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Abstract

The use of multiple-model techniques has been reported in a
variety of control and signal processing applications. How-
ever, several theoretical analyses have recently appeared which
outline fundamental limitations of these techniques in certain
domains of application. In particular, the identifiability and in-
terpretability of local linear model parameters in transient op-
erating regimes is shown to be limited. Some modifications to
the basic paradigm are suggested which overcome a number
of the problems. As an alternative to parametric identification
of blended multiple model structures, nonparametric Gaussian
process priors are suggested as a means of providing local mod-
els, and the results compared to a multiple-model approach in
a Monte Carlo simulation on some simulated vehicle dynamics
data.

1 The Multiple-Model Framework

The past few years have shown an increase in the use oflo-
cal model representationsof non-linear dynamic systems (see
(Johansen and Murray-Smith 1997) for a review). This ba-
sic structure includes a number of approaches:Tagaki–Sugeno
fuzzy systems (Takagi and Sugeno 1985), local model net-
works, gain-scheduled control (Leith and Leithead 1999), and
statistical mixture models, among them. The model parameters
are obtained from prior knowledge, linearisations of a physical
model or identified from measured data. Advantages of this ap-
proach are purported to be its simplicity, the insight into global
dynamics obtained from the local models, and the ease with
which global control laws can be constructed from local de-
signs.

Consider the nonlinear system_x = f(x;u). By a blended
local model structure we understand a dynamic model of the
form

_x =

NmX
i=1

�i(x;u)fi(x;u); (1)

where statex 2 IRN , inputu 2 IRP , the modelfi(:; :) is one of
Nm vector functions of the state and the input, and is valid in a
region defined by the scalar validity function�i, which in turn
is a function of the above variables. Typically, the local models
fi are chosen to be of the formfi(x;u) = Aix + Biu + di,
resulting in constituent dynamic systems�i given by,

�i : _x = fi(x;u) = Aix+Biu+ di; (2)

wherex;di 2 IRN , Ai 2 IRN�N , andBi 2 IRN�P . This re-
sults in a non-linear description of plant dynamics of the form,

_x = A(x;u)x +B(x;u)u+ d(x;u); (3)

where A(x;u) =
PNm

i �i(x;u)Ai, B(x;u) =PNm

i �i(x;u)Bi andd(x;u) =
PNm

i �i(x;u)di.

2 Limitations of the approach

Several limitations of the multiple model approach are re-
viewed in (Shortenet al.1999). These limitations can be sum-
marised as being either philosophical or technical in nature. By
philosophical limitations we mean difficulties, or confusion, in
understanding the meaning of the multiple-model model. Such
an understanding may be vital when we come to use the model
for designing a control system.

In this paper we concentrate on selected technical limitations
of the multiple model framework. In particular, we are inter-
ested in studying the difficulties associated with modelling off-
equilibrium behaviour in dynamic systems. Furthermore, we
also focus on the model bias that results from any assumptions
on the model structure and data, or from unbiasedness of the
identification algorithm. Roughly speaking, these limitations,
from a practical perspective, are related to the identifiability
and interpretability of the local models. The problem of identi-
fying off-equilibrium linear models stems from the difficulty in
gathering data of sufficient quality in these regions. In order to
illustrate how interpretability problems arise in multiple model
systems we present the following abstract example of model
construction using multiple models.

Consider the abstract case of approximating the flow associ-
ated with the dynamic system_x = f(x), in the vicinity of some
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Figure 1: Non-uniqueness of representation. The two systems
�1 and�2 are qualitatively different, but in the outlined re-
gions (Shown in detail inR1 andR2) we see that there is little
difference, as shown by the error dynamics.

vectorx0 by the local model_x = Ax + d, wheref(:) 2 IRN,
wherex;A;d are as defined earlier. Clearly for any arbitrary
choice of invertibleA, regardless of its nature (stable, unstable,
complex, etc.), a vectord can be found such that

f(x0) = Ax0 + d; (4)

whered = f(x0) � Ax0. Hence, atx = x0 a non-unique
parameterisation of the dynamics exist, and indeed the lineari-
sation is meaningless. Furthermore, in the neighbourhood of
x0, subject to some approximation error, by simply varying the
location of the virtual equilibria (or the form of the�i), it is pos-
sible to obtain many (dynamically) different parameterisations
of the non-linear dynamics.1 This is illustrated in the following
example.

Example Consider the behaviour of the following au-
tonomous systems,

�1 : _x = A1x; (5)

�2 : _x = A2x+ d; (6)

whereA1 =
�

4 �4:5
4:05 �4:55

�
, A2 =

�
0:51 �4:29
3:84 �4:51

�
, d =

�
�8:58
�0:27

�
.

The flow associated with both of these systems is depicted in
Figure 1. These systems are qualitatively very different;�1 is
a stable nodewith an equilibrium point centered at the origin,
whereas�2 is a stable spiralwith its equilibrium point close
to, but not centred, at the origin. However, in a small region
defined byR : 2 � x1 � 4; 8 � x2 � 10; as depicted, the
flow of both systems is similar. The velocity vectors point in
the same direction and the maximum error, defined by,

�max = max
x2R

k (A2 �A1)x+ d k

k x k
< 0:42: (7)

1We note also that conditions exist such that two systems, which have the
same equilibrium point, can be identical along an entire manifold; namely,
whenA1 andA2 share eigenvector and eigenvalue pairs. The manifold is
defined by the eigenvectors common to both systems.

is bounded and small. The error dynamics
_x = (A2 �A1)x+ d;x 2 R are depicted in Figure 1.
Hence, we conclude that inR, subject to some appropriately
defined approximation error, the dynamics described by�1

and�2 are in some sense equivalent. In this region both�1

and�2 are valid representations of an appropriate non-linear
system, but outside the region they differ considerably.

This rather obvious observation is of crucial importance for
two reasons. First, the identifiability of the local model pa-
rameters is poor as a direct consequence of the fact that off-
equilibrium local models with singificantly different parame-
ters may give very similar dynamics within their region of va-
lidity. Secondly, it strongly suggests that the qualitative nature
of the identified local models may say very little about the non-
linear dynamics even locally. This is by virtue of the fact that
the local model is, by definition, only valid in a local region
of state space, and crucially in the off-equilibrium case, that
the local model’s contribution to the global model only comes
from a restricted sub-region which does not include the model’s
equilibrium point. This observation, in conjunction with many
similar observations in control and identification contexts, is re-
ferred to as theParadox of Localityin Local Model Networks.

Another problem we want to emphasize is the bias being
introduced due to the a priori model structure assumptions.
Structure identification and identification of the�i functions
might obviously improve on this. However, in some cases
the multiple model structure is not ideally suited to the system
structure and a significant bias might be difficult to avoid.

3 Revising the Off-Equilibria Multiple
Model Framework

It was recently shown in (Johansenet al. 1998) that the finite
set of linearizations about a finite number of points (equilibria
and transient points) can be used to accurately approximate dy-
namic linearization about arbitrary trajectories using a blended
multiple model structure. Despite the theoretical importance of
this result, it is clear that the identification problems outlined in
Section 2 are paramount in a practical context. In this section
we describe two complementary approaches for revising the
basic multiple model framework described in Section 2. The
first approach involves suggesting modifications to the existing
framework which alleviate, to some extent, the problems. The
second approach involves the development of a complementary
nonparametric framework, with the specific aim of eliminating
the problems outlined. The efficacy of both approaches is com-
pared by means of a simple example in Section 4.

3.1 Modification of Existing Framework

The dynamic linearization of_x = f(x;u) about the point
(x00;u

0

0) on some arbitrary trajectory is given by

_x = f(x00;u
0

0) +
@f

@x
(x00;u

0

0)(x� x00) +
@f

@u
(x00;u

0

0)(u� u00):



Introducing deviation coordinates �x = x� x00,
�u = u� u00 we get thesmall-signal dynamics

_�x =
@f

@x
(x00;u

0

0)�x+
@f

@u
(x00;u

0

0)�u (8)

that describe the response to small perturbation about a point
(x00;u

0

0) on the nominal trajectory(x0(t);u0(t)). In addi-
tion, the large-signal dynamicsare locally approximated by
the equation_x = f(x00;u

0

0) which approximates the flow of
the state by a constant vector near the point(x00;u

0

0) along the
nominal trajectory(x0(t);u0(t)). Now suppose we seek local
linear models of the form

_x = Aix+Biu+ di (9)

to be approximately valid in a neighbourhood of a point
(xi;ui). Away from equilibrium, the representation (9) is over-
parameterized (non-unique) since only the constant vector term
di is sufficient to give an arbitrarily good approximation lo-
cally, see also Section 2. The additional degrees of freedom in
the parametersAi andBi can be used in different ways:

� Ai andBi can be selected to increase the region of valid-
ity of the local linear approximation (9). In this case these
parameters may be completely different from the small-
signal model parameters@f

@x
(xi;ui) and @f

@u
(xi;ui) and

serve only the purpose of providing a richer class of func-
tion approximators. Consequently, the local linear model
may not be interpretable in terms of a small/large-signal
decomposition.

� Ai andBi can be selected to accurately represent the
small-signal dynamics, i.e.Ai �

@f
@x

(xi;ui) andBi �
@f
@u

(xi;ui). As a consequence, the offset term will ap-
proximately characterize the large-signal dynamics, i.e.
di� f(xi;ui)�Aixi �Biui. This is advantageous in
terms of interpretation, analysis and applicability of the
model in control systems design, but may have the disad-
vantage that it may lead to a smaller region of validity of
the local model.

Identification of the parameters of (9) using, for example, a
standard least-squares criterion and some experimental data
will only interpret the local model as an approximator and thus
not necessarily lead to local model parametersAi andBi with
a valid small-signal model interpretation. The identifiability
problem is amplified by the experience that typically there is
very sparse information about small-signal dynamics in tran-
sient operating regimes available in the data. The reasons for
this are diverse: The system typically spends little time in tran-
sient conditions compared to stationary operating conditions,
and the large signals components in the data will dominate the
identification criterion.

Carefully planned and expensive experiments are required
in order to get even a small amount of small-signal dynam-
ics information in transient operating regimes. In order to get
data which are informative with respect to both equilibrium and
transient local models, the data should consist of two different

types of excitation signals: Standard small signal perturbations
(e.g. PRBS tests) about the relevant equilibrium points of the
system, and high-frequency large step signals with superposi-
tioned large signal perturbations moving the system through
the relevant transient states. For the purpose of setpoint con-
trol, we often require that the equilibrium local models have
significantly higher accuracy than the off-equilibrium ones.

Constrained and regularized identication is in general a use-
ful tool when the data are not sufficiently informative. Ro-
bust identification can also be achieved by directly constrain-
ing the local model parameters during identification, see e.g.
(Johansen 1997). Another possibility is to take advantage
of the regularizing effect of locally weighted identification
methods where each local model is identified separately by
weighting each data sample according to its relevance for the
local model (Murray-Smith and Johansen 1997). It is ob-
served that this usually leads to local models with a more valid
small-signal interpretation than the standard global identifica-
tion method. However, since these identification algorithms
are biased (Johansen 1997, Murray-Smith and Johansen 1997)
compared to the unbiased common global least squares identi-
fication algorithm, this improvement will usually be achieved
at the cost of a significantly increased model bias with the re-
sult that the overall prediction performance of the model may
be reduced. It is therefore important that the model structure is
well tuned to minimize the bias. Eventually, we are facing the
well-known bias/variance tradeoff.

3.2 Nonparametric alternatives

Nonparametric models retain the available data and perform
inference conditional on the current state and local data (called
‘smoothing’ in some frameworks). As the data are used directly
in prediction, unlike the parametric methods more commonly
used in control contexts, nonparametric methods have advan-
tages for off-equilibrium regions. The uncertainty of model
predictions can be made dependent on local data density, and
the model complexity automatically related to the amount of
available data (more complex models need more evidence to
make them likely). Both aspects are very useful in sparsely-
populated transient regimes. Moreover, since weaker prior as-
sumptions are typically applied in a nonparametric model, the
bias is typically less.

An example of the use of a nonparametric model is aGaus-
sian Process prior, as reviewed in (Williams 1998). In the fol-
lowing, the full matrix of state and control input vectors is de-
noted	, and the vector of output points isy. The discrete data
of the regression model are k = [x(t);u(t)] andyk = _x(t).
The givenN1 data pairs used for identification are stacked in
matrices	1;y1 and theN2 data pairs used for prediction are
	2;y2. Instead of parameterising_x = f(x;u) as a multiple
model, we can place a prior directly on the space of functions
wheref is assumed to belong. A Gaussian process represents
the simplest form of prior over functions, so for the case with
partitioned datay1 andy2 we will have the multivariate Nor-



mal distribution (we will assume zero mean),�
y1
y2

�
� N (0;�) ; � =

�
�1 �12

�21 �2

�
: (10)

where� is the full covariance matrix, and�21 = �T12. Like the
Gaussian distribution, the Gaussian Process is fully specified
by a mean and its covariance function. The Normal assumption
may seem strangely restrictive initially, but we have a power-
ful tool in that we can adapt the model’s prior expectations to a
given application by altering the structure and parameters of the
covariance function. The covariance functionC( i;  j) = �ij
(the ij-element of�) expresses the expected covariance be-
tweenyi andyj – we can therefore infery2’s from constant
(	1;y1)’s rather than building explicit models. We will also
often view the covariance function as being the combination
of a covariance function due to the underlying modelCm and
one due to measurement noiseCn. The entries of this matrix
are then:�1ij = Cm( 1i ;  1j ; �) + Cn( 1i ;  1j ; �), where
Cn() could be�ij�2n, for Gaussian noise of variance�n. In this
paper, we use a straightforward smoothness prior covariance
function which states that outputs associated with ’s closer to-
gether should have higher covariance than points further apart,

Cm( i;  j ; �) = v0�(j i �  j j; �): (11)

�(d) is a distance measure, which should be one atd = 0 and
which should be a monotonically decreasing function ofd. The
one used here was

�(j i �  j j; �) = e�
1

2

Pp

k=1
�k( ik� jk)

2

: (12)

The�k ’s determine how quickly the function varies in dimen-
sionk. This estimates the relative smoothness of different in-
put dimensions. The parameter vector� = (v0; �1;::p) can be
adapted using standard gradient-based optimisation tools.

The choice of covariance function is only constrained in that
it must always generate a non-negative definite covariance ma-
trix for any	, so we can represent a spectrum of systems from
very local nonlinear models, to standard linear models using
the same framework.

As in the multinormal case, we can divide the joint proba-
bility (10) into a marginal Gaussian process and a conditional
Gaussian process

p(Y ) = p(y1;y2) = p(y1)p(y2jy1): (13)

The marginal term gives us the likelihood of the training data,

P (y1) = (2�)�
N1
2 j�1j

�
1

2 e�
1

2
yT
1
��1
1

y1 : (14)

The conditional part of the model, which best relates to a tra-
ditional regression model is therefore the Gaussian process
which gives us the output p.d.f. conditional on the training data
	1;y1 and the test points	2.

P (y2jy1) =
P (y2;y1)

P (y1)
(15)

=
e�

1

2
(y2��21)

T��1
2:1(y2��21)

(2�)
N2
2 j�21j

1

2

; (16)

where, as in the straightforward multinormal case,

�21 = �T12�
�1
1 y1 (17)

�21 = �2 ��T12�
�1
1 �21; (18)

so, as� is dependent on	 we can view this as a nonlinear
regression and usef(	2) = �21 as the expected model output,
with a variance of�2(	2) = �21.

One advantage of the Gaussian process is that, for differen-
tiable covariance functions, it is easy to produce analytic lin-
earisations (in a limit in mean square sense) of the model’s
mean prediction (which are also Gaussian processes).2

4 Vehicle dynamics example

As an example, consider the longitudinal dynamics of a vehi-
cle with massm and speedv. The interesting aspect of this
experiment, over and above its practical relevance, is that it is
a 1st order system, the nonlinearity is fairly smooth, and we
are using noise-free data, but as we will see, identification of
the nonlinear model can be surprisingly difficult. The vehicle
is powered by an engine which generates a longitudinal force
ge(v; u) whereu is the throttle angle. The vehicle is subject to
a disturbance forcegd. A simple first order model of the vehi-
cle is given by the force balancem _v = ge(v; u) � gd; which
can be written

_v = f(v; u) = (ge(v; u)� gd)=m: (19)

In the example, we setgd = 1000 N, m = 1000 kg and the
engine characteristic,

ge(v; u) = (1 + 3u)(1 + arctan(6u2 � 0:4v + 1:2)) � 500N;

is shown in Figure 2. With this characteristic engine curve
(which corresponds to a fixed gear ratio), the engine operates in
a speed interval between 2 and 20 m/s.3 Linearization of the en-
gine model (19) leads to the small-signal parameters@f

@v
(v; u)

and @f
@u

(v; u) and drift termf(v; u). These parameters are il-
lustrated in Figure 3. The experimental data used for identi-
fication were obtained by excitation of the vehicle by an input
signal containing both large and small amplitude changes in or-
der to determine the large-signal and small-signal parts of the
off-equilibrium local models.

To evaluate the model performance and robustness we gener-
ated 100000 data points, and identified 40 models on nonover-
lapping subsets of 700 points. In each test the models were
then tested on the remaining 99300 points. The prediction per-
formance of the different models are summarised in Table 1.

2We can thus also analytically derive the variance of the derivative mean
– an aspect of Gaussian Process priors which is difficult to reproduce in other
models without extensive simulation.

3This example is motivated by the experimental vehicle speed control prob-
lem considered in (Johansenet al.1998). The model is simplified, but contains
the relevant aspects of the experimental vehicle in order to illustrate the main
ideas.
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Figure 2: Left: Engine force. Right hand plots are time series
of a subsequence with 300 data points.

Figure 3 gives insight into the identified parameters of the mul-
tiple model, using locally weighted identification of model pa-
rameters, and Gaussian Process approaches, using a fixed co-
variance function.

We observe that the Gaussian Process approach produces
more accurate estimates of the small-signal parameters than
the multiple model approach with locally weighted regression.
It can be seen that the model bias is the main contribution to
errors in the estimated small-signal parameters with the mul-
tiple model approach. With the Gaussian process approach
the bias dominates along the equilibrium manifold, while the
variance becomes more significant far away from equilbrium
where data are sparse. Using global least squares, the predic-
tion performance of the blended multi-model can be improved,
mainly due to reduced bias because it is an unbiased identifica-
tion algorithm, cf. Table 1. In this example we found it difficult
to reduce the bias of the multiple model structure without de-
creasing the overall accuracy due to increased variance. Note
that with a less favourable experiment design we have experi-
enced that the differences between multiple models and Gaus-
sian processes become even more pronounced. With the cur-
rent experiment design and because we are dealing with a first
order system, the off-equilbrium local models can be identified
fairly well, and we do not experience high variability of these
local model parameters.

Although the Gaussian Process has consistently better test
results from the given data, and in the region covered by data
the variance is evenly low (unlike the multiple model results
which increase evenly with distance from the equilibria), but
as we move away from that to the edge of the plots we see
a great increase in variance of the derivative means. This is
however, unlike with parametric methods, accompanied by a
related increase in expected prediction variance (analytic vari-
ance estimates for the GP’s (not plotted) grew accurately in
sparsely populated areas, as desired, and match well with the
Monte Carlo results shown). Note also the large levels of bias
in the multiple model plots, which somewhat skew the test re-
sults in the favour of the Gaussian Process.

5 Conclusions

We have outlined theoretical problems with the multiple model
framework when representing off-equilibrium behaviour, and
illustrated them in Monte Carlo simulations. Consideration of

these problems leads to new approaches to experiment plan-
ning and more robust identification methods when optimising
local model parameters. This should also provide us with more
interpretable models suitable for subsequent control system de-
sign.

An alternative approach, based on nonparametricGaussian
Process priormodels was developed and found to provide
an interesting extension of the multiple model framework,
which is simple and elegant, and can model nonlinear prob-
lems in a probabilistic framework. The disadvantage is its
computational complexity, as prediction of model outputs re-
quires a matrix inversion of theN1 � N1 covariance matrix
�1, which becomes problematic for identification data where
N1 >> 1000. In transient regimes, however, one typically has
very few data points and we wish to make robust estimates of
model behaviour. This suggests a heterogeneous solution with
a multiple-model model composed of a number of linear sub-
models around equilibrium points, and Gaussian process sub-
models in transient areas.
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Table 1: The m.s.e. is the root mean square error when predicting_v based onu andv, �e is standard deviation of this error.
Full set Off-equil. On-equil.

Model m.s.e. �e m.s.e. �e m.s.e. �e

Multiple models (locally weighted fit) 0.1034 0.00497 0.1387 0.00855 0.0798 0.00890
Multiple models (global fit) 0.0699 0.00389 0.0874 0.00525 0.0587 0.00844
Gaussian Process 0.0057 0.00326 0.0057 0.00332 0.0057 0.00325

From left: Multiple model weighting functions�i, example phase plot of data (speed vs. throttle angle).
Right hand plots are exact system linearisations:@f

@v
(v; u), @f

@u
(v; u).
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Mean multiple model small-signal parametersA(v; u) andB(v; u), mean GP estimates of small-signal parameters@f

@v
(v; u),

@f

@u
(v; u).
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Absolute bias in multiple model small signal-parametersA(v; u) andB(v; u) (left two) and GP small-signal parameters
@f

@v
(v; u), @f

@u
(v; u) (right two).
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From left: 2 times the standard deviation of the multiple model small signal-parametersA(v; u) andB(v; u) (left two) and GP
small-signal parameters@f

@v
(v; u), @f

@u
(v; u) (right two).
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From left: Mean bias and 2 std. dev. plots forf(v; u), for multiple model (left two) and GP (right two)
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Figure 3: Results of Monte Carlo simulation of multiple model and Gaussian Process identification processes. Note that we plot
the means of 40 models here, which are usually better models than the individual models.


