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Keywords: Nonlinear system identification, multiple modelsyhere stat € IRY, inputu € IR”, the model;(:, :) is one of
Gaussian Process priors, Bayesian statistics, honparametiig,, vector functions of the state and the input, and is valid in a

regression region defined by the scalar validity functipp which in turn
Abst t is a function of the above variables. Typically, the local models
strac f; are chosen to be of the forfa(x, u) = Ajx + Bju + d;,

. . _resulting in constituent dynamic systeisgiven by,
The use of multiple-model techniques has been reported in a g y y 9 y

variety of control and signal processing applications. How- D % = fi(x,u) = Ajx + Bju + d; )

ever, several theoretical analyses have recently appeared which ’ ’

outline fundamental limitations of these techniques in certa\jvrherex d e RY A € RV*N andB; € RY*?. This re-
y g 1 7 ’ 1 .

domains of application. In particular, the identifiability and ing s in a non-linear description of plant dynamics of the form,
terpretability of local linear model parameters in transient op-

erating regimes is shown to be limited. Some modifications to x = A(x,w)x + B(x, u)u + d(x, u), (3)
the basic paradigm are suggested which overcome a number
of the problems. As an alternative to parametric identificatiQp,ere Ax,u) = ZNm pi(x,WA;, B(x,u) =

of blended multiple model structures, nonparametric Gaussi
process priors are suggested as a means of providing local
els, and the results compared to a multiple-model approach in

a Monte Carlo simulation on some simulated vehicle dynamigs Limitations of the approach
data.

. pi(x,u)B; andd(x,u) = vam pi(x,u)d;.

Several limitations of the multiple model approach are re-
viewed in (Shorteret al. 1999). These limitations can be sum-
marised as being either philosophical or technical in nature. By
: . philosophical limitations we mean difficulties, or confusion, in
The past few years have shown an increase in the use of ; ) .

. : . understanding the meaning of the multiple-model model. Such
cal model representatioraf non-linear dynamic systems (Seean understanding may be vital when we come to use the model
(Johansen and Murray-Smith 1997) for a review). This ba- g may

X : . or designing a control system.
sic structure includes a number of approacfiegaki-Sugeno In this paper we concentrate on selected technical limitations
fuzzy systems (Takagi and Sugeno 1985), local model net- pap . .
the multiple model framework. In particular, we are inter-

works, gain-scheduled control (Leith and Leithead 1999), aﬁ%ed in studying the difficulties associated with modelling off-

statistical mixture models, among them. The model paramet% - : . :
equilibrium behaviour in dynamic systems. Furthermore, we

are obtained from prior knowledge, linearisations of a physica] . .
. o . .also focus on the model bias that results from any assumptions
model or identified from measured data. Advantages of this a

R P 1 the model structure and data, or from unbiasedness of the
proach are purported to be its simplicity, the insight into glob§ ntification algorithm. Roughly speaking, these limitations,

dynamics obtained from the local models, and the ease W . . . e L
y rom a practical perspective, are related to the identifiability

ggfsh global control laws can be constructed from local da_nd interpretability of the local models. The problem of identi-

Consider the nonlinear systen= f(x,u). By a blended fying off-equilibrium linear models stems from the difficulty in

: ﬁathering data of sufficient quality in these regions. In order to
local model structure we understand a dynamic model of tfe : - L .
form illustrate how interpretability problems arise in multiple model

systems we present the following abstract example of model
N, construction using multiple models.
X = Z pi(x,0)fi(x,u), (1) Consider the abstract case of approximating the flow associ-
i=1 ated with the dynamic systekn= f(x), in the vicinity of some

1 The Multiple-Model Framework



Dynamics of¥; and¥, is bounded and small. The error dynamics

2EEIE 7077277777700 0 % =(Az—A1)x+d,x € R are depicted in Figure 1.

A -~ Hence, we conclude that iR, subject to some appropriately
~oi.i vy defined approximation error, the dynamics described:by
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; (o000ss system, but outside the region they differ considerably.
Vd P A N . . . . . .
Z Iy This rather obvious observation is of crucial importance for
N coer * * two reasons. First, the identifiability of the local model pa-
RegionsR1, k2 and Error dynamics. rameters is poor as a direct consequence of the fact that off-
ooy lvreresevs-- [T 7 7 77 equilibrium local models with singificantly different parame-
N N e . . A L . .
Vv oo es = - 0 - 7 ters may give very similar dynamics within their region of va-
N s s N e T T T . . . )
N e == - - —— lidity. Secondly, it strongly suggests that the qualitative nature
Voo Te s o s Lo s s - . -~ oftheidentified local models may say very little about the non-

P A ol L L O et S R DU linear dynamics even locally. This is by virtue of the fact that
” " the local model is, by definition, only valid in a local region
Figure 1: Non-uniqueness of representation. The two systefisstate space, and crucially in the off-equilibrium case, that
¥, and ¥, are qualitatively different, but in the outlined rethe local model’s contribution to the global model only comes
gions (Shown in detail itR1 and R2) we see that there is little from a restricted sub-region which does not include the model's
difference, as shown by the error dynamics. equilibrium point. This observation, in conjunction with many
similar observations in control and identification contexts, is re-
~ ferredto as th&aradox of Localityin Local Model Networks.
vectorxo by the local quek = A_x +d, wheref(;) € R J Another problem we want to emphasize is the bias being
wherex, A, d are as defined earlier. Clearly for any arbitrang,,,q4yced due to the a priori model structure assumptions.

choice of invertibleA,, regardless of its nature (stable, unstabley ¢y re identification and identification of the functions
complex, etc.), a vectat can be found such that might obviously improve on this. However, in some cases

f(x0) = Axo + d, (4) the multiple model structure is not ideally suited to the system

structure and a significant bias might be difficult to avoid.
whered = f(x9) — Axo. Hence, atk = x, a non-unique

parameterisation of the dynamics exist, and indeed the lineari-

sation is meaningless. Furthermore, in the neighbourhood®f Revising the Off—EquiIibria Mu|tip|e
Xo, Subject to some approximation error, by simply varying the

location of the virtual equilibria (or the form of thg), it is pos- Model Framework

sible to obtain many (dynamically) different parameterisations

of the non-linear dynamicsThis is illustrated in the following It was recently shown in (Johansehal. 1998) that the finite

example. set of linearizations about a finite number of points (equilibria
Example Consider the behaviour of the following au-and transient points) can be used to accurately approximate dy-
tonomous systems, namic linearization about arbitrary trajectories using a blended

_ multiple model structure. Despite the theoretical importance of
Yiix = Asx, (5) this result, itis clear that the identification problems outlined in
Yo:x = Azx+d, (6) Section 2 are paramount in a practical context. In this section
we describe two complementary approaches for revising the
whereA; = [ 4 —4.5 ]’ Ay = [0.51 —4.29], d = [—8.58]_ P y app 9

4.05 —4.55 3.84 —4.51 —0.27 basic multiple model framework described in Section 2. The

The flow associated with both of these systems is depictediat approach involves suggesting modifications to the existing
Figure 1. These systems are qualitatively very differ&itis  framework which alleviate, to some extent, the problems. The

astable nodevith an equilibrium point centered at the origingecond approach involves the development of a complementary
whereasy, is astable spiralwith its equilibrium point close onparametric framework, with the specific aim of eliminating
to, but not centred, at the origin. However, in a small regiqRe problems outlined. The efficacy of both approaches is com-

defined byR : 2 < z; < 4, 8 < x> < 10, as depicted, the 5104 by means of a simple example in Section 4.
flow of both systems is similar. The velocity vectors point in

the same direction and the maximum error, defined by,

- | (As — Ar)x +d || 3.1 Modification of Existing Framework
€mar = INax <042. (1) o o i
TER x| The dynamic linearization ok = f(x,u) about the point

! ! i 1 H
1we note also that conditions exist such that two systems, which have {3807 uO) on some arbltrary trajectory Is given by
same equilibrium point, can be identical along an entire manifold; namely,
when A; and A2 share eigenvector and eigenvalue pairs. The manifold is fix I , of , , ,
defined by the eigenvectors common to both systems. X = f(xg,up) + B_X(XO’ up)(x —xp) + %(Xo; up)(u — up).




Introducing deviation coordinates Ax =x —xg, types of excitation signals: Standard small signal perturbations

Au = u — ug we get thesmall-signal dynamics (e.g. PRBS tests) about the relevant equilibrium points of the
system, and high-frequency large step signals with superposi-

Ax = ﬁ(x&ug)AX + ﬁ(xb,ub)Au 8) tioned large signz_il perturbations moving the system through

ox Ou the relevant transient states. For the purpose of setpoint con-

that describe the response to small perturbation about a pdfAt We often require that the equilibrium local models have
(x},ul) on the nominal trajectoryxo(t), uo(t)). In addi- significantly higher accuracy than the off-equilibrium ones.
tion, the large-signal dynamicsre locally approximated by Constrained and regularized identication is in general a use-
the equationt = f(xj, uj) which approximates the flow of ful tool when the data are not sufficiently informative. Ro-
the state by a constant vector near the pgit up) along the bust identification can also be achieved by directly constrain-
nominal trajectoryxo(t), ug(t)). Now suppose we seek localing the local model parameters during identification, see e.g.

linear models of the form (Johansen 1997). Another possibility is to take advantage
of the regularizing effect of locally weighted identification
X = Ax+Bju+d; (9) methods where each local model is identified separately by

weighting each data sample according to its relevance for the
to be approximately valid in a neighbourhood of a poinbcal model (Murray-Smith and Johansen 1997). It is ob-
(x1, us). Away from equilibrium, the representation (9) is overseryed that this usually leads to local models with a more valid
parameterized (non-unique) since only the constant vector t&§fall-signal interpretation than the standard global identifica-
d; is sufficient to give an arbitrarily good approximation lotjon method. However, since these identification algorithms
cally, see also Section 2. The additio_nal (_Jlegrees of freedomyia piased (Johansen 1997, Murray-Smith and Johansen 1997)
the parametera; andB; can be used in different ways: compared to the unbiased common global least squares identi-
H’pation algorithm, this improvement will usually be achieved

e A; andB; can be selected to increase the region of vali T th t of a sianificantly i d model b h th
ity of the local linear approximation (9). In this case thes® 1€ COSLOT & Sighilicantly increased modet bias wi ere

parameters may be completely different from the smaE—u't that the oyerall predlct.lon performance of the model may
signal model parameter& (x;, u;) and 2 (x;, u;) and e reduced. It is therefore important that the model structure is
X 1) 1 ou 1) 1

serve only the purpose of providing a richer class of fun}gell tuned to minimize the bias. Eventually, we are facing the

tion approximators. Consequently, the local linear mod\éqell-known bias/variance tradeoff.
may not be interpretable in terms of a small/large-signal
decomposition.

e A; and B; can be selected to accurately represent tﬁ’é2 Nonparametric alternatives

small-signal dynamics, i.eA; ~ 2£(x;,u;) andB; ~

of Ox . Nonparametric models retain the available data and perform
<L (x;,u;). As a consequence, the offset term will a

Ou . telv ch terize the | ianal d " @Binference conditional on the current state and local data (called

(plr?vxgna ely ¢ zXac erlz];\ € _lz_irr]gejmgr;a %/nam|cs,_ I"Eémoothing' in some frameworks). As the data are used directly
1~ (X".u‘) — AiXi — Ditg. 1NIS IS advantageous I, prediction, unlike the parametric methods more commonly

terms of interpretation, analysis and applicability of thS ed in control contexts, nonparametric methods have advan-

mo?el Int(r:]or;t{ol syslterr(;stde&gn, ItI)Ut may havfe thI%_dlsq ges for off-equilibrium regions. The uncertainty of model
vantage that it may lead to a smailer region of validity g redictions can be made dependent on local data density, and

the local model. the model complexity automatically related to the amount of

Identification of the parameters of (9) using, for example, @ailable data (more complex models need more evidence to
standard least-squares criterion and some experimental dag@ke them likely). Both aspects are very useful in sparsely-
will only interpret the local model as an approximator and thiPPulated transient regimes. Moreover, since weaker prior as-
not necessarily lead to local model parametersindB; with  Sumptions are typically applied in a nonparametric model, the
a valid small-signal model interpretation. The identifiabilitpias is typically less.
problem is amplified by the experience that typically there is An example of the use of a nonparametric model @aaus-
very sparse information about small-signal dynamics in tragian Process prigras reviewed in (Williams 1998). In the fol-
sient operating regimes available in the data. The reasonsléaing, the full matrix of state and control input vectors is de-
this are diverse: The system typically spends little time in traneted®, and the vector of output pointsys The discrete data
sient conditions compared to stationary operating conditiord the regression model afl, = [x(t), u(t)] andy = x(t).
and the large signals components in the data will dominate fhiee givenN; data pairs used for identification are stacked in
identification criterion. matrices¥,,y; and theN, data pairs used for prediction are
Carefully planned and expensive experiments are requirgd,y.. Instead of parameterising = f(x,u) as a multiple
in order to get even a small amount of small-signal dynammodel, we can place a prior directly on the space of functions
ics information in transient operating regimes. In order to getheref is assumed to belong. A Gaussian process represents
data which are informative with respect to both equilibrium arttie simplest form of prior over functions, so for the case with
transient local models, the data should consist of two differguartitioned datay; andy, we will have the multivariate Nor-



mal distribution (we will assume zero mean), where, as in the straightforward multinormal case,

{ y1 } ~N(0,%), %= { Sl 2212 ] (10) po = ILY My (17)
v o So = By XLECIN, (18)

where. is the full covariance matrix, and,; = %1, Like the

Gaussian distribution, the Gaussian Process is fully specifé@ asX is dependent o we can view this as a nonlinear

by a mean and its covariance function. The Normal assumptig@gression and us§¥,) = yu»; as the expected model output,

may seem strangely restrictive initially, but we have a poweiith a variance ot (W) = ¥,

ful tool in that we can adapt the model's prior expectations to aOne advantage of the Gaussian process is that, for differen-

given application by altering the structure and parameters of tiable covariance functions, it is easy to produce analytic lin-

covariance function. The covariance funct@fy);, ;) = £;; earisations (in a limit in mean square sense) of the model’s

(the ij-element ofY) expresses the expected covariance baean prediction (which are also Gaussian processes).

tweeny; andy; — we can therefore infey,’s from constant

(¥4,y1)'s rather than building explicit models. We will also

often view the covariance function as being the combinatigh  \fehicle dynamics example

of a covariance function due to the underlying modg] and

one due to measurement noiSg. The entries of this matrix As an example, consider the longitudinal dynamics of a vehi-

are then:’Xy,; = Cin(¥1,, 91,3 0) + Cn(¥1,, 41,3 0), where  cle with massn and speed. The interesting aspect of this

Cn() could bed;;o7, for Gaussian noise of varianeg. In this  experiment, over and above its practical relevance, is that it is

paper, we use a straightforward smoothness prior covaria@Cgst order system, the nonlinearity is fairly smooth, and we

function which states that outputs associated withcloser to- are using noise-free data, but as we will see, identification of

gether should have higher covariance than points further apgit nonlinear model can be surprisingly difficult. The vehicle

is powered by an engine which generates a longitudinal force

Cm (Wi; 55 ©) = vop(vs = v5, ). (11) 968;, w) Wher)e/u is thegthrottle angle. The vehiclegi]s subject to

p(d) is a distance measure, which should be on¢ at0 and @ disturbance forcg;. A simple first order model of the vehi-

which should be a monotonically decreasing functiod.ofhe ~cle is given by the force balanegv = g.(v,u) — ga, which

one used here was can be written

p(wi — ], 0) = e E Tl o amvi)® 0 (12) 0 = flv,u) = (ge(v,u) — ga)/m. (19)

T_heoz,c S d_etermme how qwckly_ the function varies in d|meqin the example, we set; = 1000 N, m = 1000 kg and the
sion k. This estimates the relative smoothness of different in- . .
. i engine characteristic,
put dimensions. The parameter veo®t= (v, a1, ;) can be
adapted using standard gradient-based optimisation tools.
The choice of covariance function is only constrained in that
it must always generate a non-negative definite covariance me;

trix for anv T So We Can renresent a Sbectrum of svstems fr shown in Figure 2. With this characteristic engine curve
Y, SC P pectn y %Which corresponds to a fixed gear ratio), the engine operates in
very local nonlinear models, to standard linear models usi

a%peed interval between 2 and 20 rhilsnearization of the en-
the same framework.

As in the multinormal case, we can divide the joint probg_mear;]odel (19) leads to the small-signal parame%(s;,u)

bility (10) into a marginal Gaussian process and a conditiorf%ﬂda_u(”’ u) and drift termf(v, u). These parameters are il-
Gaussian process u

(v,u) = (14 3u)(1 + arctan(6u” — 0.4v + 1.2)) - 500 N,

strated in Figure 3. The experimental data used for identi-
fication were obtained by excitation of the vehicle by an input
p(Y) =p(y1,y2) = p(y1)p(y2|y1)- (13) signal containing both large and small amplitude changes in or-
) ) o o der to determine the large-signal and small-signal parts of the
The marginal term gives us the likelihood of the training dat%ff-equilibrium local models.

To evaluate the model performance and robustness we gener-
ated 100000 data points, and identified 40 models on nonover-
The conditional part of the model, which best relates to a tr@pPping subsets of 700 points. In each test the models were
ditional regression model is therefore the Gaussian procéen tested on the remaining 99300 points. The prediction per-
which gives us the output p.d.f. conditional on the training daf@rmance of the different models are summarised in Table 1.
¥, y; and the test point¥,.

P(yi) = (2W)_%|El|_%e_%yfzflyl. (14)

2We can thus also analytically derive the variance of the derivative mean

P(yz Y1) — an aspect of Gaussian Process priors which is difficult to reproduce in other
P(yaly1) — 2o (15) models without extensive simulation.
P(Y1) 3This example is motivated by the experimental vehicle speed control prob-
e Lyz—n21) T2  (y2—pa1) lem considered in (Johansenal. 1998). The m_odel_is simplifie_d, but contains _
= = - , (16) the relevant aspects of the experimental vehicle in order to illustrate the main
(27r) - |221|§ ideas.



these problems leads to new approaches to experiment plan-
ning and more robust identification methods when optimising
local model parameters. This should also provide us with more
interpretable models suitable for subsequent control system de-
sign.

An alternative approach, based on nonparamé&sdassian
Process priormodels was developed and found to provide
Figure 2: Left: Engine force. Right hand plots are time seri@§ interesting extension of the multiple model framework,
of a subsequence with 300 data points. which is simple and elegant, and can model nonlinear prob-

lems in a probabilistic framework. The disadvantage is its

computational complexity, as prediction of model outputs re-

quires a matrix inversion of thé&; x N; covariance matrix
Figure 3 gives insight into the identified parameters of the mut- | \which becomes problematic for identification data where
tiple model, using locally weighted identification of model paa;, > 1000. In transient regimes, however, one typically has
rameters, and Gaussian Process approaches, using a fixed&g few data points and we wish to make robust estimates of
variance function. model behaviour. This suggests a heterogeneous solution with

We observe that the Gaussian Process approach producgsultiple-model model composed of a number of linear sub-
more accurate estimates of the small-signal parameters thestlels around equilibrium points, and Gaussian process sub-
the multiple model approach with locally weighted regressiomodels in transient areas.

It can be seen that the model bias is the main contribution to
errors in the estimated small-signal parameters with the méicknowledgements R. Murray-Smith carried out this work while
tiple model approach. With the Gaussian process approgéﬁhe Department of Mathematical Modelling, Technical University
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Table 1: The m.s.e. is the root mean square error when predictiaged on. andv, o. is standard deviation of this error.

Full set Off-equil. On-equil.
Model m.s.e. o m.s.e. Oe m.s.e. Oe
Multiple models (locally weighted fit) 0.1034  0.00497 0.1387 0.00855 0.0798 0.00890
Multiple models (global fit) 0.0699 0.00389 0.0874 0.00525 0.0587 0.00844
Gaussian Process 0.0057 0.00326 0.0057 0.00332 0.0057 0.00325

From left: Multiple model weighting functions;, example phase plot of data (speed vs. throttle angle).
Right hand plots are exact system linearisatidfstv, u), 2£ (v, u).
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Figure 3: Results of Monte Carlo simulation of multiple model and Gaussian Process identification processes. Note that we plot
the means of 40 models here, which are usually better models than the individual models.



