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Abstract: This paper investigates the reachability and controllability issues for switched
linear discrete-time systems. Geometric characterization of controllability is presented.
For reversible systems, the controllable sets and the reachable sets are identified in Won-
ham’s geometric approach, and verifiable conditions for reachability and controllability
are also presented.
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1 Introduction

Switched systems are hybrid systems that consist of two or more subsystems and are
controlled by switching laws. The switching law may be either supervised or unsupervised,
time-driven or event-driven. In this paper, we focus on the class of switched systems
in which the switching laws are design parameters to be chosen online by a supervisor
[6, 14, 17].

Switched systems deserve investigation for theoretical interest as well as for practical
applications. Switching among different system structures is an essential feature of many
engineering control applications such as power systems and power electronics [15, 10].
Control techniques based on switching between different controllers have been investigated
in recent years, particularly in the context of adaptive control [8, 9]. The existence of
systems that cannot be asymptotically stabilized by a single continuous feedback controller
also motivates us to study switched systems [2]. Switched systems also arise naturally in
the study of multi-rate sample-data systems [11].

In the analysis and design of control systems, controllability and reachability are two
fundamental concepts that need to be investigated. For switched continuous-time sys-
tems, the controllability and reachability issues have been addressed in several references.
Studies for second-order switched linear systems can be found in [7, 17]. Geometric tests
for reachability were presented for general switched linear control systems in [13]. For
switched linear discrete-time systems, the set of points reachable from the origin were in-
vestigated in [12]. It is shown that this set (termed controllable set in [12]) is a subspace
under certain hypothesis, but not always the case in general. Some further extension
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of this work can be found in [3], where the controllable set as the union of its maximal
components was investigated.

In this paper, the controllability and reachability issues are addressed for switched linear
discrete-time systems. Following Wonham’s geometric approach, multi-pair invariant sub-
spaces were introduced. The relationships among the controllable set, the reachable set
and the multi-pair invariant subspace are investigated. For reversible systems, verifiable
criteria for controllability and reachability are presented.

The paper is organized as follows. Section 2 formulates the problem and presents prelimi-
nary analysis. Geometric characterizations for the controllability and reachability sets are
presented in Section 3. In Section 4, two illustrating examples are given. Finally, some
concluding remarks are made in the last section.

2 Definitions and Preliminaries

Consider a switched linear discrete-time control system given by

xk+1 = Aσxk + Bσuk (1)

where xk ∈ <n and uk ∈ <p are the states and inputs, σ : {0, 1, · · ·} → M = {1, 2, · · · ,m}
is the switching path to be designed, matrix pair (Ak, Bk) for 1 ≤ k ≤ m are referred to
as subsystems of (1).

For clarity, let us denote k = {0, · · · , k − 1} for a positive integer k. It can be calculated
that

xk=(Πk−1
j=0Aij)x0+(Πk−1

j=1Aij)Bi0u0+· · ·+Aik−1
Bik−2

uk−2+Bik−1
uk−1 (2)

where ij = σ(j) for j = 0, · · · , k − 1.

A state configuration x is said controllable, if it is transferable to the origin in finite time
by appropriate choices of input u and switching path σ. The precise definitions of the
relevant concepts are given as follows.

Definition 1 State x ∈ <n is controllable, if there exist a time instant k > 0, a switching
path σ : {0, · · · , k − 1} → M , and inputs u : k → <p, such that x0 = x and xk = 0.

Definition 2 The controllable set of system (1) is the set of states which are controllable.

Definition 3 System (1) is said (completely) controllable, if its controllable set is <n.

For any matrices A ∈ <n×n and B ∈ <n×p, denote B =ImB and A−1B = {x ∈ <n : Ax ∈
B}. Define

C(i0, · · · , ik) = (Aik · · ·Ai0)
−1(Aik · · ·Ai1Bi0 + · · ·+ AikBik−1

+ Bik) (3)
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Let Ck denote the set of points which can be transfered to the origin within k steps. It
can be readily seen that

Ck = ∪i0,···,ik−1∈MC(i0, · · · , ik−1) (4)

and

C = ∪∞k=1Ck (5)

where C is the controllable set of system (1).

The reachability counterparts can be defined along the same line as follows.

Definition 4 State x ∈ <n is reachable, if there exist a time instant k > 0, a switching
path σ : k → M , and inputs u : k → <p, such that x0 = 0 and xk = x.

Definition 5 The reachable set of system (1) is the set of states which are reachable.

Definition 6 System (1) is said (completely) reachable, if its reachable set is <n.

Define

R(i0, · · · , ik) = Aik · · ·Ai1Bi0 + · · ·+ AikBik−1
+ Bik

Let Rk denote the set of points which are reachable from the origin within k steps. It can
be readily seen that

Rk = ∪i0,···,ik−1∈MR(i0, · · · , ik−1)

and

R = ∪∞k=1Rk (6)

where R is the reachable set of system (1).

Given matrix A and subspace B ∈ <n, let ΓAB denote the minimal A-invariant subspace
that contains B, i.e.,

ΓAB = B + AB + · · ·+ An−1B
This operation can be defined recursively as ΓA1ΓA2B = ΓA1(ΓA2B). For clarity, define
the nested subspaces as

V1 = ImB1 + · · ·+ ImBm

Vi+1 = ΓA1Vi + · · ·+ ΓAmVi i = 1, 2, · · · (7)

and

V =
∞∑

k=1

Vk

3



Note that if dimVj =dimVj+1, then Vl = Vj for l > j. This fact implies that Vn = V . It
is readily seen that this subspace is the minimum subspace which is invariant under Ai,
i = 1, · · · ,m and contains

∑m
j=1 Bj. Subspace V plays an important role in the following

derivations.

Because AiImB ⊆ ΓAImB for all A ∈ <n×n, B ∈ <n×p and i ≥ 0, we know that the
reachable set

R ⊆ ∪∞k=0 ∪i0,···,ik−1∈M (ΓAik−1
· · ·ΓAi1

Bi0 + · · ·+ Bik−1
) ⊆ V (8)

System (1) is said to be reversible, if all matrices Ai, i = 1, · · · ,m are nonsingular. For a
reversible system, the controllable set

C ⊆ ∪∞k=0 ∪i0,···,ik−1∈M (ΓA−1
i0

Bi0 + · · ·+ ΓA−1
i0

· · ·ΓA−1
ik−1

Bik−1
) ⊆ V (9)

The above analysis are summarized in the following proposition.

Proposition 1 If switched linear system (1) is reachable, or if system (1) is reversible
and controllable, then

V = <n (10)

3 Main Results

3.1 Geometric Characterizations

In this subsection, we shall present a criterion of controllability for switched linear systems.

Theorem 1 Switched linear system (1) is controllable if, and only if there exist an integer
k < ∞, and i0, · · · , ik, such that

Im(Aik · · ·Ai1Ai0) ⊆ R(i0, · · · , ik) (11)

Proof. From (3),(4) and (5),the controllable set of system (1) is given by

C = ∪∞k=1 ∪i0,···,ik−1∈M ((Aik−1
· · ·Ai0)

−1(Aik−1
· · ·Ai1Bi0 + · · ·+ Aik−1

Bik−2
+ Bik−1

))

That is, the controllable set can be expressed as countable unions of subspaces of <n.
Because <n cannot be expressed as countable unions of lower-dimensional subspaces, to
ensure controllability of system (1), it must have

C(i0, · · · , ik) = (Aik · · ·Ai0)
−1(Aik · · ·Ai1Bi0 + · · ·+ AikBik−1

+ Bik) = <n (12)
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for some k < ∞ and i0, · · · , ik ∈ M . That is

(Aik · · ·Ai1Bi0 + · · ·+ AikBik−1
+ Bik) ⊇ Im(Aik · · ·Ai0) ♦

For reachability of switched linear systems, similar criterion can be found in [12, Corollary
of Theorem 2]. It is summarized in the following theorem for completeness.

Theorem 2 Switched linear system (1) is reachable if, and only if there exist an integer
k < ∞, and i0, · · · , ik, such that

R(i0, · · · , ik) = <n (13)

Remark 1 It is interesting to notice the resemblance between reachability of a switched
linear system and weak controllability of a jump linear system [5]. For a jump linear
system [5]

xk+1 = Ark
xk + Brk

uk (14)

where rk ∈ M = {1, · · · ,m}, k = 1, 2, · · · forms a finite-state discrete-time ergodic Markov
chain, it is weakly controllable if and only if for some ri0 ∈ M , there exists a possible
transition sequence i0, · · · , iT−1 with T ≤ ∞, such that

rank[BiT−1
, AiT−1

BiT−2
, · · · , AiT−1

· · ·Ai1Bi0 ] = n

which is equivalent to condition (13).

As proved in [4], any causal discrete-time (input-output) system can be realized with a
reversible state variable representation. Accordingly, reversible system representation is
very general and applicable to a large class of systems. In the sequel, we present verifiable
criteria for controllability and reachability of reversible switched linear systems. Moreover,
we prove that the reachable and controllable sets are nothing but subspace V in this case.

Theorem 3 Suppose switched linear system (1) is reversible, then its reachable set is

R = V (15)

Proof. Let us prove it by contradiction. Suppose

dimR(i0, · · · , ik) = max{dimR(l0, · · · , lj) : l0, · · · , lj ∈ M, j = 0, 1, · · ·} < dimV (16)

For any arbitrary given integers l0, · · · , lj, consider the subspace

R(l0, · · · , lj, i0, · · · , ik) = Aik · · ·Ai0Alj · · ·Al1Bl0 + · · ·+ Aik · · ·Ai0Blj

+Aik · · ·Ai1Bi0 + · · ·+ Bik
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It follows from (16) that

dimR(l0, · · · , lj, i0, · · · , ik) = dimR(i0, · · · , ik)

which implies that

(Aik · · ·Ai0)(Alj · · ·Al1Bl0 + · · ·+ Blj) ⊆ R(i0, · · · , ik)

which further implies that

(Aik · · ·Ai0)(Alj · · ·Al1Bl0) ⊆ R(i0, · · · , ik) (17)

On the other hand, note that

V = Vn =
j1,···,jn=0,1,···,n−1∑

i1,···,in=1,···,m
Ajn

in · · ·Aj1
i1Bi1

Since j and l0, · · · , lj in (17) can take arbitrarily any values, we have

(Aik · · ·Ai0)V ⊆ R(i0, · · · , ik)

which is a contradiction because

dim[(Aik · · ·Ai0)V ] = dimV > dimR(i0, · · · , ik)

where the equality follows from the identity dimAV =dimV for any nonsingular matrix
A ∈ <n×n and subspace V ⊆ <n.

Accordingly, we have

dimR(i0, · · · , ik) = dimV (18)

Since

R(i0, · · · , ik) ⊆ R ⊆ V

we thus have

R = V ♦

Theorem 4 Suppose switched linear system (1) is reversible, then its controllable set is

C = V (19)

Proof. This theorem can be proven following the same argument of the proof of Theorem
3 and the details are omitted.
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Corollary 1 For a reversible switched linear system, the following statements are equiv-
alent:

(i) The system is completely controllable;

(ii) The system is completely reachable; and

(iii) V = <n.

Proof. Follows directly from Theorems 3 and 4.

Remark 2 For reversible switched linear systems, the reachable set, the controllable set
and subspace V always coincide with each other. For non-reversible systems, however,
these favorable properties do not hold any more as shown in Example 1 of Section 4.

Remark 3 The criterion for controllability and reachability in Corollary 1 is an extension
of the well known geometric criterion for reachability of linear system (A,B) [16]

ImB + AImB + · · ·+ An−1ImB = <n

It is equivalent to the Kalman-type rank condition

rank[B1, · · · , Bm, A1B1, · · · , A1Bm, · · · , AmB1, · · · , AmBm, · · · , An−1
1 B1, · · · ,

An−1
1 Bm, An−2

1 A2B1, · · · , An−2
1 A2Bm, · · · , An−1

m B1, · · · , An−1
m Bm] = n (20)

which can be efficiently verified by polynomial-time algorithms [1].

3.2 Computational Issues

As stated in Theorems 3 and 4, the controllable (reachable) set for a reversible switched
system is V , which is defined recursively through (Ai, Bi), i = 1, · · · ,m. The quantity
relationship between them is

V =
j1,···,jn=0,1,···,n−1∑

i1,···,in=1,···,m
Ajn

in · · ·Aj1
i1Bi1 (21)

That is, V is summation of (mn)np items. It requires large computational efforts to
calculate this subspace if m and n are relatively large.

In this subsection, we provide a procedure to calculate V more efficiently.

Denote the nested subspaces as

W0 = B1 + · · ·+ Bm,

Wi = Wi−1 + A1Wi−1 + · · ·+ AmWi−1, i = 1, 2, · · · (22)
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and furthermore

W =
∞∑

i=0

Wi

It can be readily seen that Vn ⊆ W ⊆ V . As a consequence, W = V . Let ρ denote the
minimal integer j such that Wj = W . It can be readily seen that ρ ≤ n − 1. Define
natural numbers

n0 = dimW0, ni = dimWi − dimWi−1, i = 1, · · · , ρ
and furthermore

τi =
i∑

j=0

nj, i = 1, · · · , ρ

A basis of subspace V can be constructed according to the following steps:

1. Choose a group of base vectors γ1, · · · , γn0 in W0.

2. Because

W1 = W0 +
m∑

i=1

AiW0 = span{γj, Aiγj, i = 1, · · · ,m, j = 1, · · · , n0}

we can find a basis of W1 by searching the set

{γ1, · · · , γn0 , A1γ1, · · · , A1γn0 , · · · , Amγ1, · · · , Amγn0}
from left to right for linearly independent column vectors. Denote this basis as

γ1, · · · , γn0 , γn0+1, · · · , γτ1

3. Continuing the process, we can find a basis γ1, · · · , γn0 , · · · γτl−1+1, · · · , γτl
for Wl.

Because

Wl+1=Wl+
m∑

i=1

AiWl=span{γ1, · · · , γτ , Aiγj, i = 1, · · · ,m, j = τl−1+ 1, · · · , τl}

by searching the set

{γ1, · · · , · · · , γτl
, A1γτl−1+1, · · · , A1γτl

, · · · , Amγτl−1+1, · · · , Amγτl
}

from left to right for linearly independent column vectors, we can find a basis of
Wl+1:

γ1, · · · , γτl
, γτl+1, · · · , γτl+1

4. Finally, we can find a basis γ1, · · · , γτρ of subspace W . That is,

V = W = span{γ1, · · · , γτρ}

It involves not more than mp + mτρ−1 column vectors in the above procedure, which is
only a small fraction of the original quantity, (mn)np.
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3.3 Observability and Reconstructibility

In the above analysis, reference is made to reachability and controllability only. It should
be noticed that the observability and reconstructibility counterparts can be addressed
dualistically. In the sequel, we outline the relevant concepts and the corresponding criteria.

Consider a switched linear discrete-time control system with outputs given by

xk+1 = Aσxk + Bσuk

yk = Eσxk
(23)

where xk ∈ <n, uk ∈ <p and yk ∈ <r are the states, inputs and outputs, respectively, and
σ : {0, 1, · · ·} → M = {1, 2, · · · ,m} is the switching path to be designed.

Definition 7 The switched linear system (23) is (completely) observable, if there exist
an integer k and a switching path σ : k → M , such that knowledge of the output sequence
{y0, y1, · · · , yk} and the input sequence {u0, u1, · · · , uk−1} is sufficient to determine x0.

Definition 8 The switched linear system (23) is (completely) reconstructible, if there
exist an integer k and a switching path σ : k → M , such that state xk can be determined
from knowledge of the output sequence {y0, · · · , yk} and the input sequence {u0, · · · , uk−1}.
In view of Theorems 1-4 for reachability and controllability, the following criteria are
readily obtained for observability and reconstructibility by using the principle of duality.

Theorem 5 Switched linear system (23) is observable if, and only if there exist an integer
k < ∞, and i0, · · · , ik, such that

Ei0 + AT
i0
Ei1 + · · ·+ AT

i0
· · ·AT

ik−1
Eik = <n (24)

where Ei =ImET
i for i = 1, · · · ,m.

Moreover, if the system is reversible, then a necessary and sufficient condition for observ-
ability is

j1,···,jn=0,1,···,n−1∑

i1,···,in=1,···,m
(Aj1

i1 )
T · · · (Ajn−1

in−1
)TEin = <n (25)

Theorem 6 Switched linear system (23) is reconstructible if, and only if there exist an
integer k < ∞, and i0, · · · , ik, such that

Ei0 + AT
i0
Ei1 + · · ·+ AT

i0
· · ·AT

ik−1
Eik ⊇ Im(AT

i0
· · ·AT

ik
) (26)

Moreover, if the system is reversible, then (25) is a necessary and sufficient condition for
reconstructibility.
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4 Illustrating Examples

Example 1 Consider system (1) with n = 4,m = 2, and

A1 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0


 , B1 =




1
0
0
0


 ; A2 =




0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1


 , B2 =




0
0
0
0


 (27)

Simple calculation gives

V = span{e1, e2}
R = span{e1} ∪ span{e2}
C = span{e1, e2, e3} ∪ span{e1, e2, e4}

Note that neither the controllable set nor the reachable set is a subspace of the total
space. Furthermore, R ⊂ V ⊂ C, where the subset relationships are strict proper.

Example 2 Controllability of a multi-rate sampled-data system.

Consider the linear continuous time-invariant system given by

ẋ = Ax + Bu(t) =




0 −100π 0 0
100π 0 0 0

0 0 3
2
π 0

0 0 0 3
2
π


 +




10 0
10 0
0 10
0 10


 u(t) (28)

which can be verified to be controllable.

The corresponding sampled-data system is given by

xk+1 = AT xk + BT uk (29)

where T is the sampling interval,

xk = x(kT ), uk = u(kT ), AT = eAT , BT =
∫ T

0
eτAdτB

If the sampling intervals are choosing as T1 = 0.01 and T2 = 0.015, we have the corre-
sponding matrix pairs (AT1 , BT1) and (AT2 , BT2) given as

AT1 =




−1 0 0 0
0 −1 0 0
0 0 −0.5 − sin 3

2
π

0 0 sin 3
2
π −0.5


 , BT1 =




0.1 0
0.1 0
0 −0.05− 0.1 sin 3

2
π

0 −0.05− 0.1 sin 3
2
π



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and

AT2 =




0 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1


 , BT2 =




0.15 0
−0.15 0

0 −0.15
0 −0.15




It can be verified that

rank[BTi
, ATi

BTi
, · · · , A3

Ti
BTi

] = 3, i = 1, 2

which shows that the corresponding sampled-data systems are not controllable.

Now we consider the multi-rate sampling of system (28) with sampling rate of either
T1 or T2. A question naturally arise: Does there exist a sampling strategy such that
the resulted switched system is controllable? That is, whether switched system (1) with
Ai = ATi

, Bi = BTi
, i = 1, 2 is controllable or not?

Simple computation gives

V ⊇ span{B1, B2, A1B1, A2B2} = <4

From Corollary 1, the controllability follows. Moreover, it can be verified that

C(2, 1) = R(2, 1) = <4

Accordingly, the switched system is controllable from (and reachable to) any point within
2 steps by choosing subsystem (A2, B2) at the first step and then switching to subsystem
(A1, B1) at the second step.

This example illustrates that switching among different sampling rates may avoid singu-
larities caused by inappropriate choice of sampling rates.

5 Conclusion

Controllability and reachability issues have been addressed for switched linear discrete-
time systems. Geometric characterizations for controllability and reachability were pre-
sented. For reversible systems, the controllable and reachable sets are proven to be sub-
spaces of the total space, and verifiable criteria for controllability and reachability have
also been presented. Criteria for observability and reconstructibility have also been pre-
sented.
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