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This paper presents a design framework for the stabilization of a class of under-

actuated mechanical systems. By utilizing nonregular static state feedbacks,

these systems are transformed into a class of nonlinear systems with chain

structures. Then, controller design is presented by applying the backstepping

design technique. The design procedure is applied to an underactuated robotic

system and simulation tests are carried out for illustrating the effectiveness of

the proposed approach.

1 Introduction

Underactuated mechanical systems are systems with fewer inputs than degrees of

freedom. During the past few years, control system design of underactuated mechan-

ical systems has attracted much attention in the literature, see, for example, Oriolo

and Nakamura (1991), Seto and Baillieul (1994), De Luca (1998), Laiou and As-

tolfi (1999), Reyhanoglu et al. (1999), Su and Stepanenko(1999), and the references

therein.

In Seto and Baillieul (1994), underactuated systems are classified into three types

according to their control flow diagram representation, namely, the chain, tree and

isolated-point structures. For a system with a chain structure, both the feedback

linearization technique and the backstepping design procedure can be applied to
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design control laws. A system with a tree structure, however, does not share this

advantage. The difficulty lies in the need to control certain variables in parallel, i.e.,

one input must control several degrees of freedom simultaneously. As for systems

with isolated points, certain control goals are difficult to achieve because the control

inputs have no influence on some variables at certain states. Control design for the

last two classes of systems is presently not well understood.

In this paper, controller design is investigated for a class of underactuated mechan-

ical systems with tree structures. The idea behind this approach is very simple.

Through the introduction of appropriate nonregular static state feedback, the sys-

tems are transformed into systems with chain structures. Then, controller design

can be easily carried out by applying the standard backstepping design procedure

(Kanellakopoulos, Kokotovic and Morse 1991, Seto, Annaswamy and Baillieul 1994,

Freeman and Kokotovic 1996, Sepulchre, Jankovic and Kokotovic 1997).

The paper is organized as follows. The problem formulation is given in Section 2.

A sufficient condition is presented for transforming an underactuated mechanical

system into a system with a chain structure in Section 3. In Section 4, an underac-

tuated robotic system is used for illustrating the design procedure and simulation

verification. The last section presents a short concluding remark.

2 Problem Formulation

Consider an underactuated mechanical system described by Reyhanoglu et al. (1999)

M1(q)q̈1 + M2(q)q̈2 + N1(q, q̇) = 0

MT
2 (q)q̈1+ M3(q)q̈2 + N2(q, q̇) = Λ(q)τ

(1)

where q = [qT
1 , qT

2 ]T is the vector of generalized coordinates, q1 ∈ <n represents

the unactuated degrees of freedom, and q2 ∈ <m represents the actuated degrees

of freedom, M(q) =




M1(q) M2(q)

MT
2 (q) M3(q)


 is the inertia matrix which is symmetric
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and positive definite for all q, Λ(q) is invertible for all q, τ is the input generalized

force produced by the m actuators, and Ni(q, q̇), i = 1, 2 represent the Coriolis,

centrifugal and perhaps gravitational or elastic force vectors. Throughout this paper,

all functions are assumed to be smooth functions.

Let M̄(q) = M3(q)−MT
2 (q)M−1

1 (q)M2(q), and

τ = Λ−1(q)
[
N2(q, q̇)−MT

2 (q)M−1
1 (q)N1(q, q̇) + M̄(q)u

]
(2)

where u = [u1, · · · , um]T are new control inputs to be designed. Then system (1) can

be rewritten in the form of partial feedback linearization (Spong 1996, Reyhanoglu

et al. 1999)

q̈1 = J(q)q̈2 + R(q, q̇) = J(q)u + R(q, q̇)

q̈2 = u
(3)

where

J(q) = −M−1
1 (q)M2(q), R(q, q̇) = −M−1

1 (q)N1(q, q̇)

System (3) have a cascade form that captures the important feature of underactu-

ated mechanical systems. The latter equation defines the decoupled and linearized

dynamics of the m actuated degrees of freedom, while the former equation defines

the coupled dynamics of the n unactuated degrees of freedom.

In general, the cascade system (3) is highly coupled and with a tree structure as

defined in Seto and Baillieul (1994). Accordingly, one control input must control

several degrees of freedom simultaneously, which makes the control and stabilization

of all the degrees of freedom very difficult.

A second-order system with a chain structure is described by Seto and Baillieul

(1994)

q̈i = φi(q1, · · · , qi+1, q̇1, · · · , q̇i), i = 1, · · · , n− 1 (4)

q̈n = φn(q, q̇) + γ(q, q̇)v

where v ∈ < is the input, γ(q, q̇) 6= 0, and ∂φi

∂qi+1
6= 0, ∀q, q̇ for i = 1, · · · , n.
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For a system with a chain structure, the backstepping design technique is appli-

cable to obtain a control law which will exponentially stabilize the system (Kanel-

lakopoulos, Kokotovic and Morse 1991, Seto, Annaswamy and Baillieul 1994, Seto,

Annaswamy and Baillieul 1994).

It is readily seen that, if system (3) can be transformed into system (4) via an appro-

priate state feedback, then a stabilizing controller could be designed for (3) following

the well-established backstepping design procedure. This simple observation moti-

vates the use of nonregular static state feedbacks as triangulating transformations.

The problem studied in this paper can be formulated as follows.

Nonregular Static State Feedback Triangulation (NSSFT) Given a multi-

input underactuated mechanical system (3), find, if possible, a nonregular static state

feedback (Sun and Xia 1997)

u = α(q, q̇) + β(q, q̇)v, v ∈ < (5)

such that the transformed system is with a chain structure as in (4).

Remark 1 Note that the gain matrix β(q, q̇) in (5) is non-square (and hence sin-

gular) for the multi-actuator case (i.e. m > 1). The idea of using nonregular state

feedbacks in control system design could be traced back to Morgan (1964) and Hey-

mann (1968) for linear systems and later Tsinias and Kalouptsidis (1981, 1987)

and Huijberts (1992) for nonlinear systems.

Remark 2 The above problem shares some similarities with the problem of nonregu-

lar state feedback linearization (Sun and Xia 1997). However, feedback triangulation

is more attractive because it is more closely tied to the physical description of the sys-

tems and does not require any coordinate transformation. This approach can avoid

some undesired properties of feedback linearization such as cancelation of benefi-

cial nonlinearities. It can also enhance robustness and softness through appropriate

backstepping design of Lyapunov functions (Freeman and Kokotovic 1996).
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Remark 3 The approach of NSSFT is mainly applicable to a class of multi-input

underactuated systems with tree structures. Possible practical examples include

robots with elastic joints (Tomei 1991 and De Luca 1998b) and robot with mixed

rigid/elastic joints (De Luca 1998a). This approach, however, is not directly appli-

cable to underactuated systems which undergo non-integrable (nonholonomic) con-

straints (Bloch, Reyhanoglu and McClamroch 1992 and Reyhanoglu et al. 1999). As

a consequence of Brockett’s Theorem (Brockett 1983), a nonholonomic system is not

triangulable via any smooth static state feedback.

3 Main Results

In this section, we identify a class of underactuated mechanical systems which are

nonregular static state feedback triangulable.

Consider an underactuated mechanical system given by

ẍ = f(x, ẋ) + H(x, ẋ)y + G(x, ẋ)u (6)

ÿ = u (7)

where x ∈ <n, y ∈ <m are the generalized coordinates, u ∈ <m are the inputs,

f(x, ẋ) = [f1, · · · , fn]T is a smooth vector field, H(x, ẋ) and G(x, ẋ) are n × m

matrices of real-valued functions. We assume m ≥ n, that is, the number of actuated

joints is not less than the number of unactuated joints.

Assumption 1 There exists a positive definite matrix P (x, ẋ) ∈ <n×n such that

H(x, ẋ) = P (x, ẋ)H0(x, ẋ), G(x, ẋ) = P (x, ẋ)G0(x, ẋ)

where matrix H0(x, ẋ) has an upper triangular structure:

H0(x, ẋ) =




h1,1(x, ẋ) h1,2(x, ẋ) · · · h1,n(x, ẋ) · · · h1,m(x, ẋ)

0 h2,2(x, ẋ) · · · h2,n(x, ẋ) · · · h2,m(x, ẋ)
. . .

0 0 · · · hn,n(x, ẋ) · · · hn,m(x, ẋ)




(8)
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hi,i(x, ẋ) 6= 0, i = 1, · · · , n

and matrix G0(x, ẋ) has a strictly upper triangular structure:

G0(x, ẋ) =




0 g1,2(x, ẋ) · · · g1,n(x, ẋ) g1,n+1(x, ẋ) · · · g1,m(x, ẋ)

0 0 · · · g2,n(x, ẋ) g2,n+1(x, ẋ) · · · g2,m(x, ẋ)
. . .

0 0 · · · 0 gn,n+1(x, ẋ) · · · gn,m(x, ẋ)




(9)

gi,i+1(x, ẋ) 6= 0, i = 1, · · · , n− 1

Theorem 1 System (6)-(7) satisfying Assumption 1 is nonregular static state feed-

back triangulable.

Proof. First, if m > n, then let

un+1 = αn+1 = yn+2 + ψn+1(yn+1)

...

um−1 = αn+2 = ym + ψm−1(yn+1, · · · , ym−1) (10)

um = αm = x1 + ψm(yn+1, · · · , ym−1, ym)

where ψi, i = n + 1, · · · ,m are any smooth functions of appropriate arguments.

Rewrite equations in (6) as

P−1(x̄)(ẍ− f(x̄)) = H0(x̄)y + G0(x̄)u (11)

where x̄ = [xT , ẋT ]T .

Let di(x̄) = [di,1(x̄), · · · , di,n(x̄)] be the ith row of matrix P−1(x̄). By virtue of

Assumption 1 and equations in (10), the last equation of (11) is given by

dn(x̄)(ẍ− f(x̄)) =
m∑

j=n

hn,j(x̄)yj +
m∑

j=n+1

gn,j(x̄)αj (12)

from which we have

ẍn = fn + d−1
n,n(

m∑

j=n

hn,jyj +
m∑

j=n+1

gn,jαj −
n−1∑

j=1

dn,j(ẍj − fj)) (13)
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where the arguments of the related functions are omitted for clarity. Note that

dn,n(x̄) 6= 0 from the positive definiteness of P (x̄).

Next, let us design inputs ui, i = 2, · · · , n, such that the x-dynamics have a chain

structure, i.e.,

ẍ1 = x2 + ϕ1(ς, x1)

... (14)

ẍn−1 = xn + ϕn−1(ς, x1, · · · , xn−1)

where ς = [yn+1, ẏn+1, · · · , ym, ẏm]T and ϕi, i = 1, · · · , n − 1 are arbitrary given

smooth functions.

Substituting (14) into (13) yields

ẍn = l(x̄)yn + κ(x̄, ς) (15)

where l(x̄) = d−1
n,n(x̄)hn,n(x̄) 6= 0, and

κ(x̄, ς) = fn + d−1
n,n




m∑

j=n+1

(hn,jyj + gn,jαj)−
n−1∑

j=1

dn,j(xj+1 + ϕj − fj)




The first n− 1 equations of (11) are given by

d1(x̄)(ẍ− f(x̄)) =
m∑

j=1

h1,j(x̄)yj +
m∑

j=n+1

g1,j(x̄)αj +
n∑

j=2

g1,j(x̄)uj

... (16)

dn−1(x̄)(ẍ− f(x̄)) =
m∑

j=n−1

hn−1,j(x̄)yj +
n∑

j=n+1

gn−1,j(x̄)αj + gn−1,n(x̄)un

from which we can solve for ui, i = 2, · · · , n as follows

un = αn = cn(x̄, ς, yn) + en(x̄)yn−1

un−1 = αn−1 = cn−1(x̄, ς, yn−1, yn) + en−1(x̄)yn−2

... (17)

u2 = α2 = c2(x̄, ς, y2, · · · , yn) + e2(x̄)y1
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where

cn = g−1
n−1,n


x̄)(dn−1(x̄)(σ − f(x̄))−

m∑

j=n

hn−1,j(x̄)yj −
m∑

j=n+1

gn−1,j(x̄)αj




en = −g−1
n−1,n(x̄)hn−1,n−1(x̄)

...

c2 = g−1
1,2(x̄)


d1(x̄)(σ − f(x̄))−

m∑

j=2

h1,j(x̄)yj −
m∑

j=3

g1,j(x̄)αj)




e2 = −g−1
1,2(x̄)h1,1(x̄)

σ = [x2 + ϕ1(ς, x1), · · · , xn + ϕn−1(ς, x1, · · · , xn−1), l(x̄)yn + κ(x̄, ς)]T

Note that e2(x̄), · · · , en(x̄) are non-zero real-valued functions.

Finally, let

u1 = v (18)

Gathering (10), (17) and (18), the nonregular static state feedback is given by

u =




0

c2(x̄, ς, y2, · · · , yn) + e2(x̄)y1

...

cn(x̄, ς, yn) + en(x̄)yn−1

yn+2 + ψn+1(yn+1)
...

x1 + ψm(yn+1, · · · , ym−1, ym)




+




1

0
...

0
...

0

0




v (19)

Accordingly, the overall system of (6)-(7) and (19) is given by

ÿn+1 = yn+2 + ψn+1(yn+1)

...

ÿm−1 = ym + ψm−1(yn+1, · · · , ym−1)

ÿm = x1 + ψm(yn+1, · · · , ym−1, ym)
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ẍ1 = x2 + ϕ1(ς, x1)

... (20)

ẍn−1 = xn + ϕn−1(ς, x1, · · · , xn−1)

ẍn = l(x̄)yn + κ(x̄, ς)

ÿn = en(x̄)yn−1 + cn(x̄, ς, yn)

...

ÿ2 = e2(x̄)y1 + c2(x̄, ς, y2, · · · , yn)

ÿ1 = v

which has a chain structure. 4

Remark 4 Note that there are some flexibilities in the triangulating control law

(19) and the resulting system (20). In particular, the functions ψi, i = n+1, · · · ,m
and ϕi, i = 1, · · · , n− 1 are arbitrary smooth functions which can be chosen by the

designer. These design flexibilities can be utilized to achieve certain control objectives

other than stability.

Remark 5 It is readily seen that the upper triangular assumption of H0 and G0

in Assumption 1 can be replaced by the dual lower triangular assumption without

violating the validity of Theorem 1.

Remark 6 If m > n, Assumption 1 can be relaxed to some extent. In fact, the

upper triangular assumption (8) can be replaced by

H0 = [0k, Ĥ0] 0 ≤ k ≤ m− n with Ĥ0 in an upper triangular form

where 0k is n×k matrix whose entries are zeros. Similarly, the strict upper triangular

assumption (9) can be replaced by

G0 = [0µ, Ĝ0] 0 ≤ µ ≤ m− n with Ĝ0 in a strict upper triangular form.
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Remark 7 Theorem 1 can be readily extended to higher order systems

x(k) = f(x̄) + H(x̄)y + G(x̄)u

y(k) = u (21)

where k > 2, and x̄ =




x

ẋ
...

x(k−1)



.

4 Case Study

Consider a planar robot with two flexible revolute joints. Under the assumptions

that the joint flexibilities are modeled as linear torsional springs and the rotors of

the actuators are modeled as uniform bodies of revolution, the dynamics are given

by Tomei (1991) and De Luca (1998b)

M1(q1)q̈1 + M2q̈2 + C1(q1, q̇1)q̇1 + Ke(q1 − q2) + Γ1(q1) + F1(q1, q̇1) = 0

MT
2 q̈1 + M3q̈2 + Ke(q2 − q1) + F2(q2, q̇2) = τ

(22)

where q1 = (q1,1, q1,2) and q2 = (q2,1, q2,2) represent the positions of the links and

the actuators, respectively, M(q) =




M1(q1) M2

MT
2 M3


 is the inertia matrix which

is symmetric and positive definite, C1(q1, q̇1) is the centripetal and Coriolis matrix,

Ke =diag[k1, k2] is the diagonal stiffness matrix whose entries are spring constants of

the joints, Γ1(q1) is the gravitational force vector, F1(q1, q̇1) and F2(q2, q̇2) represent

the friction forces, and τ ∈ <n are the torques supplied by the motors.

Matrix M2 has a strictly upper triangular structure given by

M2 =




0 m1,2

0 0


 (23)

When M2 = 0, that is, m1,2 = 0, there is no inertial coupling between the links and

the actuators, and model (22) is reduced to the well-known simplified model (Spong
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1987). This simplified model is always regular static state feedback linearizable. To

avoid this case, we assume that M2 6= 0. In this case, it can be verified that the

system is neither feedback linearizable nor decouplable via any regular static state

feedback.

Let

τ = −MT
2 M−1

1 (q1)(C1(q1, q̇1)q̇1 + Ke(q1 − q2) + Γ1(q1) + F1(q1, q̇1))

+Ke(q2 − q1) + F2(q, q̇) + (M3 −MT
2 M−1

1 (q1)M2)u (24)

System (22) can be rewritten as

q̈1 = −M−1
1 (q1)(C1(q1, q̇1)q̇1 +Ke(q1 − q2) +Γ1(q1) +F1(q1, q̇1))−M−1

1 (q1)M2u

q̈2 = u (25)

which is in form (3).

It can be verified that Theorem 1 is applicable to system (25). Accordingly, it is

nonregular static state feedback triangulable. Following the procedure proposed in

the proof of Theorem 1, a triangulating feedback can be constructed as follows.

First, rewrite system (25) as

q̈1 = J(q1, q̇1) + M−1
1 (q1)(Keq2 −M2u)

q̈2 = u
(26)

where

J(q1, q̇1) =




J1

J2


 = −M−1

1 (q1)(C1(q1, q̇1)q̇1 + Keq1 + Γ1(q1) + F1(q1, q̇1)) (27)

Next, let us design the second input channel u2 such that q1 can be linearized to be

a single chain of integrator, i.e.,

q̈1,1 = q1,2 (28)
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Denote M−1
1 (q1) =




d1(q1) d2(q1)

d2(q1) d3(q1)


. Substituting (28) into (26) gives

J1(q1, q̇1) + [d1(q1), d2(q1)](Keq2 −M2u) = q1,2

from which we can solve for u2 as follows

u2 = α2(q, q̇) =
1

d1(q1)m1,2

(J1(q1, q̇1)− q1,2 + [d1(q1), d2(q1)]Keq2) (29)

Finally, let

u1 = v (30)

The overall system of (26), (29) and (30) is given by

q̈1,1 = q1,2

q̈1,2 = ρ1(q1, q̇1) + η1(q1)q2,2

q̈2,2 = ρ2(q1, q̇1, q2,2) + η2q2,1 (31)

q̈2,1 = v

where

ρ1 = J2(q1, q̇1) +
d2(q1)

d1(q1)
(q1,2 − J1(q1, q̇1))

η1 = d3(q1)− d2
2(q1)

d1(q1)

ρ2 =
1

d1(q1)m1,2

(J1(q1, q̇1)− q1,2 + d2(q1)k2q2,2)

η2 =
d1(q1)k1

d1(q1)m1,2

It is readily seen that system (31) processes a chain structure.

Substituting (29) and (30) into (24), we have the nonregular static state feedback

τ=−MT
2 M−1

1 (q1)(C1(q1, q̇1)q̇1 +Ke(q1 − q2) +Γ1(q1) +F1(q1, q̇1)) +Ke(q2 − q1)

+F2(q, q̇)+(M3 −MT
2 M−1

1 (q1)M2)




0

α2(q, q̇)


+M3




0

1


 v (32)
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which solves the problem of nonregular static state feedback triangulation for the

flexible joint robots (22).

For system (31), the backstepping design technique is readily applied to obtain a

stabilizing control law v = v(q, q̇). The corresponding torque input τ computed

through equations (32) will steer the robot system (22) globally asymptotically sta-

ble. In addition, the rate of convergence can be designed through adjusting the gain

constants of the backstepping design procedure.

For a simulation study, let us consider system (22) with

M1(q1) =




p1 + p2 cos2 q1,2 0

0 p3


 , M2 =




0 p4

0 0


 , M3 =




p5 0

0 p6




C1(q1, q̇1) =



−0.5p2q̇1,2 sin 2q1,2 −0.5p2q̇1,1 sin 2q1,2

0.5p2q̇1,1 sin 2q1,2 0




Γ1(q1) =




0

p7 cos q1,2




F1(q1, q̇1) = F2(q2, q̇2) = 0

with pi, i = 1, · · · , 7 are constant parameters.

A triangulating feedback can be computed from (32) as

τ1 = k1q2,1 − k1q1,1 + p5v

τ2 = − 1

p4

(p2p6q1,2 cos2 q1,2 − p2p6q̇1,1q̇1,2 sin 2q1,2 + k2p4q1,2 + p6p1q1,2 − k2p4q2,2

+p6k1q1,1 − p6k1q2,1 − p2
4q1,2)

The transformed system is given by

q̈1,1 = q1,2

q̈1,2 =
k2

p3

q2,2 − 1

2p3

(p2q̇
2
1,1 sin 2q1,2 + 2k2q1,2 + 2p7 cos q1,2)

q̈2,2 =
k1

p4

q2,1 − 1

p4

(−p2q̇1,1q̇1,2 sin 2q1,2 + k1q1,1 + q1,2p1 + q1,2p2 cos2 q1,2) (33)

q̈2,1 = v

13



It can be verified that the only equilibrium point is qe = [0, 0, 0,
p7

k2

]T .

A stabilizing control law can be designed for (33) by utilizing the backstepping

design procedure (Seto and Baillieul 1994, Theorem 4.1).

The values of the parameters pi, i = 1, · · · , 7 and ki, i = 1, 2 in this simulation are

shown in table 1.

Table 1. Parameters used for simulation

[p1, p2, p3, p4, p5, p6, p7] [1.5, 0.5, 2.0, 0.2, 1.0, 1.0, 50.0] kg m2

[k1, k2] [100, 200] N m−1

Assume the manipulator is initially at rest with q(0) = [0, π
4
, 0, π

8
]T and q̇(0) =

[0, 0, 0, 0]T . The trajectories of the link positions and link velocities are depicted in

figures 1 and 2, respectively. It can be seen that the link positions converge to the

equilibrium point at an exponential rate and with a satisfactory transient process.

The applied torques are shown in figure 3. Note that steady state of τ2 is equal to

p7, which is exactly the effort needed to resist the gravity effect at the equilibrium

point.

[ Insert figure 1 about here ]

Figure 1. Trajectories of the link positions.

[ Insert figure 2 about here ]

Figure 2. Trajectories of the link velocities.

[ Insert figure 3 about here ]

Figure 3. Trajectories of applied torques.
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5 Conclusion

In this paper, a nonregular static state feedback triangulation approach has been

proposed to design stabilizing controllers for a class of multi-input underactuated

mechanical systems. The systems were transformed into a class of systems with

chain structures via appropriate nonregular static state feedbacks, thus enable us

to design a control law by applying the standard backstepping design procedure. A

criterion for nonregular static state feedback triangulation was presented for a class

of underactuated systems with tree structures. As an illustrating example, the design

procedure has been applied to an underactuated robotic system and simulation tests

have been carried out to show the effectiveness of the proposed approach.
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