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On the interpretation of local models in blended multiple model structures

ROBERT SHORTENT, RODERICK MURRAY-SMITH:, ROGER BJURGANS and

HENRIK GOLLEESY

The construction of non-linear dynamics by means of interpolating the behaviour of locally valid models offers an

attractive and intuitively pleasing method of modelling non-linear systems. The approach is used in fuzzy logic modelling,

operating regime based models, and non-linear statistical models. The model structure suggests that the composite local

models can be used to interpret, in some appropriate manner, the overall non-linear dynamics. In this paper we

demonstrate that the interpretation of these local models, in the context of multiple model structures, is not as straight-

forward as it might initially appear. We argue that the blended multiple model system can be interpreted in two ways—as

an interpolation of linearizations, or as a full parameterization of the system. The choice of interpretation affects

experiment design, parameter identification, and model validation. We then show that, in some cases, the local models

give insight into full model behaviour only in a very small region of state space. More alarmingly, we demonstrate that
for off-equilibrium behaviour, subject to some approximation error, a non-unique parameterization of the model

dynamics exists. Hence, qualitative conclusions drawn from the behaviour of an identified local model, e.g. regarding

stable, unstable, nodal or complex behaviour, must be treated with extreme caution. The example of muscle modelling is

used to illustrate these points clearly.

1. Introduction

The past few years have shown an increase in the use
of local model representations of non-linear dynamic
systems (see Johansen and Murray-Smith 1997 for a
review). This basic structure includes a number of
approaches: Tagaki-Sugeno fuzzy systems (Takagi and
Sugeno 1985), local model networks, gain-scheduled
control, statistical mixture models, Smooth Threshold
AutoRegressive (STAR) models of Tong (1990) and the
State dependent models of Priestley (1988), among them.
The model parameters are obtained from prior knowl-
edge, linearizations of a physical model or identified
from measured data. Advantages of this approach are
purported to be its simplicity and the insight into global
dynamics obtained from the local models.

By a blended local model structure we understand a
dynamic model of the form

N,
X = Zp[(x»u»w)f[(x»u) (1.1)

where state x € IRN, input g € IRP, and an external vec-
tor w € RO, the model f,(:,:) is one of N, vector func-
tions of the state and the input, and is valid in a region
defined by the scalar validity function p,, which in turn is
a function of the above variables. Typically, the local
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models f; are chosen to be of the form f;(x,u) =

A;x + B;u+ d;, resulting in constituent dynamic systems
%, given by

Z.oox = fix.u) (1.2)

= A,xt But d; (13)

where x.d; ¢ IRN, A€ IRNXN, and B, ¢ IRNXP. This

results in a non-linear description of plant dynamics of

the form
X = A(x>u-w)x + B(xsu-w)u+ d(x>uw) (1.4)
where
IVW
Alx>u-w) = Zp[(&u»w)A[ (1.5)
IVW
B(x,u.-w) = Zp[(x»u,w)B[ (1.6)
IVW
d(x>u,w) = Zp[(x»u,w)d[ (1.7)

i

The A, matrices associated with each of the local
models are assumed to be invertible; that is, associated
with each constituent local model there is exactly one
unique equilibrium point. Model building thus consists
of covering the state space of the non-linear plant with
local models. Behaviour along the plant equilibria is
typically captured by using models whose equilibria
(x10 = — A[_ld[, in the unforced case) are located inside
the region defined by their basis functions, whereas be-
haviour off equilibria is captured by using models whose
(virtual) equilibria are located outside the region defined
by their basis functions (hence the ‘virtual® label).

In this paper we demonstrate that the interpretation
of local models is not straightforward, and depends both
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upon the parameters of the validity functions and upon
the location of the local model equilibria.

2. Interpretation and identification

Typically, identification of a local model network
either involves conventional linearization of the non-
linear system about a number of equilibrium operating
points, or performing weighted regression of local mod-
els to excitation data (in which case the models are not
the classical linearizations commonly used in control
theory).

Given these two possibilities, there are two
approaches to interpretation of the model at intermedi-
ate operating points, where the model description of the
plant dynamics is obtained by interpolating the local
models in some manner. For example, consider the
model of the unforced plant dynamics obtained by iden-
tifying linear models about several values of scheduling

vector (x;, wo;):

(1) We could interpret the interpolation procedure
as yielding intermediate Jacobian matrices given
by A(xg>wy). This results in a model of the
linearized dynamics at (xg.w,) given by x =
A(xg>Wo)(x = Xxq)-

(2) Or, we could assume that the multiple model
family used is a parameterization of the real
system yielding a full description of global
dynamics x = A(x>w)x + d(x-w). In this case

the linearization about an intermediate equilib-

rium point (x4, w,) is given by

0
<—[A(x» w)x + d(x, w)])
0x (x0:Wo)

0
+ <—[A(x~w)x+ d(x»w)]) (w— wo) (2.1)

(x = xo)

ow

(x0.wo)

= A (xgwo)(x — xo) T A, (x0-wWo)(W — wyo) (2.2)
where Xx(xo,wo) ¢ RV*" and where X;(xo,wo) €
RV X0

(Note here we have omitted y from the scheduling
variable for simplicity. In the remainder of the paper
we shall no longer schedule on an external w and shall
therefore use A for Ax.)

If identifying the models from experimental data, the
first interpretation implies that the linearization is based
only on perturbation data around the linearization point
(xg-wp)- In the second case [equation (2.1)], we assume
global excitation of the input space, and that the local
models are not to be identified independently of each
other, but rather that the identification of basis func-
tions and local models is performed in an iterative pro-
cess. We note that Xx(xo,wo) and A(x,.wo) are in

general not identical. To sum up—what the model
represents depends on how the data are gathered, and
how the parameters of the local models and basis func-
tions are identified.

Example 1: To illustrate this point more clearly, con-
sider the example depicted in figure 1. Here, a math-
ematical model of a Thelicopter was perturbed
(helicopter linearization data provided by Stewart
Houston, University of Glasgow; the model is too ex-
tensive to include in this paper—see Houston (1994)
for further details) around a number of linearization
points x; (scheduling on airspeed, from hover to
10knots at 1 knot intervals) to provide the parameters
for local state-space models, which are then integrated
into a multiple model system using locally linear basis
functions to form a model of the system dynamics.
The use of perturbations around an operating point
implies that we are using the first interpretation.

In figure 1 we show the eigenvalues of the A (x,) and
;(Xo) matrices as defined above. Figure 1(c) shows the
linearly interpolating basis functions, and their deriva-
tives. In the second approach the non-zero derivatives of
the basis functions, and of the offset terms have a sig-
nificant effect on the linearizations. In figure 1(a) we see
the poles of the identified A matrices, and interpolation
between them provides ‘sensible’ results. These A
matrices already implicitly contain the extra terms
described in the second interpretation. If we interpret
them wrongly by adding in the effect of basis function
derivatives and change of offset, we get meaningless
interpolation, as shown in figure 1(b), where the full
model eigenvalues do not even pass through the local
model eigenvalues at the linearization points (because of
the mnon-zero derivative of the basis function,
8p,(x)/0x). Adding further local models would not
improve matters.

This example illustrates the care which should be
taken when interpreting the parameters of a multiple
model system. (Note that one could argue for a variety
of implementations of the basis function and local mod-
els for this case—the example is purely to illustrate the
relevance of the points discussed above.) This obviously
has to be taken into account when dealing with grey-box
models which combine identified and a priori compon-
ents, as well as for experiment design, identification
algorithms and any subsequent control design.

3. Interpretation of model dynamics

The structure of the non-linear system (1.4) and the
manner in which it is identified encourage a certain in-
terpretation of the model dynamics; namely to interpret
the model dynamics in terms of the individual dynamic
systems x ;. In fact, the structure is such that it is quite
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tions A, are marked by circles. Note the divergence from the interpo-
lated eigenvalues in (a), and that the interpolated eigenvalues no longer
pass through the identified eigenvalues, even at the linearization points.

tempting to interpret the quantitative behaviour of the
model dynamics in terms of the poles and zeros of x,.
Such an interpretation is not generally valid for a num-
ber of reasons. Apart from the fact that the eigenvalues
of the parameterized matrix A(x,u, w) depend not only
on the local models A;,B;,d;, but also upon the inter-
polation procedure, several other problems exist which
invalidate this interpretation. In particular we note the
following important observations which provide the
basis for the remaining discussion in this paper.

(1) Local models along the manifold of equilibria
are only individually interpretable in a region
where p, & 1. (For the second interpretation
[equation (2.1)], we see that XX’(X) ~ A,; only if
pi &1 and 0p;(x)/0x = 0. Hence, the effect of
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derivatives. Basis functions have compact support. Basis functions are
plotted for the region used for the interpolation plots in (a) and (b).
The x-axis is normalized, with hover from the left to 10 knots on the
right.

Figure 1. [Illustration of the effect of model interpretation in
a practical example. The local models were lineariza-
tions based on perturbations of a helicopter model
from a trimmed stated, at 1knot intervals from
hover to 10 knots. Eigenvalues of individual local mod-
els are shown, along with interpolated values from the
multiple model structure.

the derivative may contribute significantly to
the linearization term unless the neighbouring
A;s are identical.)

(2) Off equilibria, for models with virtual equilib-
rium points, only part of the dynamics associ-
ated with model ¥, is used in the construction
of the global dynamics. Hence, the region of
validity of the model is more restricted than
that defined by its blending function p,. The
model is only valid in a subspace of this region.

Both of these observations, and their consequences for
interpreting structures such as the local model network
(Johansen and Murray-Smith 1997) will now be dis-
cussed.

3.1. Interpretation problems of on-equilibrium local
models

It is well known that instability and even chaotic
behaviour can be introduced by switching or interpolat-
ing between stable linear systems (Fillipov 1960, Skoog
and Clifford 1972, Shorten 1996). Hence, the dynamics
of the individual sub-systems may, in some cases, give
no useful insight into the global system dynamics. In the
case of equation (1.4) such effects depend upon the

validity functions and linearization points (hence the
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Figure 2. Construction of a trajectory using interpolated local models. The ellipses denote the location of the p,. Note how
alternative models’ trajectories approximate the measured trajectory within their basis functions, but diverge significantly
outside the basis function. This observation has severe consequences for control law design.

d[)—the local linearizations are often only indicative of
global dynamics in a small region where p;, /&2 1, around
their equilibrium points. In this region, the global model
behaves approximately as the local model, and returns
to the equilibrium point. However, if perturbed such
that the state leaves this region of the local model’s
operating regime, we may see periodic oscillatory behav-
iour, or chattering between neighbouring local models,
and the state may even subsequently leave the local
model’s regime entirely, thereby rendering isolated in-
terpretation of each local model meaningless.

3.2. Interpretation problems of off-equilibrium local
models

A further factor which affects our interpretation of
multiple model dynamics concerns off-equilibrium be-
haviour. Consider the phase-plane trajectory depicted
in figure 2. It can be observed that the trajectory
depicted may be approximated by combining models
as shown in figure 2(a) or as in figure 2(b). This suggests
that the state space can be covered by many different
locally accurate models which, when combined, will
approximate this trajectory in a satisfactory manner.
To see this more clearly consider the abstract case of
approximating the flow associated with the dynamic
system x = f(x), in the vicinity of some vector x, by
the local model

x = p(x)[Ax + d] (3.1)

where f(:) € IRN, where x, A, d are as defined in §1, and
where p(x) = 1 when x = x,, and is zero otherwise.
Clearly for any arbitrary choice of invertible A, regard-
less of its nature (stable, unstable, complex, etc.), a vec-
tor d can be found such that

f(xg) = p(xo)[Axo + d] (3.2)

where d = f(x,) - Ax,. Hence, at x = x, a non-unique
parameterization of the dynamics exist, making any
qualitative interpretation of the A matrix meaningless.
Furthermore, in the neighbourhood of x,, subject to
some approximation error, by simply varying the loca-
tion of the virtual equilibria (or of the form of the p,), it
is possible to obtain many (dynamically) different para-
meterizations of the non-linear dynamics. (We note also
that conditions exist such that two systems, which have
the same equilibrium point, can be identical along an
entire manifold; namely, when A, and A, share eigen-
vector and eigenvalue pairs. The manifold is defined by
the eigenvectors common to both systems.) This is illu-
strated in the following example.

Example 2: Consider the behaviour of the following

autonomous systems

Tp:x = A (3.3)
22:X:A2X+d (34)
where
4 -4.5 7 0.51 -4.29
A= A, =
4.05 -4.55 ] 3.84 -4.51
and
[- 8.58
d =
|- 0.27

The flow associated with both of these systems is
depicted in figure 3. These systems are qualitatively
very different; ¥, is a stable node with an equilibrium
point centred at the origin, whereas ¥, is a stable spiral
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Figure 3.

with its equilibrium point close to, but not centred, at

the origin. However, in a small region defined by

R.2<x <4, 8 < x, <10 (3.5)

as depicted, the flow of both systems is similar. The

velocity vectors point in the same direction and the
maximum error, defined by

H(A') - A])X+ d”

max

Emax = Ma = (3.6)
< 0.42 (3.7

is bounded and small. The error dynamics
x = (A~ Apx + d, x ¢ R (3.8)

are depicted in figure 3(e). Hence, we conclude that in R,
subject to some appropriately defined approximation
error, the dynamics described by Z 4, and z,, are in
some sense equivalent. In this region both Z 4, and T,

are valid representations of an appropriate non-linear

(d) The region R2

Non-uniqueness of representation. The two systems x, and x, are qualitatively
[shown in detail in (¢) and (d)] we see that there is little difference, as shown by

(e) Error dynamics

different, but in the outlined regions
the error dynamics in (e).

system, but outside the region they differ consider-
ably.

This rather obvious observation is of crucial import-
ance for two reasons. It strongly suggests that the
qualitative nature of the identified local models may
say very little about the non-linear dynamics even
locally. This is by virtue of the fact that the local
model is, by definition, only valid in a local region of
state space, and crucially in the off-equilibrium case,
that the local model’s contribution to the global model
only comes from a restricted sub-region which does not
include the model’s equilibrium point. Given enough
data, from a well-designed experiment, we could avoid
such problems, as we would know we had covered the
volume of interest in the input space. In practice though,
where we have too poor understanding of the target
system to design an ideal experiment, and where exhaus-

tive data acquisition is too expensive, this will often be a
real problem.
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(a) Model behaviour over time. The responses of the unstable and of the

modified model are almost identical.

Figure 4.

Secondly, given the variability in possible solutions
to the identification problem, we may wish to regularize
the identification process, that is bias the choice from the
space of possible fits to the data towards models with
desired properties (for example stable local linear mod-
els). A simple alternative, especially if we only want on-
equilibrium models, so it is known a priori that local
models should have ‘real’ equilibria, is to identify offset
models d;( ) separately from dynamics models. This is a
practical approach, as a wide class of systems can be
easily driven through a range of equilibria to acquire
the necessary data, and at a finer quantization level
than in experiments linked to the dynamic behaviour.
Straightforward interpolation with smoothing provides
the model, and validation is also straightforward. If we
then use this model of the offsets as the basis for the
linearizations we have severely reduced the degrees of
freedom for the linear system.

4. Modelling muscle behaviour

An example of identifying a local model with a vir-
tual equilibrium point, and being able to correct prob-
lems (in this case ‘by hand’), was found when modelling
isometric contraction of electrically stimulated rabbit
muscle (Gollee et al. 1997). The motoneurons of the
muscle are stimulated with randomly spaced impulses,
and the force produced by the muscle when held at con-

Tl

(b) Phase plane trajectories of the unstable and the modi-
fied model shown in (a) from 150 to 300 ms. Bold line indi-
cates that the fourth local model is active (pg > 0.3). The
sudden vertical jumps in x are due to the input pulses
shown in (a).

Experimental data and model responses.

stant length is recorded. Typical data are shown in figure
4(a). The system has a single input and a single output.

A model of the form of equation (1.4) with six local
linear second order models is identified using 30 data
sets, where each set contains 590 samples. The par-
ameters of the local models were optimized using a
Levenberg—Marquardt algorithm with an infinite predic-
tion horizon (Press et al. 1992). As shown in figure 4(a),
the performance of the global model is very good for
stimulation sequences similar to those used to identify
its parameters, which consist of pulses with randomly
varying inter-pulse interval. If we examine the identified
A matrices, we find that all have real and negative eigen-
values, except for the fourth local model which has
eigenvalues 7.14, = 111.89, i.e. this local model has a
non-stable A matrix, which is undesirable—if the
model enters a region where we had no identification
data, a stable matrix will tend to push us toward equili-
bria and thus hopefully into a more accurately modelled
region. (It could also lead to limit cycle behaviour, but
should not lead to unboundedness.) All local models,
other than the one scheduled at w = 0 have virtual equi-
libria. Given the stimulation the model was identified
with, where the activation varies quickly, and each
local model remains activated only for a short period
of time, this slow positive eigenvalue did not have time

to have an effect. However, the influence of the unstable
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Figure 5. Responses of the gobal models, and phase planes and state trajectories of the unstable and the stable local model for an
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(b) Stable local model

Phase planes of the unstable and the stable local model. The % denote the equilibrium points of the autonomous systems,

xy = — A} ld4. The rectangular area marks the region the local model operates in, cf. figure 5.

local model becomes obvious when a constant frequency
burst is applied which drives the model into an operat-
ing region where the unstable local model is constantly
active. such a response is shown in figure 5(a).

To show how a range of models can fit the data
locally, but have quite different properties, we altered
the positive eigenvalue to give us a stabilized model
with a slow but stable pole at — 1. After reidentifying
the bias terms d of the modified local model, it performs
similarly to the previously identified model on the iden-
tification data, cf. figure 4(a), but does not become
unbounded for the constant stimulation case. The full
force-fields associated with the candidate local models
are shown in figure 6.

The above example clearly demonstrates the import-
ance of understanding how a blended multiple model
structure represents non-linear dynamics; namely that
this understanding can be used to construct a global
model with desired properties.

5. Conclusions

In this paper we have made the following important
observations regarding the interpretation of local model
dynamics in systems of blended local models:

(1) We have illustrated that a genuine interpretation
question arises when the model is identified from
experimental data; namely does the identified
model represent plant linearizations or global
plant dynamics?

(2) We have shown that the properties (the eigen-

space) of the parameterized local models

A(x,u,w) need not provide useful insight into
the model dynamics, even in the neighbourhood
of model equilibria. The extent to which the local
models reflect actual plant dynamics depends on
the offsets introduced by linearization points, the
form of the interpolation functions, and upon
the location of these models with respect to the
model equilibria.

(3) We have also demonstrated that a non-unique
parameterization of model dynamics exists off
equilibria, or when offsets are identified from
data. Hence, trying to interpret qualitatively
the model dynamics based upon A;(x.u,w) off-
equilibria is dangerous.

The muscle modelling and helicopter examples illu-
strated that these considerations are relevant for real
applications, and that these effects can be used construc-
tively to obtain ‘well-behaved’ local models. Further-
more, the muscle modelling example also illustrated
that the ill-constrained nature of the identified local
models can also be a problem, even if the model is
used as a black-box structure, i.e. slight variations in
identification data can lead to qualitatively different
model behaviour. These problems will remain, due to
the difficulties associated with experiment design. This
can be somewhat constrained by separating the identifi-
cation of local model offsets and A matrices, so that this
case does not occur accidentally for on-equilibrium
models. We can also use the non-unique parameteriza-
tion of the non-linear dynamics to construct global
models from local models which are in some sense well
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behaved. Future regularization-like approaches could
provide a more general solution to apply in the identifi-
cation stage.

Finally, we emphasize that the interpretation prob-
lems reported in this paper arise, not as a result of poor
identification, but rather as a result of the nature of the
multiple-model approach to building non-linear dyna-
mical models. The authors believe that the full power
of this approach will be realized only after the interpret-
ation issue has been understood, and forms an integral
part of the experiment design procedure.
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