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Abstract: In this paper, a class of second-order nonlinear cascade control systems is

considered. Under certain structural assumptions, it is proven that these systems are

exactly linearizable via nonregular static state feedbacks and state diffeomorphisms.

Linearizing input transformations and the corresponding state diffeomorphisms are pre-

sented. Finally, nonregular static feedback linearization is applied to a class of flexible

joint robots, and the controller constructed is globally asymptotically stabilizing.
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1 Introduction

During the last decades, nonlinear systems and control theory have witnessed a tremen-

dous development. As one of the most active research areas, feedback linearization is

a powerful tool for control and synthesis of nonlinear systems, and has been widely

applied to many engineering systems, for example, electrical drivers [1, 23], rigid and

flexible joint robots [13, 20], spacecrafts [11, 18], to list a few.

Feedback linearization involves transforming a nonlinear system into a controllable lin-

ear one by using state feedback and coordinate transformations. This problem has

been studied using increasingly more general feedback transformations. Regular static

state feedback linearization was solved in [2] for single-input systems and in [9] for

multi-input systems. Regular dynamic state feedback linearization was firstly pro-

posed in [4] and then developed in [7] and the references therein. Recently, nonregular

static/dynamic state feedback linearization was introduced and addressed in [22].
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Most existing results on feedback linearization are based on the (first-order) state

space representation of the plant. However, many practical engineering models, such

as mechanical systems, are derived by Euler-Lagrange equations or Newton-Euler for-

mulation which usually lead to second or higher order representation. For these high

order systems, the transformation to a state space format, though straightforward, may

obscure some relevant model structural properties and lead to complicated expressions

[14]. To this end, there is a demand to address feedback design problems based di-

rectly on the original high order models rather than on the transformed state-space

representation.

In this paper, we will present a new criterion for nonregular static state feedback

linearization of a class of second-order systems. Under some structural assumptions,

it is shown that these systems are nonregular static state feedback linearizable, and

a linearizing state feedback as well as the corresponding coordinate transformations

can be obtained. As an application, globally asymptotically stabilizing controllers are

presented for a class of flexible joint robots.

This paper is organized as follows. Section 2 presents a linearizability criterion for a

class of second-order systems. Its application to flexible joint robots is addressed in

Section 3. The last section contains some concluding remarks.

2 Main Result

Definition 1 [22] An affine nonlinear control system

ẋ = f(x) +
m∑

i=1

gi(x)ui = f(x) + G(x)u, x ∈ <n (1)

with f(0) = 0 and rankG(0) = m is said to be (locally) nonregular static state feedback

linearizable (at the origin), if it can be transformed into a controllable linear system

ż = Az + Bv

via a locally defined state diffeomorphism

z = φ(x), φ(0) = 0 (2)

and a locally defined nonregular static state feedback

u = α(x) + β(x)v, α(0) = 0, β(x) ∈ <m×l, v ∈ <l, l ≤ m (3)
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In nonregular static feedback (3), the gain matrix β(x) is not necessarily square, and

even if it is square, it is not necessarily nonsingular at the origin. In other words,

“nonregular” means “not necessarily regular”. It is readily seen that a regular static

state feedback is also a nonregular static state feedback. Accordingly, the concept of

nonregular state feedback linearization is a generalization of its regular counterpart.

For nonregular static state feedback linearization, some necessary conditions and suf-

ficient conditions were presented in [22]. It is also shown that regular dynamic state

feedback linearizability does not imply nonregular static state feedback linearizability,

but the reverse does not necessarily hold. In the sequel, a new linearizability criterion

for a class of second-order nonlinear cascade systems will be presented.

Consider a second-order nonlinear system given by

ẍ = f(x, ẋ) + p(x, ẋ)y + g(x, ẋ)u

ÿ = u (4)

where x, ẋ, y, ẏ ∈ <n are the states, u ∈ <n are the inputs, f(x, ẋ) is a smooth vector

field, p(x, ẋ) and g(x, ẋ) are n× n matrices of real-valued functions.

Let us study the linearizability of system (4) around an equilibrium point. Without

loss of generality, assume the origin is an equilibrium point of the unforced system,

that is f(0, 0) = 0. We made the following two assumptions on the system structures:

Assumption 1 Matrix p(x, ẋ) has the upper triangular structure and is nonsingular

at the origin, i.e.,

p(x, ẋ) =




p1,1(x, ẋ) p1,2(x, ẋ) · · · p1,n(x, ẋ)

0 p2,2(x, ẋ) · · · p2,n(x, ẋ)
. . .

0 0 · · · pn,n(x, ẋ)




, pi,i(0, 0) 6= 0, i = 1, · · · , n (5)

Assumption 2 Matrix g(x, ẋ) has the strictly upper triangular structure and is of rank

n− 1 at the origin, i.e.,

g(x, ẋ) =




0 g1,2(x, ẋ) · · · g1,n(x, ẋ)

0 0 · · · g2,n(x, ẋ)
. . .

0 0 · · · 0




, gi,i+1(0, 0) 6= 0, i = 1, · · · , n− 1 (6)
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Theorem 1 System (4) satisfying Assumptions 1 and 2 is nonregular static state feed-

back linearizable.

Proof. Denote ξ = [xT , ẋT , yT , ẏT ]T . Let us design the last n− 1 input channels

u2 =




u2

...

un


 =




α2(ξ)
...

αn(ξ)


 (7)

such that states x and ẋ can be linearized to be a single chain of integrator, i.e.,




ẍ1

ẍ2

...

ẍn−1




=




x2

x3

...

xn




(8)

Bearing Assumptions 1 and 2 in mind, substituting (7) and (8) into (4), leads to

fi(x, ẋ) +
n∑

j=i

pi,j(x, ẋ)yj +
n∑

j=i+1

gi,j(x, ẋ)αj = xi+1 i = 1, · · · , n− 1 (9)

From which, we can solve for αi backwardly as follows

αn = cn(x, ẋ, yn) + dn(x, ẋ)yn−1

αn−1 = cn−1(x, ẋ, yn−1) + dn−1(x, ẋ)yn−2

...

α2 = c2(x, ẋ, y2) + d2(x, ẋ)y1

where yi = [yi, · · · , yn]T , i = 1, · · · , n, and

cn(x, ẋ, yn) = g−1
n−1,n(x, ẋ)(xn − fn−1(x, ẋ)− pn−1,n(x, ẋ)yn)

dn(x, ẋ) = −g−1
n−1,n(x, ẋ)pn−1,n−1(x, ẋ)

...

c2(x, ẋ, y2) = g−1
1,2(x, ẋ)(x2 − f1(x, ẋ)−

n∑

j=2

p1,j(x, ẋ)yj −
n∑

j=3

g1,jαj)

d2(x, ẋ) = −g−1
1,2(x, ẋ)p1,1(x, ẋ)

Note that the real-valued functions d2(x, ẋ), · · · , dn(x, ẋ) are non-zero at the origin.
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The overall system of (4) and (7) becomes




ẍ1

...

ẍn−1

ẍn

ÿ1

ÿ2

...

ÿn




=




x2

...

xn

fn(x, ẋ) + pn,n(x, ẋ)yn

0

c2(x, ẋ, y2) + d2(x, ẋ)y1

...

cn(x, ẋ, yn) + dn(x, ẋ)yn−1




+




0
...

0

0

1

0
...

0




u1 (10)

It is routine to verify that it satisfies the criterion for regular static state feedback

linearizability (Cf, e.g., [8, Theorem 4.2.6]). Accordingly, system (10) is regular static

state feedback linearizable. Furthermore, it is readily seen that h(ξ) = x1 is a linearizing

output. The corresponding linearizing coordinate and input transformations are

z = [h,
dh

dt
, · · · , d4n−1h

dt4n−1
]T (11)

= [x1, ẋ1, · · · , xn, ẋn, ϕ1 + ψ1yn, ϕ2 + ψ2ẏn, · · · , ϕ2n−1 + ψ2n−1y1, ϕ2n + ψ2nẏ1]
T

and

u1 = α1(ξ) + β1(ξ)v v ∈ < (12)

where

ϕ1 = fn(x, ẋ), ψ1 = pn,n(x, ẋ)

ϕ2i = Lf̄ϕ2i−1 + (Lf̄ψ2i−1)yn+1−i, ψ2i = ψ2i−1 i = 1, · · · , n
ϕ2i+1 = Lf̄ϕ2i + (Lf̄ψ2i)ẏn+1−i + ψ2icn+1−i, ψ2i+1 = ψ2idn+1−i i = 1, · · · , n− 1

α1 = − 1

ψ2n

(Lf̄ϕ2n + (Lf̄ψ2n)ẏ1, β1 =
1

ψ2n

with Lf̄ϕ denoting the derivative of ϕ along

f̄ = [ẋ1, x2, ẋ2, · · · , xn, ẋn, fn + pn,nyn, ẏ1, 0, ẏ2, c2 + d2y1, · · · , ẏn, cn + dnyn−1]
T

To sum up, under nonregular static state feedback

u =




α1(ξ)

α2(ξ)
...

αn(ξ)




+




β1(ξ)

0
...

0




v = α(ξ) + β(ξ)v (13)
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and state diffeomorphism (11), system (4) is transformed into

ż = Az + Bv (14)

where (A,B) is the Brunovsky canonical matrix pair. By Definition 1, system (4) is

nonregular static state feedback linearizable. 4

Remark 1 Assumptions 1 and 2 of system (4) can be further relaxed to one assump-

tion, Assumption 3 as follows.

Assumption 3 There exists a positive definite matrix M(x, ẋ) such that

p(x, ẋ) = M(x, ẋ)p̄(x, ẋ), g(x, ẋ) = M(x, ẋ)ḡ(x, ẋ)

where matrix p̄(x, ẋ) has an upper triangular structure and is nonsingular at the origin,

and matrix ḡ(x, ẋ) has a strictly upper triangular structure and is of rank n− 1 at the

origin.

Under this relaxed assumption, system (4) is still linearizable via nonregular static

state feedback. This fact can be proven along the same line as in the proof of Theorem

1. In fact, h(ξ) = x1 is a linearizing output and the corresponding linearizing input

and coordinate transformations can be obtained accordingly.

Remark 2 Theorem 1 can be readily extended to higher order systems

x(k) = f(x̄) + p(x̄)y + g(x̄)u

y(k) = u (15)

where k > 2, and x̄ = [xT , ẋT , · · · , (x(k−1))T ]T . Furthermore, they can be extended to

systems in non-homogeneous orders

[x
(k1)
1 , · · · , x(kn)

n ]T = f(x̄) + p(x̄)y + g(x̄)u

[y
(l1)
1 , · · · , y(ln)

n ]T = u (16)

where ki, li ≥ 1, i = 1, · · · , n, and x̄ = [x1, · · · , x(k1−1)
1 , · · · , xn, · · · , x(kn−1)

n ]T .

3 Application to Flexible Joint Robots

Position control of flexible joint robot manipulators has been discussed by many re-

searchers in the literature. Although numerous control and design strategies from di-

verse disciplines were developed based on simplified models (see, e.g., [3, 5, 6, 12, 16, 17]
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and references therein), only a few references studied the regulation issues based on the

complete dynamic model derived in [24, 25]. Among these, a proportional-derivative

(PD) controller is developed to globally asymptotically stabilize the robot to a refer-

ence position in [25]. Several variations of this controller can be found in [10], which

replaced the derivative operator by a high pass filter, and in [15], which presented a

globally stabilizing output feedback controller following the passivity approach.

In this paper, globally stabilizing controllers are presented for a class of full-order

flexible joint robots within the framework of nonregular static state feedback lineariza-

tion. The controllers require full state measurements which is more restrictive than

the aforementioned controllers for this class of systems.

3.1 Mathematical Model

Consider a robot with n + 1 rigid links interconnected by n flexible revolute joints.

Under the assumptions that the joint flexibility are modeled as linear torsional springs

and the rotors of the actuators are modeled as uniform bodies of revolution, the robot’s

dynamics are given by [24, 25]

M(q1)q̈ + C(q, q̇)q̇ + KEq + G(q1) + F (q, q̇) = Γ (17)

where q = [q1, q2] with q1 and q2 representing n × 1 vectors of the positions of the

links and the actuators, respectively, M(q) =


 M1(q1) M2(q1)

MT
2 (q1) M3


 is the inertia ma-

trix which is positive definite, C(q, q̇) is the centripetal and Coriolis matrix, KE =
 Ke −Ke

−Ke Ke


 with Ke =diag[k1, · · · , kn] being the diagonal stiffness matrix whose

entries are flexible constants of the joints, G(q1) =


 G1(q1)

0


 is the gravity term,

F (q, q̇) =


 F1(q1, q̇1)

F2(q2, q̇2)


 represents the friction forces, and Γ =


 0

τ


 with τ being the

torques supplied by the motors.

Matrix M2(q1) has the strictly upper triangular structure given by

M2(q1) =




0 m1,2(q1,1) m1,3(q1,1, q1,2) · · · m1,n(q1,1, · · · , q1,n−1)

0 0 m2,3(q1,2) · · · m2,n(q1,2, · · · , q1,n)
. . .

0 0 0 · · · mn−1,n(q1,n−1)

0 0 0 · · · 0




(18)
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Matrix C(q, q̇) can be decomposed as

C(q, q̇) =


 C1(q1, q̇1) + C2(q1, q̇2) C3(q1, q̇1)

C4(q1, q̇1) 0




where

C1,ij(q1, q̇1) =
1

2

[
q̇T
1

∂M1,ij

∂q1

+

(
∂M i

1

∂q1,j

− ∂M j
1

∂q1,i

)
q̇1

]

C2,ij(q1, q̇2) =
1

2

(
∂M i

2

∂q1,j

− ∂M j
2

∂q1,i

)
q̇2

C3,ij(q1, q̇1) =
1

2

(
q̇T
1

∂M2,ij

∂q1

− ∂(MT
2 )j

∂q1,i

q̇1

)

C4,ij(q1, q̇1) =
1

2

(
q̇T
1

∂M2,ji

∂q1

− ∂(MT
2 )i

∂q1,j

q̇1

)

with M i denoting the ith row of matrix M .

When M2(q1) = 0, there is no inertial coupling between the links and the actuators

and model (17) is reduced to the well known simplified model [19]. This simplified

model is always regular static state feedback linearizable. To avoid this trivial case,

we assume that M2(q1) 6= 0. Furthermore, for ease of handling, we make the following

assumption

Assumption 4 Matrix M2(q1) is constant, and mi,i+1 6= 0, i = 1, · · · , n− 1.

The constant assumption for M2(q1) is valid for spatial three-link elbow manipulators

and for planar robots with any number of rotational joints [14].

Under Assumption 4, system (17) is reduced to

M1(q1)q̈1 + M2q̈2 + C1(q1, q̇1)q̇1 + Ke(q1 − q2) + G1(q1) + F1(q1, q̇1) = 0

MT
2 q̈1 + M3q̈2 + Ke(q2 − q1) + F2(q2, q̇2) = τ (19)

Note that system (19) is not regular static state feedback linearizable [14].

3.2 Nonregular Feedback Linearizability

Consider the control law

τ = −MT
2 M−1

1 (q1)(C1(q1, q̇1)q̇1 + Ke(q1 − q2) + G1(q1) + F1(q1, q̇1))

+Ke(q2 − q1) + F2(q, q̇) + (M3 −MT
2 M−1

1 (q1)M2)u (20)
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Note that matrix M3 −MT
2 M−1

1 (q1)M2 is nonsingular (and positive definite) from the

positive definiteness of M(q1).

System (19) can be rewritten in the form of partial feedback linearization [21]

q̈1 = −M−1
1 (q1)(C1(q1, q̇1) + Keq1 + G1(q1) + F1(q1, q̇1)) + M−1

1 (q1)(Keq2 −M2u)

q̈2 = u (21)

It is clear that system (21) is of form (4) and satisfies Assumption 3. According to

Remark 1, this system is nonregular static state feedback linearizable.

Following the proof of Theorem 1, we can compute a linearizing state coordinate and

its corresponding input transformations as

z = φ(q, q̇) = [q1,1, q̇1,1, · · · , q1,n, q̇1,n, η1, · · · , η2n]T (22)

and

u = α + βv =



−LXη2n

γ1

Λ−1θ


 +




1

γ1

0


 v (23)

respectively, where

Λ =




m1,2 · · · m1,n

. . .

0 · · · mn−1,n


 θ =




k1q2,1 −D1ρ
...

kn−1q2,n−1 −Dn−1ρ




η1 = an + δn ηi+1 = LXηi i = 1, · · · , 2n− 1, γ1 =
∂η2n

∂q̇2,1

with Di = [di,1, · · · , di,n] being the ith row of matrix M1(q1), and

δ = [δ1, · · · , δn]T = −M1(q1)
−1(C1(q1, q̇1) + Keq1 + G1(q1) + F1(q1, q̇1))

an =
1

dn,n

(knq2,n −
n−1∑

i=1

dn,i(q1,i+1 − δi))

ρ = [q1,2 − δ1, · · · , q1,n − δn−1, η1 − δn]T

X = [q̇1,1, q1,2, · · · , q̇1,n, an − δn, q̇2,1, 0, q̇2,2, α2, · · · , q̇2,n, αn]T

Combining (20) and (23) gives

τ = −MT
2 M−1

1 (q1)(C1(q1, q̇1)q̇1 + Ke(q1 − q2) + G1(q1) + F1(q1, q̇1)) + Ke(q2 − q1)

+F2(q, q̇) + (M3 −MT
2 M−1

1 (q1)M2)



−LXη2n

γ1

Γ−1θ


 + M3




1

γ1

0


 v (24)
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which is the overall input transformation for system (17).

The transformed system is of Brunovsky canonical form

ż = [z2, · · · , z4n, v]T (25)

Note that the linearizing transformations (22) and (24) are globally defined. Accord-

ingly, system (17) is globally static state feedback linearizable.

3.3 Global Stabilization

The feedback linearizability of robot system (17) enable us to design globally asymp-

totically stabilizing controllers by using standard linear design technique.

Suppose p(λ) = λ4n + l4nλ4n−1 + · · ·+ l2λ + l1 is a Hurwitz polynomial. Let

v = −Lz = −
4n∑

i=1

lizi (26)

The closed-loop system (25) and (26) is globally exponential stable.

Accordingly, the controller

τ = −MT
2 M−1

1 (q1)(C1(q1, q̇1)q̇1 + Ke(q1 − q2) + G1(q1) + F1(q1, q̇1)) + Ke(q2 − q1)

+F2(q, q̇) + (M3 −MT
2 M−1

1 (q1)M2)



−LXη2n

γ1

Γ−1θ


−M3




∑4n
i=1 liφi(q, q̇)

γ1

0


 (27)

globally asymptotically stabilizing system (17).

4 Conclusion

In this paper, a new criterion of nonregular static state feedback linearization has been

presented for a class of second-order nonlinear cascade systems. Some extensions of

this criterion to more general systems have also been considered. As an application,

controllers have been designed to asymptotically stabilize a class of flexible joint robots.
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