCP[26], Scalable-TCP[13], HS-
TCP[7], and H-TCP[14] all fall into this category.

Unfortunately, adjusting the manner in which individual flows probe for available
bandwidth serves not only to keep the time between consecutive congestion events
short, but it also changes the way in which flows compete for available bandwidth. In
fact, the basic properties of such networks may be very different to networks of stan-
dard TCP flows, and while some aspects of their behaviour have been explored, many
fundamental questions pertaining to their behaviour remain unanswered. The purpose
of this chapter is to address, in part, this basic observation. In particular, our objec-
tive is to explore the ‘cost of missing drops’ for high speed protocols. Two important
questions arise in this context.

(i) The first of these is related to the long-term behaviour of networks in which

38

different flows have differing synchronisation rates. By synchronisation rate λ

we mean the proportion of network congestion events at which a flow experi-
ences packet loss (thus the synchronisation rate is 1 when a flow sees a drop at
every network congestion event). It is known[20] that networks of TCP flows
are well behaved with respect to changes in synchronisation rate; namely, long-
term relative bandwidth allocation amongst competing flows scales linearly with
synchronisation rate. For high-speed protocols, however, the manner in which
individual flow synchronisation rates impact network behaviour is currently not
clear. If the allocation of bandwidth amongst competing flows is very sensitive
to synchronisation rate, then one concern is that this may lead to gross unfair-
ness in the throughputs achieved by flows experiencing different synchronisation
rates.

(ii) The second important issue is concerned with the short-term variations in rate
that arise when networks are unsynchronised. For very aggressive protocols,
missing a congestion event may result in an individual flow temporarily seizing
a large proportion of the network bandwidth. As a result, while flow throughputs
might average out to be fair over long time-scales, they may be very unfair over
short time-scales.

In this chapter we investigate the above topics. We begin with a basic review of TCP
and discuss some of the more desirable properties of standard TCP. Using the H-TCP
high-speed proposal as an exemplar, we then present detailed experimental results that
characterise the long and short term behaviour as a function of synchronisation rate.
While our results are obtained for H-TCP, they identify artifacts of generic high-speed
protocols that may in fact render then unsuitable in networks with drop-tail routers.

4.2 Properties of standard TCP flows

While the TCP congestion control algorithm contains a number of modes of opera-
tion, including slow-start, congestion avoidance and timeout, long-lived flows on high
bandwidth-delay paths usually spend the bulk of their time in congestion avoidance
mode and we therefore focus on modelling the behaviour of this mode. During con-
gestion avoidance, the standard TCP congestion control algorithm updates the conges-
tion window cwnd according to an Additive Increase Multiplicative Decrease (AIMD)
control law. In the congestion avoidance phase, when a source i receives a TCP ACK,

39

it increments cwnd according to cwnd → cwnd + α/cwnd where α = 1 for the stan-
dard TCP algorithm. When packet loss is detected, cwnd is reduced by a back-off
factor β: thus cwnd → βcwnd, where β = 0.5 for standard TCP.

The properties of networks that employ standard TCP are well known and have been
reviewed in a number of publications. For convenience we review a recently developed
mathematical model of TCP that exposes some of the pertinent features of networks
of long-lived TCP flows.

4.2.1 A model of a network of TCP flows

Consider communication networks for which the following assumptions are valid: (i)
at congestion every source experiences a packet drop; and (ii) each source has the same
round-trip-time (RTT)1. In this case an exact model of the network dynamics may be
found as follows [22].

Time (RTT)�

w i

w i (k)

w i (k+1)

k'th congestion epoch�

k'th congestion�
event�

t�a�(k)� t�c�(k)�t�b�(k)�

Figure 4.1: Evolution of window size

Let wi(k) denote the congestion window size of source i immediately before the k’th
network congestion event is detected by the source. Over the k’th congestion epoch
three important events can be discerned: ta(k), tb(k) and tc(k); as depicted in Fig-
ure 4.1. The time ta(k) denotes the instant at which the number of unacknowledged
packets in flight equals βiwi(k) where βi is the multiplicative factor of the i’th flow
(αi is the additive increase factor of this flow); tb(k) is the time at which the bottleneck
queue is full; and tc(k) is the time at which packet drop is detected by the sources,
where time is measured in units of RTT2. It follows from the definition of the AIMD

1One RTT is the time between sending a packet and receiving the corresponding acknowledgement
when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rate of increase for each of the conges-
tion window variables between congestion events.

40

algorithm that the window evolution is completely defined over all time instants by
knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k) of each congestion
epoch. We therefore only need to investigate the behaviour of these quantities.

We assume that each source is informed of congestion one RTT after the queue at the
bottleneck link becomes full; that is tc(k) − tb(k) = 1. Also when the sources detect
congestion, the total window size has reached the capacity P of the pipe and each
sources has increased its window size one more time before packet loss is detected.
That is,

wi(k) ≥ 0, and
n∑

i=1

wi(k) = P +
n∑

i=1

αi, ∀k > 0, (4.1)

where P is the maximum number of packets which can be in transit in the network at
any time; P is usually equal to qmax + BTd where qmax is the maximum queue length
of the congested link, B is the service rate of the congested link in packets per second
and Td is the round-trip time when the queue is empty. At the (k + 1)th congestion
event

wi(k + 1) = βiwi(k) + αi[tc(k) − ta(k)]. (4.2)

and summing over all sources yields,

tc(k) − ta(k) =
1∑n

i=1 αi
[P −

n∑

i=1

βiwi(k)] + 1. (4.3)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi∑n

j=1 αj
[

n∑

j=1

(1 − βj)wj(k)] (4.4)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (4.5)

where W T (k) = [w1(k), · · · , wn(k)], and

41

A =

β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn

+

1∑n
j=1 αj

α1

α2

· · ·
αn

[
1 − β1 1 − β2 · · · 1 − βn

]
.(4.6)

The matrix A is a positive matrix (all the entries are positive real numbers) and it fol-
lows that the synchronised network (4.5) is a positive linear system [2]. Many results
are known for positive matrices and we exploit some of these to characterise the prop-
erties of synchronised communication networks. In particular, from the viewpoint of
designing communication networks the following properties are important: (i) network
fairness; (ii) network convergence and responsiveness; and (iii) network throughput. It
is shown in [21, 3] that these properties can be deduced from the network matrix A. In
particular:

Theorem 4.2.1 [22, 3] Let A be defined as in Equation (4.6). Then A is a column
stochastic matrix with Perron eigenvector xT

p = [α1
1−β1

, . . . , αn
1−βn

] and whose eigen-
values are real and positive. Further, the network converges to a unique stationary
point Wss = Θxp, where Θ is a positive constant such that the constraint (4.1) is sat-
isfied; limk→∞ W (k) = Wss; and the rate of convergence of the network to Wss is
bounded by the second largest eigenvalue of A.

The preceding discussion illustrates the relationship between important network prop-
erties and the eigensystem of a positive matrix. Unfortunately, the assumptions under
which these results are derived, namely of source synchronisation and uniform RTT,
are in general, restrictive. It is therefore of great interest to extend our approach to more
general network conditions. To this end, and to distinguish variables in the following
discussion, we denote the nominal parameters of the sources used in the previous sec-
tion by αs

i , β
s
i , i = 1, . . . , n. In this case it is readily shown that networks of flows

employing AIMD algorithms may be modelled as:

W (k + 1) = A(k)W (k), A(k) ∈ {A1, . . . , Am}. (4.7)

where

42

A(k) =

β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0

0 0 · · · βn(k)

+ 1Pn

j=1 γjαj

α1

α2

· · ·
αn

[γ1(1−β1(k)), . . . , γn(1−

βn(k))]

and where βi(k) is either 1 or βs
i . The non-negative matrices A2, .., Am are constructed

by taking the matrix A1,

A1 =

βs
1 0 · · · 0

0 βs
2 0 0

... 0
. . . 0

0 0 · · · βs
n

+ 1Pn

j=1 γjαj

α1

α2

· · ·
αn

[
γ1(1 − βs

1), . . . , γn(1 − βs
n)

]

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices
associated with the system (4.7) that correspond to the different combinations of source
drops that are possible. We denote the set of these matrices by A.

It follows from (4.7) that W (k) = Π(k)W (0), where Π(k) = A(k)A(k − 1) . . .A(0).
Consequently, the behaviour of W (k), as well as the network fairness and conver-
gence properties, are governed by the properties of the infinite matrix product Π(k).
While such matrix products are in general very hard, it is fortunate in our case that two
assumptions that considerable simplify the analysis of this particular matrix product
appear to be valid in a wide variety of network types.

Assumption 4.2.1 The probability that A(k) = Ai in (4.7) is independent of k and
equals ρi.

In other words Assumption 4.2.1 says that the probability that the network dynamics
are described by W (k + 1) = A(k)W (k), A(k) = Ai over the k’th congestion epoch
is ρi and that the random variables A(k), k ∈ N are independent and identically dis-
tributed (i.i.d.). The reader is referred to [23] for a more detailed discussion of this
assumption. In summary, however, it has been found empirically to be accurate under
a wide range of network conditions.

Given the probabilities ρi for i ∈ {1, . . . , 2n − 1}, one may then define the probability
λj that source j experiences a back-off at the k’th congestion event as follows:

λj =
∑

ρi ,

43

where the summation is taken over those i which correspond to a matrix in which the
j’th source sees a drop. Or to put it another way, the summation is over those indices
i for which the matrix Ai is defined with a value of βj)= 1.

Assumption 4.2.2 We assume that λj > 0 for all j ∈ {1, . . . , n}.

This assumption corresponds simply to the requirement that every flow eventually sees
a backoff provided we wait for a long enough time.

Under the foregoing assumptions we have the following key result.

Theorem 4.2.2 [23] Consider the stochastic system defined in the above preamble.
Let Π(k) be the random matrix product arising from the evolution of the first k steps
of this system:

Π(k) = A(k)A(k − 1) . . . A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (
m∑

i=1

ρiAi)
k; (4.8)

and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (4.9)

where the vector xp is given by xT
p = Θ(α1

λ1(1−β1)
, α2

λ2(1−β2) , . . . ,
αn

λn(1−βn)), y
T
p = (γ1, . . . , γn).

Here Θ ∈ R is chosen such that equation chosen such that the sum of the rates of
the flows at congestion equals the link rate is satisfied if w i is replaced by xpi =

Θαi/(λi(1 − βi)).

Corollary 4.2.1 For given W (0) define random variable W (k) with:

W (k) :=
1

k + 1

k∑

i=0

W (i).

Then expectation of W (k) is given by:

E(W (k)) =
1

k + 1
(I + E(A(1)) + E(A(1))2 + · · · + E(A(1))k)W (0)

44

And since E(A(1))k → xpyT as k → ∞,

lim
k→∞

E(W (k)) = xpy
TW (0)

Comment 4.2.1 Theorem 4.2.2 characterises the ensemble average behaviour of the
congestion variable vector W (k). This gives a measure of the short-term behaviour of
the network. The corollary gives a measure of the long-term behaviour of the network.
Together, they represent an Ergodicity result for the network.

The following facts follow immediately from Theorem 4.2.2.

(i) Convergence: The congestion window vector W (k) converges, on average, to the
unique value W̄ss = Θxp where Θ is a positive constant such that the aggregate
throughput equals the link capacity. When the λi, i = 1, . . . , n are equal, xp is iden-
tical to the Perron eigenvector obtained in the case of synchronised networks; that is,
the ensemble average in the unsynchronised case is identical to the fixed point in the
deterministic situation where packet drops are synchronised.

(ii) Fairness: Window fairness is achieved, on average, when the vector xp is a scalar
multiple of the vector [1, . . . , 1]; that is, when the ratio αi

λi(1−βi)
does not depend on

i. Observe that unlike in the synchronised case, fairness now depends upon on the
relative drop probability of each flow. When the flows have equal synchronisation rate
λi then the foregoing fairness condition is identical to that in the synchronised case.

(iii) Network responsiveness: The magnitude of the second largest eigenvalue Λ2 of
the matrix

∑m
i=1 ρiAi bounds the convergence properties of the network. The network

rise-time when measured in number of congestion epochs is, on average, bounded by
nr = log(0.95)/ log(Λ2).

4.2.2 Properties of standard TCP

The analysis of the previous section predicts the following properties. Since these are
of particular importance in the context of high bandwidth-delay paths with unsynchro-
nised drops they are explicitly validated using measurements from our experimental
testbed.

(i) The time between congestion events is given by

45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300 350 400 450 500

tim
e

(s
ec

on
ds

)

bandwidth (Mbps)

Time between congestion events

Standard TCP
Theory

Figure 4.2: Average time between congestion events for standard TCP for one flow
as the bottleneck link bandwidth is varied. Measurements taken from experimental
testbed, RTT is 220ms, router queue is sized at 20% of the bandwidth-delay product

T (k) =
1∑n

i=1 αi

[
P −

n∑

i=1

βi(k)Wi(k)
]

+ 1.

It can be seen that, on average, this time becomes larger as the pipe capacity
increases. This behaviour is demonstrated experimentally (the testbed setup is
described in detail in the next section) in Figure 4.2 where the measured time
between congestion events as a function of bottleneck bandwidth is depicted.
Also plotted in Figure 4.2 is the prediction made by (4.10).

(ii) The long-term average peak throughput is

E(wi) = E(T)
αi

λi(1 − βi)RTTi
, (4.10)

where E(T) is the average time between network congestion events, λi is the
synchronisation rate of the i′th flow (assumed to be constant) and RTTi is the
round-trip-time of the i’th flow (again assumed to be approximately constant).
Since E(T) is the same for all flows sharing a link, the ratio of the through-
puts of two competing flows is determined solely by their AIMD increase and

46

decrease parameters, their round-trip times and by their synchronisation rates
λi. In particular, for two flows with same AIMD parameters round-trip times,
the ratio of throughputs E(w1)/E(w2) is equal to λ2/λ1. Notice that the ratio
is independent of the bandwidth-delay product and thus high bandwidth-delay
product paths behave similarly to other paths.

This behaviour is confirmed by experimental measurements in Figure 4.3. This
figure shows the long-term bandwidth allocation between competing flows in a
network with 10 flows in total, 5 flows with λ = 1 and 5 flows with a λ rang-
ing between 1 and 0.145. Results are shown for link bandwidths of 50Mbps,
100Mbps and 300Mbps. It can be seen that, for standard TCP, the long-term
unfairness between flows due to different synchronisation factors is an inverse
linear function of synchronisation rates. It can be seen that this is indeed inde-
pendent of the path bandwidth-delay product.

(iii) The matrices A1, . . . , Am are not dependent on the time between congestion
events or the pipe capacity. Thus, not only the mean but also other statistical
properties of the network as measured from the W (k), are independent of these
quantities. In particular, even when the long-term average throughput of flows
is the same, short-term fluctuations in throughput can lead to unfairness over
time-scales of a few congestion epochs. However, the foregoing analysis indi-
cates that any such fluctuations are scale invariant with bandwidth-delay product.
This remarkable property is confirmed by experimental measurements, see Fig-
ure 4.4 on page 54. This figure shows the measured distribution of peak cwnd
for a flow as both the synchronisation rate and bottleneck bandwidth are varied.
While the cwnd distribution varies with λ, it is invariant with bandwidth. To our
knowledge, this is the first time that this type of behaviour has been documented.

Key point : The upshot of these observations is the following (commonly) overlooked
fact. While the time between congestion events increases with increasing bandwidth
for standard TCP, other important quantities of interest are invariant to changing
bandwidth-delay product. It remains to be seen if new protocols exhibit this or simi-
larly nice properties.

47

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

lambda

Throughput ratios at 50mbps

Standard TCP
Reno theory

(a) 50Mbps

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

lambda

Throughput ratios at 100mbps

Standard TCP
Reno theory

(b) 100Mbps

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

lambda

Throughput ratios at 300mbps

Standard TCP
Reno theory

(c) 300Mbps

Figure 4.3: Throughput ratios with λ unfairness for standard TCP with bandwidths
of 50Mbps, 100Mbps and 300Mbps. Network with 10 flows in total, 5 flows with
λ = 1 and 5 flows with a λ ranging between 1 and 0.145. Measurements taken from
experimental testbed, RTT is 220ms, router queue sized at 20% of bandwidth-delay
product

4.3 Test setup

The test setup for this chapter is an extension of the test setup we used in section 3.3
on page 23. Our interest is in investigating the impact of synchronisation rate on
the behaviour of competing TCP flows. In production networks, the synchronisation
rate of a flow is determined by the pattern of packet losses that it experiences which,
in turn, are typically generated by the queueing disciplines used at network routers.
When buffering TCP traffic, the drop-tail queueing discipline that is ubiquitous in
modern networks can lead to a complex pattern of packet drops that remains poorly
understood. In order to create a controlled, reproducible test environment we therefore:

(i) Added a feature to the dummynet router software that enabled us to mark the
ECN bit in buffered packets once the router queue exceeds a specified threshold

48

occupancy. See algorithm 4.3.1) for a pseudo-code description.

(ii) Modified the Linux kernel code to alter the sending host response to ECN marks.
Normal behaviour is to backoff cwnd by half on receipt of an ECN mark. Note
that, similarly to packet losses, multiple ECN marks received within a single
round-trip time are treated as a single mark for backoff purposes. The modified
behaviour is to backoff only with some specified probability on receipt of an
ECN mark. Specifically, on receipt of an ECN mark the sending host draws
a random number r with uniform distribution between 0 and 65535. The host
backs off cwnd only when r > p where p is a parameter that is specified by
the user via a sysctl. See algorithm 4.3.2 for a pseudo-code description. The
resulting synchronisation rate is λ = 1 − (p/65535). As before, multiple ECN
marks received within a single round-trip time are treated as a single mark for
backoff purposes.

Algorithm 4.3.1 Dummynet ECN Marking
if pkt size + queue size > ecn limit then

Mark packet with ECN
else if pkt size + queue size > queue limit then

Drop packet
end if

By selecting the router buffer to be sufficiently large, and provided some hosts do
in fact eventually backoff at congestion, backoff of sender cwnds before the buffer
overflows ensures that packet losses are avoided. In all our tests we confirmed that the
buffer was sufficiently large that very few packet losses occurred at the router.

4.4 Properties of H-TCP

Using the developed testbed, we investigate the properties of the H-TCP high-speed
modification to the TCP congestion control algorithm when operating in a network
with unsynchronised backoff events. We begin, however, by measuring the impact
of H-TCP on the congestion epoch duration. Figure 4.5 on page 55 plots the mean
time between congestion events as the network bandwidth is varied. Comparing this
with figure 4.2 on page 46, the much shorter congestion epoch duration with the H-
TCP algorithm is evident. In the following sections, we next study the impact of
synchronisation rate on both the long and short term fairness of H-TCP flows.

49

Algorithm 4.3.2 Linux Random ECN Ignore
if ignore ecn and snd una > ecn marker then

ignore ecn ← 0
end if
if packet is ECN marked then
if ignore ecn == 0 then

ecn marker ← snd nxt + snd cwndṁss cache
r ← random(65535)
if r < lambda then

ignore ecn ← 1
else

ignore ecn ← 2
end if

end if
if ignore ecn == 1 then

ECN reply
else

Original code for handling ECN
end if

end if

4.4.1 Long-term λ Unfairness

Figure 4.6 on page 55 plots the ratio of throughputs of two H-TCP flows as the syn-
chronisation rate of one flow is varied. This is the same test as was carried out for
standard TCP with results shown in figure 4.3 on page 48. For comparison, the theory
line from figure 4.3 on page 48 is also plotted on figure 4.6 on page 55. It is im-
mediately evident that H-TCP exhibits a behaviour that is quite different from that of
standard TCP. For example, with λ = 0.145 the ratio of flow throughputs with standard
TCP is 1:7, while for H-TCP the ratio is 1:115 at 100Mbs and 1:142 at 300Mbs.

This behaviour can be attributed to the H-TCP feature of increasing α non-linearly with
elapsed time since the last congestion event. Flows with a lower synchronisation rate
experience, on average, a longer time between congestion events. Such flows therefore
employ, on average, a larger effectiveα leading to greater unfairness than with standard
TCP. Note that such behaviour can be expected of any algorithm that aggressively
increases α based on elapsed time since the last congestion event. Moreover, a similar
argument also carries over directly to algorithms such as HS-TCP that aggressively
increase α based on the value of cwnd.

50

4.4.2 Short-term Unfairness

In addition to its impact on the long-term fairness between flows, we can expect that
increasing α with elapsed time since the last congestion event will lead to increased
short-term unfairness between flows. Figure 4.7(a) on page 56 shows how α grows
as a function of elapsed time while figure 4.7(b) on page 56 shows the corresponding
cwnd evolution. If one flows backs off while another misses the congestion event, it
is clear that the latter flow may rapidly increase its cwnd until it is well above that of
competing flows. If a flow misses more than one congestion event in sequence it can
potentially grab a large share of the bandwidth temporarily. This type of behaviour is
evident in the measured cwnd time history plotted in figure 4.8 on page 56, where it
manifests itself as large spikes in cwnd as one flow takes most of the bandwidth while
the others are starved. Observe also that flows take alternating turns at grabbing the
available bandwidth – this is required since the long-term average throughputs of the
flows are identical as they all have the same synchronisation rate, see figure 4.6 on
page 55. In the rest of this section we investigate this short-term unfairness behaviour
in more detail.

Boundary effects

We begin by observing that there is a practical limit to the number of congestion events
a flow can miss before its cwnd has increased to the point where it occupies the en-
tire network capacity and a packet loss must necessarily occur. The impact of this
constraint depends on the network conditions and, in particular, on the number of
competing flows. In our tests we were therefore careful to check that the achieved syn-
chronisation rate was close to the synchronisation rate demanded via the sender sysctl
parameter p. The achieved synchronisation rate for a flow is measured as the number
of backoffs by that flow divided by the number of network congestion events. The lat-
ter is measured as the number of events at which at least one flow in the network backs
off. Backoffs by different flows that occur with one round-trip time of each other are
taken to be the same network event, since congestion signalling can be delayed by up
to one round-trip time in the network and also the TCP congestion control algorithm
itself treats all congestion signals within one round-trip time as a single signal. Fig-
ure 4.9 on page 57 plots the measured versus demanded synchronisation rates under a
range of network conditions. It can be seen that the measured rate remains close to the
demanded rate.

51

Impact of number of flows

Recall that the synchronisation rate λ of a flow is the proportion of network conges-
tion events at which that flow backs off. The value of λ does not depend on the time
between congestion events. Nevertheless, with larger numbers of flows, for fixed syn-
chronisation rate λ the time between congestion events is on average shorter. This is
because since each flow tries to increase its individual cwnd each RTT, taken together
the number of packets in flight in the network increases more quickly with the number
of flows. This can be seen from the measurements shown in figure 4.11 on page 58 of
time between network congestion events for two networks with different numbers of
competing flows. Since in H-TCP the effective AIMD increase rate becomes more ag-
gressive with increasing congestion epoch duration, we therefore expect the unfairness
between flows with different synchronisation rates to decrease as the number of flows
is increased. See for example figure 4.10 on page 57 which shows the distribution of
peak cwnds for different number of flows.

Impact of BDP

In H-TCP the effective AIMD increase rate becomes more aggressive with increasing
congestion epoch duration. Since, all other things being equal, the congestion epoch
duration in turn increases with the bandwidth-delay product (see figure 4.5 on page 55),
we can expect that the short-term unfairness also increases with bandwidth-delay prod-
uct. Figure 4.12 on page 59 plots measured cwnd distributions and time histories for
bottleneck bandwidths of 100Mbs and 300Mbs. It can be seen that the cwnd distribu-
tion has a considerably heavier tail at 300Mbps than at 100Mbps, reflecting the greater
variability in cwnd at the higher speed for a given synchronisation rate.

Impact of backoff factor β

For one flow to grab bandwidth from another, it is not enough for the first flow to have
an aggressive AIMD increase. It is also necessary for the second flow to backoff and
release bandwidth that the first flow can then seize. That is, the ability of a flow to grab
bandwidth when it misses drops is constrained by the willingness of the other network
flows to yield bandwidth. We therefore expect that the short-term unfairness between
flows depends on the backoff factors β used. Smaller backoff factors correspond to
flows yielding bandwidth quite readily, while larger backoff factors make it harder

52

for a flow to grab bandwidth from the others. Hence, we expect the level of short-term
unfairness to decrease with increasing β. See figure 4.13 on page 60 for measurements.

4.5 Summary

A number of important facts can be discerned from the above tests.

(i) The unfairness in long-term average throughput between flows with different
synchronisation rates is amplified by the more aggressive increase rate of the
H-TCP algorithm.

(ii) Large short-term fluctuations in the rate of a flow are often a feature of networks
in which high-speed protocols are deployed, leading to short-term unfairness
between competing flows. This unfairness can be such that a single flow can
temporarily grab almost all the network capacity even though all flows have the
same long-term average throughput.

(iii) The distribution of rate variation depends on the network backoff factors. Roughly
speaking, the larger the backoff factors, the smaller the variation in rate and thus
the less short-term unfairness. As noted elsewhere [14, 20], increasing the back-
off factor also generally reduces network responsiveness e.g. for the startup of
new flows, thereby increasing the unfairness between short and long-lived flows.

We note that while the discussion here has been in terms of the H-TCP algorithm,
many of the behaviours observed are expected to also be exhibited by other proposed
high-speed algorithms.

53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1
D

ist
rib

ut
io

n

CWND

Host 1
Host 2

(a) 50Mbps, λ = 1

 0

 200

 400

 600

 800

 1000

 1200

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(b) 100Mbps, λ = 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(c) 50Mbps, λ = 0.76

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(d) 100Mbps, λ = 0.76

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(e) 50Mbps, λ = 0.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(f) 100Mbps, λ = 0.5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(g) 50Mbps, λ = 0.26

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(h) 100Mbps, λ = 0.26

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(i) 50Mbps, λ = 0.14

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

D
ist

rib
ut

io
n

CWND

Host 1
Host 2

(j) 100Mbps, λ = 0.14

Figure 4.4: Distribution of peak window sizes for standard TCP at 50Mbps and
100Mbps. Measurements taken from experimental testbed, network with 10 flows,
RTT is 220ms, router queue sized at 20% of bandwidth-delay product

54

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900

tim
e

(s
ec

on
ds

)

bandwidth (Mbps)

Time between congestion events

H-TCP

Figure 4.5: Average time between congestion events for H-TCP for one flow as the
bottleneck link bandwidth is varied. Measurements taken from experimental testbed,
RTT is 220ms, router queue is sized at 20% of the bandwidth-delay product.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

lambda

Throughput ratios at 100mbps

H-TCP experiment

Reno theory

(a) 100Mbps

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
tio

lambda

Throughput ratios at 300mbps

H-TCP experiment

Reno theory

(b) 300Mbps

Figure 4.6: Throughput ratios with λ unfairness for H-TCP with bandwidths of
100Mbps and 300Mbps. Network with 10 flows in total, 5 flows with λ = 1 and 5
flows with a λ ranging between 1 and 0.145. Measurements taken from experimental
testbed, RTT is 220ms, router queue sized at 20% of bandwidth-delay product.

55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

al
ph

a

Time (sec)

alpha growth

(a) Evolution of α with time since congestion
event

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18

cw
nd

 (p
ac

ke
ts)

Time (sec)

alpha growth

(b) Evolution of cwnd growth with time

Figure 4.7: H-TCP alpha and cwnd evolution for 15 seconds from congestion event

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 515 520 525 530 535 540

cw
nd

 (p
ac

ke
ts)

Time (seconds)

Figure 4.8: Example evolution of flow cwnds. Network with 10 flows in total, five
flows with λ = 0.5 and five with λ = 1. Measurements taken from experimental
testbed, RTT is 220ms, router queue sized at 20% of bandwidth-delay product.

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ac
tu

al
 L

am
bd

a

Set Lambda

1v1
5v5

5v5-eq

Figure 4.9: Actual versus demanded synchronisation rate as number of flows is varied.
Measurements taken from experimental testbed, RTT is 220ms, bandwidth 300Mbps,
router queue sized at 20% of bandwidth-delay product.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

normalized cwnd

host1

(a) 5 flows with λ = 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

normalized cwnd

host1

(b) 10 flows with λ = 0.5

Figure 4.10: cwnd distribution for different number of flows. Measurements taken
from experimental testbed, RTT is 220ms, bandwidth 300Mbps, router queue size at
20% of bandwidth-delay product.

57

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

Ti
m

e
fro

m
 fo

rm
er

 e
ve

nt
 (s

ec
on

ds
)

Event

"oneflow.marker0.diffs"

(a) 1 flow with λ = 0.5

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

Ti
m

e
fro

m
 fo

rm
er

 e
ve

nt
 (s

ec
on

ds
)

Event

"oneflow.marker0.diffs"

(b) 10 flow with λ = 0.5

Figure 4.11: Time between congestion events for different number of flows. Measure-
ments taken from experimental testbed, RTT is 220ms, bandwidth 300Mbps, router
queue size at 20% of bandwidth-delay product.

58

 0

 500

 1000

 1500

 2000

 2500

 100 200 300 400 500 600 700 800 900

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(a) 100Mbps λ = 0.5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(b) 300Mbps λ = 0.5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 515 520 525 530 535 540

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(c) 100Mbps λ = 0.5 cwnd subset

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 515 520 525 530 535 540

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(d) 300Mbps λ = 0.5 cwnd subset

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

cwnd ratio

host1

(e) 100Mbps λ = 0.5 cwnd distribution

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

cwnd ratio

host1

(f) 300Mbps λ = 0.5 cwnd distribution

Figure 4.12: Impact of BDP on aggressiveness of H-TCP flows, 5 flows on each host
all with 220ms RTT and bandwidth of 100 or 300 Mbps

59

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(a) β = 0.5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 200 300 400 500 600 700 800 900

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(b) β = 0.8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 510 515 520 525 530 535

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(c) cwnd history subset β = 0.5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 510 515 520 525 530 535

cw
nd

 (p
ac

ke
ts)

Time (seconds)

(d) cwnd history subset β = 0.8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

normalized cwnd

host1
host2

(e) cwnd distribution β = 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

normalized cwnd

host1
host2

(f) cwnd distribution β = 0.8

Figure 4.13: Impact of backoff factor at 300Mbps, 220ms RTT with λ = 0.5

60

Chapter 5

Summary and Conclusions

The objective of this thesis is to investigate some of the issues arising in the design
of TCP congestion control algorithms for high bandwidth-delay product networks. In
particular, we consider the fairness behaviour between competing flows in networks
where packet drops are unsynchronised; that is, where not every flow sees a packet
loss at each network congestion event. We review some of the main proposals for TCP
congestion control in high bandwidth-delay product networks. To investigate perfor-
mance, we constructed and instrumented an experimental testbed. An issue here of
key practical importance is that the standard Linux network stack was found to per-
form poorly on high bandwidth paths due to the high computational burden associated
with SACK processing. The first part of the thesis therefore focusses on more effi-
cient network stack implementation. Using the developed testbed, we investigate the
long and short term unfairness of the proposed H-TCP congestion control algorithm
for high bandwidth-delay product networks. Specifically:

(i) We document the performance degradation of the standard Linux network stack
on high bandwidth-delay product paths. By careful instrumentation of the net-
work stack it was established that this degradation was primarily associated with
the excessive computation burden imposed by the standard SACK processing
algorithm. A modified SACK processing implementation has therefore been de-
veloped and its performance validated on commodity hardware for paths with
delay up to 220ms and bandwidth up to 1Gbs (corresponding to a maximum
bandwidth-delay product of approximately 18000 packets).

(ii) Based on this modified Linux kernel an instrumented testbed network was de-
veloped. To allow controlled study of the impact of synchronisation rate on

61

behaviour, a modified FreeBSD dummynet implementation was also developed.

(iii) Using the developed testbed network we investigated the performance of both
standard TCP and H-TCP in unsynchronised conditions. We demonstrated that
the unfairness in long-term average throughput between flows with different syn-
chronisation rates is amplified by the more aggressive increase rate of the H-TCP
algorithm. Large short-term fluctuations in the rate of a flow are often a feature
of networks in which high-speed protocols are deployed, leading to short-term
unfairness between competing flows. The distribution of rate variation depends,
amongst other things, on the network backoff factors, with larger reducing short-
term unfairness but reducing the responsiveness of the network.

The work performed in this thesis has been a preliminary study of scaling issues in
the design of TCP congestion control algorithms for high-bandwidth delay product
networks. Further work is clearly necessary.

62

Bibliography

[1] Oprofile. http://oprofile.sourceforge.net/.

[2] A. Berman and R. Plemmons. Nonnegative matrices in the mathematical sci-
ences. SIAM, 1979.

[3] A. Berman, R. Shorten, and D. Leith. Positive matrices associated with synchro-
nised communication networks. Linear Algebra and its Applications, 393(1):47–
55, 2004.

[4] D. D. Clark. RFC 813: Window and acknowledgement strategy in TCP, July
1982. Status: UNKNOWN.

[5] David D. Clark. The design philosophy of the DARPA internet protocols. In
SIGCOMM, pages 106–114, Stanford, CA, August 1988. ACM.

[6] Douglas E. Comer. Internetworking with TCP/IP, volume I: Principles, Protocols
and Architecture. Prentice-Hall, Englewood Cliffs, NJ, fourth edition, 2000.

[7] S. Floyd. HighSpeed TCP for large congestion windows, August 2002.

[8] S. Floyd. HighSpeed TCP for large congestion windows, February 2003.

[9] S. Floyd and T. Henderson. The newreno modification to tcp’s fast recovery
algorithm, April 1999.

[10] G. Huston. TCP. The Internet Protocol Journal, 3(2), June 2000.

[11] V. Jacobson. Congestion avoidance and control. In Proceedings of SIGCOMM,
1988.

[12] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, Architecture, Algorithms,
Performance, 2004.

63

[13] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works, 2003.

[14] D.J. Leith and R.N. Shorten. H-TCP protocol for high-speed long-distance net-
works. In Proc. 2nd Workshop on Protocols for Fast Long Distance Networks,
Argonne, Canada, 2004.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP selective
acknowledgment options, October 1996. Status: PROPOSED STANDARD.

[16] J. Nagle. RFC 896: Congestion control in IP/TCP internetworks, January 1984.
Status: UNKNOWN.

[17] J. Postel. RFC 760: DoD standard Internet Protocol, January 1980.

[18] J. Postel. RFC 791: Internet Protocol, September 1981. Obsoletes RFC0760
[17]. Status: STANDARD.

[19] J. Postel. RFC 793: Transmission control protocol, September 1981. Status:
STANDARD.

[20] R.N.Shorten, F. F. Wirth, and D.J. Leith. A positive systems model of tcp-like
congestion control: Asymptotic results, to appear.

[21] R. Shorten, D. Leith, J. Foy, and R. Kilduff. Analysis and design of synchronised
communication networks. In Proceedings of 12th Yale Workshop on Adaptive
and Learning Systems, 2003.

[22] R. Shorten, D. Leith, J. Foy, and R. Kilduff. Analysis and design of synchronised
communication networks. Accepted for publication in Automatica, 2004.

[23] R. Shorten, F. Wirth, and D. Leith. A positive systems model of tcp-like con-
gestion control: asymptotic results. In IEEE/ACM Transactions on Networking,
volume 14, pages 616–629, June 2006.

[24] W. Stevens. RFC 2001: TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms, January 1997. Status: PROPOSED STANDARD.

[25] K. Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A compound tcp
approach for high-speed and long distance networks. In Proc. INFOCOM,
Barcelona, Spain, 2006.

64

[26] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control for fast
long-distance networks. In Proc. INFOCOM, 2004.

[27] Tom Zanussi, Karim Yaghmour, Robert W. Wisniewski, Michel Dagenais, and
Richard Moore. An efficient unified approach for transmitting data from kernel
to user space. In Proc. of Ottawa Linux Symposium, July 2003.

65

