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Abstract: A probabilistic model of human control behaviour is described. It assumes that
human behaviour can be represented by switching among a number of relatively simple be-
haviours. The model structure is closely related to the Hidden Markov Models (HMMs) com-
monly used for speech recognition. An HMM with context-dependent transition functions
switching between linear control laws is identified from experimental data. The applicability
of the approach is demonstrated in a pitch control task for a simplified helicopter model.
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1. INTRODUCTION

If the intentions, goals and preferences, (the human
‘state’) and the accompanying skills of the human
operator were known, the human–machine interaction
problem would be to coordinate, adapt, and configure
the automatic control system to ensure satisfactory
performance of the full human–machine control sys-
tem. Unfortunately, the states of the human are usually
not known – at best they can be estimated. This paper
describes an approach to the simultaneous estimation
of human states and behaviour models – recognising
operators’ goals and ‘modes’ of behaviour from their
actions.

The goal of this work is to develop approaches which
could be used to estimate and predict operator skills,
such that we would be able to learn individual prefer-
ences and expectations, and detect characteristic fea-
tures and types of operators. In systems design, actual
performance, workload and performance limitations
for a given task could be better understood before
construction of a prototype. Because of the complexity
of human behaviour, and the richness of sensing and
state, no conceivable model will be able to predict
exactly what the human will do. In this paper we will
use a probabilistic framework for the representation of

human control behaviour, as this provides a common
framework for describing the uncertainty in both the
human and technical aspects of our system and allows
us to develop models which for the given task behave
statistically as a human would.

The need for human control models in systems de-
sign has long been known, but it was often impos-
sible to identify and represent the complexity of hu-
man behaviour in a particular task at a reasonable
cost. Improvements in computing power and learning
algorithms have now made it feasible to implement
complex operator models that can learn and repre-
sent high-level aspects of behaviour such as tasks and
goals, as well as being able to discriminate between
different human operators and various levels of opera-
tor performance and preferences.

Most classical approaches to modelling human man-
ual control behaviour (quasi-linear, optimal control
and sampled data models) are mainly applicable to
low-level manual control tasks involving skilled op-
erators. More complex tasks, higher-level information
processing and inexperienced operators are typically
not covered by such models. The more flexible model
described in this paper assumes the operator is in one
of a finite number of human ‘states’. Each of these
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Fig. 1. The model structure – a discrete Markov pro-
cess switches between the continuous state pro-
cesses. The discrete process transitions are de-
pendnet on the continuous state.

hypotheses has an associated behaviour which can be
described in terms of a probability model. The learn-
ing algorithms used allow us to identify both the pa-
rameters of the individual behaviour models, and the
switching functions simultaneously. We thus have a
standard probabilistic framework for the interpretation
of a time series of human action.

1.1 Multiple-model representations of human control
behaviour

The multiple-model interpretation of human control
action, instead of having a single complex model,
prefers to describe control action by switching be-
tween a number of simple behaviours (see Johansen
and Murray-Smith (1997) for a review of the multi-
ple model approach to modelling). In experiments, it
becomes clear that human control action often goes
through rapid changes of behaviour, due to, for exam-
ple, changes in the human’s perception of the situa-
tion, goal changes, attention lapse, or change in the
effective dynamics of the controlled system.1

This paper examines a model (as shown in Fig-
ure 1), which switches between a number of linear
controllers. The transitions between models are in-
stant, and do not involve blending of behaviours. The
model switching is probabilistic but conditioned on
the state/input vector, so it supports a spectrum of
models from purely stochastic switching to purely de-
terministic switching, depending on its parameterisa-
tion. See Meila and Jordan (1997) and Bengio and

1 These ideas are not new; (Sheridan and Ferrell, 1974, Chapter
15) gives an interesting review of the reasons for using intermittent
representations, but points out the disadvantage that at that time,
such models were created by tedious ‘cut and try’ methods –
now, however, available algorithms relieve the human of extensive
parameter tuning.

Frasconi (1996) for further details. This gating or
switching element can be viewed as a pattern recogni-
tion system which chooses the next model state given
the ‘pattern’ of the current continuous state-vector. Its
probabilistic nature takes into account both variations
in human behaviour and measurement errors. It uses
many of the tools common to speech recognition tech-
nology, and much of the framework is taken from the
excellent review article by Rabiner (1989).

Related approaches to modelling human actions ex-
ist, but usually use discrete actions, not the mixture
of continuous and discontinuous control used in this
paper, and constant transition probabilities as opposed
to the state-dependent transition functions used here.
Yang et al. (1994) applied HMM’s to learn human
skills, and continued the work in Nechyba and Xu
(1998). Pentland and Liu (1995) outline possible ap-
plications of HMM’s to modelling driver control be-
haviour and prediction of immediate intentions.

2. MODEL STRUCTURE, INFERENCE AND
LEARNING ALGORITHM

2.1 Model structure

We have a modelM = fAi (x;wi) ; fi (x; �i) ;�i; �g,
i = 1; ::; Nm, with an observable continuous statex
and a hidden discrete stateq, which can be in one
of Nm states.Ai(x;wi) is the state-transition matrix
from discrete stateq, dependent on continuous statex,
the entries of whichaij = P (qt+1 = jjqt = 1) are
the transition probabilities at timet. This is effectively
a pattern recognition system, mapping regions of the
state-space to a transition probability distribution. In
this paper, the transition probabilities are represented
by a multinomial logit (or ‘softmax’) function (equa-
tion (6)), with parametersw.

TheNm submodelsb(ot; i) define the emission prob-
abilities – i.e. the probability of observingot given
discrete stateqt = i, and continuous statex. In the
continuous control action case examined here, one
could use a mixture model density function, but in
this paper we will only use a single component in each
mixture, i.e. a linear model with Gaussian noise (mean
�i = fi (x; �i) = �ix, variance�2

i ). The estimate of
the initial discrete state distribution� = f�ig, where
�i = P (q1 = i).

2.2 Inference

As reviewed in Rabiner (1989), there are several infer-
ence problems:

(1) Evaluation:Probability of modelM given ob-
served output time seriesO = fo1; o2; :::; oT g?

(2) Decoding:Probability of hidden statei at timet
given observed time seriesO?



(3) Estimation:What are the parameters most likely
to have generated the output time series?

2.2.1. Evaluation To evaluate how well the model
M matches the time seriesO we need to evaluate
P (OjM), which involves finding the probability of all
possible paths through the hidden states,P (OjM) =P

allQ P (OjQ)P (QjM), but this quickly becomes
intractable, so to perform the calculations efficiently
we use the standard Baum-Welch forward-backward
procedure. Define�t(i) = P (O1;t; qt = ijM) as
the probability of a partial sequence, which allows us
to recursively generate the probability of the whole
sequence,

�1(i) = �ib(u1; i);

�t+1(j) = b(ot+1; j)

NmX

i=1

�t(i)aij ;

giving us the probability of the whole sequenceO,
P (OjM) =

PNm

i=1 �T (i). There is an accompanying
backward phase, which will be useful for the decoding
step in the next section. Here we define�t(i) =
P (Ot+1;T jqT = i;M) and we now have a backward
recursion:

�T (i) = 1; �t(i) =

NmX

j=1

�t+1(i)b(ot+1; j)aij ;

such thatP (OjM) =
PNm

i=1 �ib(o1; i)�1(i).
2

2.2.2. Decoding – which state are we in?We wish
to find out at each point in time the probability of
the various behaviour hypotheses.3 In other words,
estimatet(i) = P (qt = ijO;M). This can be
expressed in terms of the forward-backward variables
found in the previous section:

t(i) =
�t(i)�t(i)PNm

j=1 �t(j)�t(j)
; (1)

which is a probability measure which sums to one over
all behaviours.

2.2.3. Estimation Given the ability to evaluate
model quality and algorithms for decoding the hidden
states, we can move on to the more difficult problem of
parameter estimation. This problem cannot be solved
analytically and there is no easy way of finding the
optimal global solution, but we shall use the standard
EM approach to local maximisation ofP (OjM).

2 To avoid implementation problems, we normalise the�’s and
�’s such that�t(j) = 1

Nt
�t(j), where the normalising constant

Nt =
P

Nm

i=1
�t(i). The �’s are also scaled using the same

Nt,�t(j) = 1

Nt
�t(j).

3 If we knew this, our problems would be trivial – we are thus view-
ing these variables as ‘missing data’ which have to be estimated.

We define�t(i; j) to be the probability of switching
from statei at timet to statej at timet+ 1,

�t(i; j) = P (qt = i; qt+1 = jjO;M); (2)

which can again use the results from the forward-
backward stage, such that

�t(i; j) =
�t(i)a(x)ijbj(ot+1)�t+1(j)

P (OjM)
: (3)

By summing t(i) for t1;T we have the expected
number of samples where behaviouri was active, and
similarly by summing�t(i; j) for t1;T we have the
expected number of transitions from behaviouri to
behaviourj. This leads us to reestimation formulae
for the parameters to maximise likelihood:

Local Models The estimation stage for the local
model parameters reduces to weighted linear optimi-
sation, where the weighting function for each data
point is provided byt(i), the probability of model
i generatingot. In the case of a single linear model,

�i =argmin
�i

TX

t=1

t(i)jjot � fi(x; �i)jj
2 (4)

�2
i =

PT

t=1 ijjot � fi(x; �i)jj
2

no
Pt=T

t=1 t(i)
; (5)

whereno is the dimension of the observation vector
ot.

Transition functions As �t(i; j) represents the cur-
rent estimate of the probability of changing from state
i to j at timet, we use this as a target for the transition
function (normalised by the probability of being in
statei at time t). In this example we use a simple
‘softmax’ representation of the transition function,

aij(x) =
exp(wijx)P
k exp(wikx)

; (6)

but the same approach is valid for more complex
networks or other representations, such as belief net-
works (see Jensen (1996) for background).4

To maximise the likelihood of the model the param-
eters of the transition functionsw are adapted inNm

independent optimisation problems using a conjugate-
gradient algorithm to bringaij(x;w) �

�t(i;j)
t(j)

. As
we cannot guarantee that global optima are found, we
are effectively performing a Generalised EM step. See
Meila and Jordan (1997) for further discussion.

4 Note that in real applications we would often use differentx state-
vectors for transitions from different states, and certain transitions
could be excluded from the model structure in advance. Thex for
transition functions may also be transformed in some way.



2.3 Role of inference in modelling human behaviour

The algorithms for inference described above have
very concrete uses in a human modelling application.
We take the continuous statex to be the input/state
information the human bases his or her control on.
That control actionu is the observable sequenceO
referred to in the previous section.

2.3.1. Evaluation for Classification There are many
applications where we would wish to classify a series
of human control actions. The class chosen could be to
estimate which of a number of known individual users
performed them (possibly for security or insurance
purposes), or to compare the behaviour to a number
of typesof user (e.g. beginner, average user, expert,
tired performance). This could be useful in training
operators in simulated environments, when classifiers
which quantify the style of behaviour could be used
to guide and document the results of a training pro-
gramme. A further example is to differentiate between
types of behaviour of a given human operator (e.g.
normal behaviour, tired or inattentive behaviour, ag-
gressive behaviour). The approach used is to collect
dataOi for each class of control action, and estimate
accompanying modelsMi. We then select the model
with the maximumP (OjMi). This is not an explic-
itly discriminative approach, and if classification is
the ultimate aim of modelling, it may be worth using
discriminative approaches.

2.3.2. Decoding for segmentation of the time-series
The use of standard inference with the model, and EM
to iteratively optimise the parameters, automatically
gives us a segmentation of the human control time-
series into sub-behaviours. Thet’s provide us with
the probability that the human was in the given state
at time t. This is an attempt to infer human ‘inten-
tions’ or ‘sub-goals’. This information can then be
used to improve the interaction in a human–machine
control system, and can provide context information
to human–machine interfaces. Multiple-Model Adap-
tive Control (MMAC) is an analogue method used in
control applications, e.g. Schott and Bequette (1997).

2.3.3. Estimation for modelling Given the segmen-
tation of the data provided by thet’s, the estimation
stage provides us with local models corresponding
to system behaviour in each hypothesis. Again, this
information, with the’s can be used to improve co-
operation in a human–machine system – we have an
estimate of the human’s ‘hidden state’, which can be
viewed as current intentions or a current mode of be-
haviour. We also have how the human usually behaves
in this state – the local model associated with that
state.

Fig. 2. The screen display used in the experiment.
The human operator has to track the reference
horizontal line with his/her own pitch indicator
(double line)

3. PITCH CONTROL EXAMPLE

The modelling task used to illustrate the approach is
that of pitch control in a simplified helicopter model,
the ‘flying brick’ (see Bradley (1996)), which is ba-
sically a point mass steered by a force acting at a
distance – a crude representation of a rotor disc. No
other aerodynamic forces are included. This paper
used the model in pitch control mode, where roll and
yaw are always zero. In this experiment no attempt
was made to control velocities, or position – only pitch
was important. The relevant equations of motion for
the pitch angle�, given a control inputu are thus:

_� =
�lhmg(1 + �) sin(u)

Ixx
;

wherelh = 1:454m, m = 4313kg, g = 9:81ms�2,
Ixx = 2767kgm2.

3.1 Experiment design

The task was to track a changing pitch reference value,
as indicated on screen (see Figure 2). The system
was implemented on a standard PC and monitor. The
sampling time was 0.05s which was then resampled
at 0.1s for use in modelling. For actuation we used a
centre-sprung games joystick with an 8 bit accuracy
(CH products flightstick pro).

As in any empirical modelling task it is important
to provide sufficient excitation in the experiment to
be able to identify the parameters of interest, and to
avoid numerical problems. The target trajectory used
included large occasional random step changes, fol-
lowed by frequent small step changes,and occasional
ramp-like changes, as shown in Figure 4. This allows
us to study the reaction to step changes of different
sizes, and tracking a moving target. Note that these
have no ‘preview’ effect, i.e. the human does not know
what the reference signal is about to do, and cannot use
feedforward control.
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Fig. 3. A state-dependent transition function from a
single state to 4 other states. Each curve indicates
the probability of transition from this state for
varyingx. At anyx the curves sum to one.

3.2 Modelling results

We identified simple multiple-model systems, with
3 models where each model was a second order
discrete-time controller, with a purek-delay element
ut = �i[et�ket�k�1ut�1ut�2]. The transition func-
tions were softmax functions scheduled onk-step de-
layed values of_e andkek (e.g. see Figure 3).

3.2.1. Segmentation of time seriesAn immediate
question is whether we can recognise a ‘sensible’ seg-
mentation of the time series from Figure 4 by plotting
the’s, as in Figure 5. Initially,t(i) � 1=Nm, but as
learning progresses we see the segmentation improve,
and find a correlation between larger errors and prob-
ability of different hypotheses. Note that successful
decoding does not necessarily mean that the model has
learned the transition functions adequately.

3.2.2. Parameter estimates The parameters should
look ‘plausible’ given available prior knowledge of
the problem. This is relevant for both the local mod-
els and the transition functions. We could clearly see
‘surge-like’ behaviour (as discussed in Sheridan and
Ferrell (1974)) with low gain models around small
error regimes and high gain parameters in high er-
ror regimes. In some runs, one of the models would
occasionally take on negative gains, corresponding to
moments when the human went the ‘wrong’ way after
a large change in reference value. In this example,
the transition functions from each of the models were
quite similar.

3.2.3. Simulation results Simulation of model be-
haviour in a closed-loop with the controlled system
is probably the most interesting test of behaviour. We
would hope to find typical features observed in the
human reproduced in the simulation. Figure 6 shows
such a test.

3.2.4. Classification results The classification ex-
periment, involved 4 models trained on 4 different

humans (all male researchers, new to the task), with
2 runs of 90s each, and tested on 3 new runs of 90s.
The model with the largestP (OjM) was selected for
each run. Classification was 100% accurate on training
runs, and for classification on new data 10 from 12
runs were classified correctly.
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Fig. 4. A typical time-series recording from an experi-
ment. The human control input indicates strongly
that some form of intermittent model is needed.
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lower error regimes.
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Fig. 6. The model’s behaviour on the time-series
shown in Figure 4. Note that the model should
not be exactly the same as the human, but should
be qualititatively similar. This run shows mis-
match in the noise dynamics which a longer-
tailed distribution would fit better.



3.3 Relating model structure to a given application

This example was not particularly complex, but se-
lecting the granularity (how detailed the individual
behaviour models should be) of the model is often
a far from a trivial matter. In principle the engineer
will examine the task, estimate the number of be-
haviours believed to be applicable, and the transition
probabilities between them (if we can rule out certain
transitions from the start, the learning task is eased sig-
nificantly).5 There are a number of sources of uncer-
tainty in this model: Individual behaviours will vary,
and the transitions between behaviours will also vary.
We are trying to absorb much of the complexity of
the model into the switching component. The context-
dependent transition functions potentially provide us
with arbitrarily powerful representations of transition
uncertainty, conditioned on the measurable states.

4. CONCLUSIONS

The multiple model framework was introduced as a
potentially powerful approach to modelling human
control behaviour. The framework identifies a model,
and estimates the current human ‘state’, and can be
used to better coordinate human and machine control
behaviour. It was illustrated in a simple pitch tracking
task. The methods used were able to identify represen-
tative and meaningful models from experimental data,
and were able to classify which human generated a
given experimental behaviour, in a manner similar to
speech recognition systems. For simplicity, these ex-
periments examined a low-level manual control task,
but we believe that the approach has more relative
potential as a model of higher-level control behaviours
and multivariable problems.

The models created aregenerativemodels. Even if
we only wish to produce classifiers which recognise a
given behaviour or human state, the use of generative
models tends to make the approach less susceptible to
minor changes in system configuration thanfeature-
basedclassification methods would be, as well as al-
lowing a more principled approach to the engineering
task.

The modular nature of the approach means that the
basic model can be extended incrementally to im-
prove sub-models representing given behaviours, or
to provide a more sophisticated behaviour switching
logic. Bayesian networks could, for example, be used
as a representation of the transition probabilities, or
for individual behaviours. In fact, we could use a
range of different approaches (e.g. fuzzy, classical

5 Note that the behaviours chosen need not be purely ‘sensible’
control actions, but can also include ‘noise’ behaviours which can
be switched in rapidly, as well as ‘human error’ behaviours which
are characteristic behaviours, but do not fulfill the human’s stated
objectives.

control, Bayesian networks, neural networks) in a sin-
gle model, given that they can be interpreted as provid-
ing a probabilistic output. We thus have the potential
to integrate the uncertainty related to ‘hard’ engineer-
ing aspects with those of the ‘soft’ human aspects
within a single framework.
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