
On Reachability and Stabilization of Switched Linear Systems∗

Zhendong Sun† and Dazhong Zheng

Department of Automation, Tsinghua University

Beijing 100084, P.R. China

Abstract—In this paper, the reachability and stabilization issues are addressed for

switched linear control systems. A necessary condition and a sufficient condition are pre-

sented for reachability. Under mild assumptions, we prove that the switched linear control

systems are stabilizable. In addition, we show that an event-driven switching stabilization

strategy can be explicitly constructed.

Index Terms—Switched linear systems, reachability, stabilization, event-driven switch-

ing.

I. INTRODUCTION

In the last decade, there has been considerable interest in modelling, analysis and design

of switched and hybrid systems (see [1, 4, 5, 9, 12] and the references therein). Switched

systems deserve investigation for theoretical interest as well as for practical applications.

Switching among different system structures is an essential feature of many engineering

control applications such as power systems and power electronics [10, 8]. Control techniques

based on switching between different controllers have also been investigated in recent years,

particularly in the context of adaptive control [6, 7]. The existence of systems that cannot

be asymptotically stabilized by a single continuous feedback controller [2] also motivates us

to study switched systems.

In [3], some sufficient conditions and necessary conditions were given for controllability,

observability and stability for periodic switched linear control systems under the assumption

that the switching sequence is fixed a priori. In this paper, we are to design not only the

appropriate control inputs but also the switching strategy in order to control and/or stabilize

the system. As the switching sequence is a design variable rather than fixed a priori, an
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extra degree of freedom in design is introduced.

The paper is organized as follows. Section II formulates the problem and presents prelim-

inary analysis. A necessary condition and a sufficient condition for reachability are presented

in Section III. Section IV investigates the probelm of event-driven stabilization and presents

a constructive design algorithm. Finally, some concluding remarks are made in the last

section.

II. DEFINITIONS AND PRELIMINARIES

Consider a switched linear control system given by

ẋ(t) = Aα(x,t)x(t) + Bα(x,t)uα(x,t)(t), (1)

where x ∈ <n are the states, ui(t) ∈ <ri , i = 1, · · · ,m are the inputs, α(x, t) : <n × <+ →
{1, 2, · · · ,m} is the switching function to be designed, and matrix pair (Ak, Bk) for 1 ≤ k ≤ m

denotes a subsystem of (1).

For switched systems, a switching sequence is to specify when and to which subsystem

one should switch at each instant of time.

Definition 1: A switching sequence is a finite or countable ordered set of pairs of time

and active subsystem

{(τ0, i0), (τ1, i1), · · · , (τs, is)} (2)

where τ0 < τ1 < · · · < τs ≤ ∞ and ij ∈ {1, 2, · · · ,m}, for j = 0, 1, · · · , s, s ≤ ∞.

Given switched system (1) and any initial configuration x0, the undergoing switching

sequence (2) can be uniquely determined by switching function α(x, t), and vice-versa. The

quantity relationship is

α(x, t) = k, for t ∈ ∪ij=k[τj, τj+1), k = 1, · · · , m.

Definition 2: System (1) is (completely) reachable, if for any given t0, x0 and xf , there exist

a real number tf > t0, piecewise continuous control functions ui(t), t ∈ [t0, tf ], i = 1, · · · ,m
and a switching function α(x, t), such that x(tf ) = xf .

It is obvious that if one subsystem, say (A1, B1), is controllable, then system (1) is reach-

able too. In this paper, we shall investigate the non-trivial situation where each subsystem
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(Ai, Bi), i = 1, · · · ,m is not controllable.

Denote Ci = [Bi, AiBi, · · · , An−1
i Bi], for i = 1, · · · ,m, Ci = ImCi, and ImB the subspace

spanned by columns of matrix B. Given matrix A and subspace B, let ΓAB denote the

minimal invariant subspace of B under A, i.e.,

ΓAB = B + AB + · · ·+ An−1B.

This operation can be defined recursively as ΓA1ΓA2B = ΓA1(ΓA2B). For clarity, define the

nested subspaces as

V1 = C1 + · · ·+ Cm

V2 = ΓA1V1 + · · ·+ ΓAmV1

... (3)

Vn = ΓA1Vn−1 + · · ·+ ΓAmVn−1,

Subspaces V1 and Vn are used in Theorem 1 and Theorem 2 in Section III.

Lemma 1: Given a matrix sequence B1, · · · , Bs of the same row number n. If A1, · · · , As−1

are sufficiently close to the identity matrix In, then it satisfies

rank[B1, · · · , Bs] ≤ rank[B1, A1B2, · · · , A1 · · ·As−1Bs].

Proof: See Appendix A.

III. REACHABILITY

A simple necessary condition for reachability is summarized in Theorem 1.

Theorem 1: If switched linear system (1) is reachable, then

Vn = <n. (4)

Proof: Suppose that system (1) is reachable and initially rest at x(t0) = 0. For arbitrarily

any given x ∈ <n, there exist tf > t0, a switching sequence {(τ0, i0), · · · , (τs, is)} and inputs

ui(t), i = 1, · · · ,m, such that

x(tf ) = eAis (tf−τs) · · · eAi1
(τ2−τ1)

∫ τ1

τ0
eAi0

(τ1−τ)Bi0ui0(τ)dτ

+ · · ·+
∫ tf

τs

eAis (tf−τ)Bisuis(τ)dτ = x
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Note that eAitImBi ⊂ Ci and
∫ t2

t1
eAi(t2−τ)Biui(τ)dτ ∈ Ci for i = 1, · · · , m and t2 > t1.

Accordingly,

x ∈ ΓAis
ΓAis−1

· · ·ΓAi0
Bi0 + · · ·+ ΓAis

Bis ⊂ Vn

Since the chioce of x is arbitrary, one has Vn = <n. ♦

Remark 1: Using Theorem 1, we can easily exclude some unreachable switched linear

systems. For example, system (1) with Ai = 0, i = 1, · · · ,m and rank[B1, B2, · · · , Bm] < n is

not reachable.

Theorem 2: A sufficient condition for system (1) to be reachable is

V1 = <n. (5)

Proof: According to linear system theory, for any i, 1 ≤ i ≤ m, it is always possible to

construct transformation matrices (Ti, Fi, Gi) with Ti and Gi being nonsingular, such that

the matrix pair

(Âi, B̂i)
def
= (T−1

i (Ai + BiFi)Ti, T
−1
i BiGi) (6)

is in the form as

Âi =




M i
1 · · · 0 M i

1,ri+1

. . .
...

0 · · · M i
ri

M i
ri,ri+1

0 · · · 0 M i
ri+1,ri+1




, B̂i =




b̂i
1 · · · 0

. . .

0 · · · b̂i
ri

0 · · · 0




, (7)

where (M i
j , b̂

i
j), j = 1, · · · , ri are Brunovsky normal pairs of length ki

j with ki
1, · · · , ki

ri
being

the controllability indeces of subsystem (Ai, Bi).

Introducing the following linear feedback control

ui = Fix + Givi, i = 1, · · · ,m, (8)

system (1) is transformed into

ẋ = (Ai + BiFi)x + BiGivi
def
= Āix + B̄ivi. (9)
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Detailed computation shows that, for any given real numbers τ0 < τ1 < · · · < τn, the

following equations hold

Im[
∫ τ1

τ0
eĀi(τn−τ)dτB̄i, · · · ,

∫ τn

τn−1

eĀi(τn−τ)dτB̄i] = Im[B̄i, · · · , Ān−1
i B̄i] = Ci. (10)

For clarity, let 0 = t1 = t1,0 < t1,1 < · · · < t1,n = t2 = t2,0 < t2,1 < · · · < t2,n = · · · =

tm = tm,0 < tm,1 < · · · < tm,n = tm+1 be time instants for control switching to be designed.

Denote

Di = [
∫ ti,1

ti,0
eĀi(ti+1−τ)dτB̄i, · · · ,

∫ ti,n

ti,n−1

eĀi(ti+1−τ)dτB̄i], i = 1, · · · ,m,

Ej = eĀj(tj+1−tj), j = 2, · · · ,m.

It follows from (10) that

rank[Em · · ·E2D1, · · · , EmDm−1, Dm] = rank[Em · · ·E2C1, · · · , EmCm−1, Cm]. (11)

Note that limt→0 eAt −→ In for any given matrix A. Accordingly, let tm+1 be sufficiently

small, it follows from Lemma 1 that

rank[EmEm−1 · · ·E2C1, · · · , EmCm−1, Cm] ≥ rank[C1, · · · , Cm] = n. (12)

Equations (11) and (12) imply that

rank[EmEm−1 · · ·E2D1, · · · , EmDm−1, Dm] = n. (13)

For system (9), consider

vi(t) = ai,j, ti,j ≤ t < ti,j+1, j = 0, · · · , n− 1, i = 1, · · · ,m,

where ai,j are variables to be determined. For any arbitrarily given x0 and xf , consider the

equation (with unknowns ai,j, i = 1, · · · ,m, j = 0, · · · , n− 1) given by

xf− eĀm(tm+1−tm)· · · eĀ1(t2−t1)x0= eĀm(tm+1−tm)· · · eĀ2(t3−t2)
∫ t2

t1
eĀ1(t2−τ)B̄1v1(τ)dτ

+ · · ·+
∫ tm+1

tm
eĀm(tm+1−τ)B̄mvm(τ)dτ. (14)

It follows from (13) that equation (14) at least has one solution. Accordingly, system (9) is

reachable, which implies reachability of (1) . ♦
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In general, there is a gap between conditions (4) and (5). However, for specific classes of

systems, these two conditions coincide, hence a complete characterization for reachability is

available immediately. The simplest example is the non-switched systems (m = 1), for which

Theorem 1 and Theorem 2 together leads to the well known solution for controllability [11]:

B1 + A1B1 + · · ·+ An−1
1 B1 = <n.

Another example is the system with A1 = A2 = · · · = Am, i.e., a nominal (non-switching)

system with multiple controllers. Consequently, condition (5) is a necessary and sufficient

condition for this class of systems.

For low-dimensional switched linear systems, the gap between conditions (4) and (5) can

be filled up through analyzing all possible switching sequences.

Corollary 1: For system (1) with n = 3,m = 2, a necessary and sufficient condition for

reachability is

V3 = <3. (15)

Proof: See Appendix B.

IV. EVENT-DRIVEN FEEDBACK STABILIZATION

In this section, let us investigate the problem of stabilization for switched linear con-

trol systems. In the sequel, we make two assumptions: (i) each subsystem (Ai, Bi) is not

stabilizable for i = 1, · · · ,m, and (ii) system (1) satisfies relationship (5).

Define a sequence of subspaces of <n described by:

Wk =
m∑

i1,···,ik−1=1

(∩j 6∈{i1,···,ik−1}Cj), k = 1, · · · ,m,

It is obvious that W1 ⊂ W2 ⊂ · · · ⊂ Wm =
∑m

i=1 Ci = <n.

A basis of <n can be constructed according to the following procedure. First, choose

a group of base vectors γ1, · · · , γs1 in W1. Then, expand them to γ1, · · · , γs1 , γs1+1, · · · , γs2

which form a basis of W2. Continuing this process, we finally find a basis γ1, · · · , γn of

Wm = <n. Define T = [γ1, · · · , γn].

Let z(t) = T−1x(t). System (1) can be re-written as

ż = T−1Aα(x, t)Tz + T−1Bα(x, t)uα(x, t). (16)
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Suppose dimCi = ki and {zi1 , · · · , ziki
} ∈ Ci with i1 < i2 < · · · < iki

. Let

yi = [zi1 , · · · , ziki
]T , i = 1, · · · ,m, (17)

yi = [z1, · · · , zi1−1, zi1+1, · · · , zi2−1, · · · , ziki
+1, · · · , zn]T , i = 1, · · · ,m, (18)

Let σi,1, · · · , σi,Γi
denote the real parts of eigenvalues of Ai corresponding to the un-

controllable mode of system (Ai, Bi). From assumption (i) made above, it follows that

σi = max{σi,1, · · · , σi,Γi
} ≥ 0, for i = 1, · · · ,m. Define σmax = max{σi : i = 1, · · · ,m}.

Fix a r > mσmax + 1. It is routine to construct feedback gain matrices Fi, i = 1, · · · ,m,

such that each of the real parts of eigenvalues of Ai +BiFi corresponding to the controllable

mode of (Ai, Bi) is less than −r. Applying feedback transformations

ui(t) = Fix(t), i = 1, · · · , m, (19)

equation (16) becomes

ż = T−1(Aα + BαFα)Tz. (20)

Define the norm of a vector ζ = [ζ1, · · · , ζl]
T ∈ <l as

||ζ|| = ||ζ||∞ = max{|ζi| : i = 1, · · · , l}.

Note that yi is in the controllability subspace of subsystem (Ai, Bi), accordingly, the real

parts of the corresponding poles are less than −r. Therefore, if α(x, t) = i for t ∈ [t1, t2],

then

||yi(t2)|| ≤ cie
−r(t2−t1)||yi(t1)|| (21)

for some positive constant ci. Similarly, for any σ with σ > σmax, we have

||yi(t2)|| ≤ die
σ(t2−t1)||yi(t1)||, i = 1, · · · ,m

||z(t2)|| ≤ die
σ(t2−t1)||z(t1)||

∀t2 > t1 (22)

for some positive constant di.

Fix a σ with σmax < σ < σmax + 1
m

and correspondingly di for each i = 1, · · · ,m. Let

c =max{c1, · · · , cm, d1, · · · , dm, 1}. Fix a positive real number τ >
(m + 1) ln c

r −mσ
. We are now

ready to formulate an event-driven switching strategy for system (20).
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For any given initial state z0 = z(t0), there must exist an integer k0, 1 ≤ k0 ≤ n such

that ||yk0(t0)|| = ||z0||. Define recursively the switching pairs (ti, ki), i = 1, 2, · · · to satisfy

the equations given by

ti = inf{t : t ≥ ti−1 + τ and ||yki−1
(t)|| ≤ ||yki−1(t)||} (23)

||yki
(ti)|| = ||z(ti)||, (24)

where inf∅ = +∞ with ∅ standing for the empty set. If more than one ki’s satisfy equation

(24), then just pick anyone among them. Let the switching sequence be

{(t0, k0), (t1, k1), · · · , (tj, kj), · · ·}. (25)

Accordingly, the switching function α(x, t) is

α(x, t) = ki, if ti ≤ t < ti+1. (26)

Theorem 3: For switched system (1) satisfying (5), consider state feedback (19). If the

event-driven switching function is given by (26), then the closed-loop system is asymptoti-

cally stable.

Proof: For any fixed j ≥ 0, consider the interval [tj, tj+m+1]. We are to prove that the

rate of convergence of ||z(t)|| in this interval is higher than δ
def
=

(r −mσ)τ − (m + 1) ln c

(m + 1)τ
.

As a consequence, the closed-loop system is asymptotically stable.

Denote Λ = {l : j ≤ l ≤ j + m, tl+1 − tl > τ}. From (21) and (22), it follows that

||z(tl+1)||




= ||ykl
(tl+1)|| ≤ ce−rhl||z(tl)|| if l ∈ Λ

≤ ceσhl ||z(tl)|| = ceστ ||z(tl)|| else
j ≤ l ≤ j + m (27)

where hl = tl+1 − tl, l = j, · · · , j + m.

Suppose Λ 6= ∅, then from (27), we have

||z(tj+m+1)|| ≤ cm+1e(ρστ−r
∑

j∈Λ
hj)||z(tj)|| ≤ e−δ(tj+m+1−tj)||z(tj)|| (28)

where ρ is the number of elements of set {l : j ≤ l ≤ j + m,hl = τ}. The latter inequality

of (28) holds due to δ <
r

∑
j∈Λ hj − (m + 1) ln c− ρστ

tj+m+1 − tj
.
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On the other hand, if Λ = ∅, then hl = τ , l = j, · · · , j + m. Because il ∈ {1, · · · ,m} for

l = j, · · · , j + m, there must exist integers l1, l2, j ≤ l1 < l2 ≤ j + m, such that kl1 = kl2 .

From (27) and (22), it follows that

||z(tj+m+1)|| ≤ cj+m+1−l2e(j+m+1−l2)στ ||z(tl2)|| = cj+m+1−l2e(j+m+1−l2)στ ||ykl2
(tl2)||

≤ cj+m−l1e(j+m−l1)στ ||ykl2
(tl1+1)|| ≤ cj+m+1−l1e(j+m−l1)στ−rτ ||ykl1

(tl1)||
= cj+m+1−l1e(j+m−l1)στ−rτ ||z(tl1)|| ≤ cm+1emστ−rτ ||z(tj)||
= e−δ(m+1)τ ||z(tj)|| = e−δ(tj+m+1−tj)||z(tj)||. ♦

Remark 2: Note that if A1 = A2 = · · · = Am in (1), then stabilization of a switched

system (1) can be seen as stabilization of a linear system via multi-controller switching. In

this scheme, two problems at different levels involve interactively: at the low-level, we need

to choose a number of candidate controllers, and at the high-level, we are to determine a

suitable event-driven switching strategy (the supervisor) to ensure stability of the overall

system. In the context of adaptive control of linearly parameterized systems, this event-

driven switching scheme is termed as ‘logic-based switching and control’ [6, 7].

Remark 3: Note that for each subsystem, the convergent rate of the controllable sub-

dynamics dominates divergent rate of uncontrollable sub-dynamics. As a consequence, pe-

riodic switching with large dwell time could also lead to asymptotic stability. That is, for

sufficiently large dwell time τ , define periodic switching sequence as

{(0, 1), (τ, 2), · · · , ((m− 1)τ,m), (mτ, 1), ((m + 1)τ, 2), · · · , ((2m− 1)τ,m), · · ·} (29)

then the closed-loop system of (1), (19) and (29) is asymptotically stable.
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Example 1: Let n = 5,m = 3, and

A1 =




0 0 0 1 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




, B1 =




0

0

0

1

0




; A2 =




0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 2




, B2 =




0 0

1 0

0 1

0 0

0 0




;

A3 =




0 0 0 0 1

1 0 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 0




, B3 =




0

0

0

0

1




.

One may verify that V1 = <5. According to Theorem 3, this system is stabilizable.

By fixing r = 10 and τ = 0.2, a stabilizing state feedback and switching strategy can be

obtained accordingly. Let us consider the initial state given by

x(0) = [−2.0452, 2.0757,−0.7796,−2.7625, 0.6311].

Figure 1 shows the convergence of the states, while Figure 2 gives the corresponding switching

sequence. As shown in Figure 2, neither the sequence of active subsystem nor the duration

on each subsystem is periodic.

As pointed in Remark 3, for sufficiently large dwell time, a periodicly switching strategy

also result in a stable closed-loop system. Figure 3 shows the convergence of the states

with dwell time τ = 0.3. An intensive simulation study exhibits that, for any dwell time

smaller than 0.25, the state trajectories of the closed-loop system diverge to infinity at an

exponential rate.

V. CONCLUSION

Some reachability and stabilization results have been presented for switched linear control

systems. For reachability, a necessary condition and a sufficient condition have been pre-

sented. In particular, for third-order systems, a necessary and sufficient condition has been

10



obtained. Under mild assumptions, an event-driven switching strategy has been proposed

to ensure asymptotic convergence of the system.
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APPENDIX A

Proof of Lemma 1: First, let us consider the case where s = 2.

Denote A1 = In + E. Then [B1, A1B2] = [B1, B2 + EB2]. Choosing a nonsingular

submatrix G with maximal rank in [B1, B2], we denote the corresponding submatrix of

[B1, A1B2] as G′ = G + ∆. Because each element of ∆ is sufficiently small, G−1G′ =

In + G−1∆ is strictly diagonal dominant and, subsequently, G′ is nonsingular. This implies

that rank[B1, A1B2] ≥rank[B1, B2].

For the case when s > 2, one may obtain recursively that

rank [B1, A1B2, · · · , A1 · · ·As−1Bs] = rank[B1, A1[B2, A2B3, · · · , A2 · · ·As−1Bs]]

≥ rank[B1, B2, A2B3, · · · , A2 · · ·As−1Bs] ≥ · · · ≥ rank[B1, · · · , Bs].

APPENDIX B

Proof of Corollary 1: The necessity follows directly from Theorem 1. We only need to

prove the sufficiency.

By Theorem 2, we may assume, without loss of generality, that rankV1 < 3. It can be

verified that the case of rankB1 = rankB2 = 2 contradicts (15). This means that one of the

following cases must hold.
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(i) rankB1 = rankB2 = 1, rank[B1, B2] = 2;

(ii) rankB1 = 1, rankB2 = 2, ImB1 ⊂ ImB2;

(iii) rankB1 = 2, rankB2 = 1, ImB2 ⊂ ImB1; and

(iv) rank[B1, B2] = 1.

For Case (i), it must true that rank[B1, B2, A2B1, A1B2] = 3. Without loss of generality,

we assume that rank[B1, B2, A2B1] = 3. It can be verified that there exist 0 = t0 < t1 < t2

such that

rank[eA2(t2−t1)
∫ t1

t0
eA1(t1−τ)dτB1,

∫ t2

t1
eA2(t2−τ)dτB2, B1] = 3.

Let t3 > t2 with t3 − t2 sufficiently small. Let the switching sequence and inputs be

{(t0, 1), (t1, 2), (t2, 1)} and

u1(t) = a1, t0 ≤ t < t1, u2(t) = a2, t1 ≤ t < t2, u1(t) = a3, t2 ≤ t < t3,

respectively. This control strategy steers the system from an arbitrary given initial configu-

ration x(t0) = x0 to any given state xf at t3 by appropriately choosing a1, a2 and a3. (Cf.

Proof of Theorem 2).

Noting that Cases (ii) and (iii) are symmetric, we only need to consider Case (ii). It

follows from (15) that rank[B2, A1B2] = 3. Thus, B2 can be denoted as (up to some state

feedback) [B1, b2]. Let u2(t) = [ū2(t), 0]T , then it turns into Case (i) for conclusion.

Case (iv) can be proved similarly as for Case (i) and the details are omitted.

13
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Figure 1: State trajectories under event-driven switching strategy
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Figure 2: Switching path under event-driven switching strategy

0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

Time (sec)

x

x

x

x

x

4

2

5

3

1

Figure 3: State trajectories under periodic switching strategy
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