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Abstract

The dynamic charaderistics of a wntroller designed by the gain-scheduling approach can be strongly dependent on
the redisation adopted; that is, the manner in which the locd linea controller designs are cmbined to oltain a non-
locd controller. The purpose of the present paper is to investigate the choice of appropriate redisations for genera
MIMO gain-scheduled controllers. An extended locd linea equivalence ondition for MIMO gain-scheduled nonlinea
controllers is proposed which minimises the acntroller nonlineaity. It is shown that, with few exceptions, it is possible
to redise dl gain-scheduled controllers as nonlinea controllers satisfying the extended locd linea equivalence
conditi on and requiring the mntroller to doso isnot at al restrictive.

1. Introduction

Gain-scheduling control has a long pedigree and, having originated in flight control, is now widely employed in a
variety of applicaions where high performance has to be atieved over a broad operating envelope. Traditionally, a
gain-scheduled controller is adjusted with reference to a sowly-varying externally measured quantity which, in some
sense, captures the nonlinea behaviour of the plant (Astrom & Wittenmark 1989. However, the term * gain-scheduled’
is also widely applied to encompass a broad range of controll ers including those where the scheduling variable varies
rapidly (Shamma & Athans 1992, where an internal state of the cntroller is employed to implicitly schedule the
controller (Rugh 1991) and where the plant is esentialy fixed but the @ntrol objedives vary (Leith & Leithead 1994
19%).

In these latter applications, the cntrollers may be strongly nonlinear and their dynamic charaderistics may, in
general, bea little relation to those of dowly-varying exogenously gain-scheduled controllers. Nevertheless, the
controllers are linked by the design approach employed whereby a nonlinea controller is constructed by continuously
interpolating, in some manner, between the members of a family of linea controllers. Eacd linea controller is,
typicdly, asociated with a spedfic equili brium operating point of the plant and is designed to ensure that, locdly to the
equili brium operating point, the performance requirements are met. (The eistence of a set of equili brium operating
points which encompass the envelope of plant operation is central to most gain-scheduling arrangements and it is
insufficient to restrict consideration to a single, isolated, equili brium operating point). By employing a series expansion
lineaisation which, locdly to the euili brium operating point, has smilar dynamics to the plant, linea techniques may
be used to resolve this locd design task. Continuity is, therefore, maintained with established linea design techniques
for which a considerable body of experience has been accumulated.

It is known that the dynamic charaderistics of a controll er designed by the gain-scheduling approach can be strongly
dependent on the redisation adopted; that is, the manner in which the loca linea controllers are cmbined to oltain a
non-locd controller (see for example, Leithead et al. 19913 Leith & Leithead 199%). Indeed, the performance
improvement, in comparison to linea control, achieved by employing a gain-scheduled controller can be antirely lost
when an inappropriate controller redisation is adopted (Leith & Leithead 199§. However, analytic suppart for the
choiceof an appropriate wntroller redisation is rather poaly developed.

Lawrence & Rugh (1995 propose that the cntroller redisation should be restricted to ensure that, a eadh
equili brium operating point, the dynamics of the antroller series expansion lineaisation matches the crresponding
member of the family of linea controllers. (A similar approach is also advocaed, in a more restricted context, by
Kaminer et al. 199%). However, their results are of little utility (Leith & Leithead 1996 1997a). Leith & Leithea
(1996) propose, instead, that the controller redisation should satisfy a so-cdled extended locd linea equivalence
condition and derive generic redi sations which satisfy this condition for a broad classof SISO controllers. Employing
aredistic example from wind turbine regulation, it is demonstrated that redisations which satisfy the extended locd
linea equivalence mndition provide asubstantial improvement in performance in comparison with redisations which
do not satisfy this condition (including those which satisfy the locd linea equivalence mndition of Lawrence & Rugh
19%).

The objedive of the present paper is to further develop the gproach of Leith & Leithead (1996) and, in particular,
extend it to encompass the choice of an appropriate redisation for general multi-input multi-output gain-scheduled



controllers. The paper is organised as follows. In sedion 2, some preliminary details are presented and, in sedion 3,
criteria for the seledion of appropriate redisations are discussed. In sedion 4, various pradica issues are aldressed
and redisations, satisfying the extended locd linea equivalence citerion derived in sedion 3, are investigated. The
conclusions are summarised in sedion 5.

2. Gain-scheduling design

The traditional exogenously gain-scheduled controller, which is adjusted with reference to an externally measured

variable, p(t), hasthe form
X =A(p®)x + B(p(®)r, y = C(p(1))x + D(p(t))r 1)

The dynamic properties change with p(t) but, provided that the rate of change is not too rapid, then the dynamic
properties of the time-varying controller, (1), are similar to those of the linea controllers obtained by ‘freezng’ the
value of p; that is, the nonlinea controller inherits the dynamic properties of the family of linea controllers (seg for
example, Desoer 1969). It is noted that there ae no dred restrictions on the state, x, or the input, r. The only
restriction is on the rate of change of the scheduling variable; indeed, when the scheduling variable is constant, the
controller islinea. However, matters are not so simple when the scheduling variable is a function of internal quantities.
In this paper, consideration is restricted to the latter.

2.1Linear synthesis

In the gain-scheduling design approach, the (usualy nonlinea) plant dynamics are gproximated, locdly to a
spedfic equilibrium operating point, by a series expansion lineaisation. A linea time-invariant controller is then
designed which ensures appropriate dosed-loop performance when employed with the plant lineaisation. This process
is repeaed for a set of equili brium operating points, covering the envelope of operation, whilst ensuring that the linear
controller designs have compatible structures; for example, when a smoothly gain-scheduled controller is required, the
linea controller designs are seleded to permit smoath interpolation, in some gpropriate manner, between the designs.

At any equili brium operating point of the plant, all of the plant inputs, including the controller output yOIOIP, and all
of the plant outputs, including the controller input rO0™, are wnstant. It is assumed that the eguili brium operating
points of the plant may be minimally parameterised by a quantity, ] 09 Consequently, bath the eguili brium operating
points of the gain-scheduled controller and the locd linea time-invariant controllers may also be parameterised by Tt
Hence, there exists a family, (ro(17),Yo(17), of constant controller inputs and outputs and afamily of linea time-invariant
controll ers,

OX =Adx +Bor, Oy =Cox +Dor. (24)

O =1 -1(T), Y =Yyo(T) +dy, (2b)
corresponding to the set of plant equili brium operating points. Clealy, (2a) is not unique and the states, ox,, may be
subjed to a non-singular linea transformation (which may be different for ead equilibrium operating point) without
changing the dynamics. In addition, it is assumed that the degrees of the input, output and state ae not dependent on Tt
and that the matrices, A ,B,, C_and D, are mntinuous with resped to Tt

2.2Nonlinear realisation

In addition to the synthesis of a family of linea controllers, the gain-scheduling design approach requires the
determination of a suitable nonlinea controller; that is, the determination of an appropriate realisation. It is this gep
which recaves consideration in the present paper. Nonlinea gain-scheduled controll er redi sations of the form,

X=F(x,r), y=G(x,r) (3)
are onsidered, where F(-,) and G(-,) are continuous and dfferentiable, and x O 0" denotes the state of the aontroller.
The set of equili brium operating points of the nonlinea controller, (3), consists of those points, (X, Yo, I'o), for which

F(Xo, Fo) =0, Yo = G(Xo, I'0) 4
Let ®:0"x0™ denote the space onsisting of the union of the state, x, with the input, r. The locus of the set of
equili brium operating points of the nonlinea controller, (x,, o), forms a surfacein ® and the response of the controller
to ageneral time-varying input, r(t), is depicted by atrgjedory in ®.

Assume that (4) is suitably invertible so that the eguilibrium values of the state, x,, may be determined from the
equilibrium values of the @ntroller input, ro,, and output, y,. This assumption ensures that the eguilibrium
charaderistics are independent of the choice of controller state. For consistency with sedion 2.1, the set of equilibrium
operating points, (ro, Yo), must be the same & the family (r o(T7),yo(17)) and the surfaceof equili brium operating pointsin
@ must be of dimension . The quantity, 1, provides an index for the equili brium operating points which is independent



of the redisation whereas the points (X,,r,) themselves, and the mapping from 1t to (X,, ro) and the inverse mapping
from (Xo,r o) to T, are dependant on the choice of redisation, (3). The scheduling variable is a function, p:(Xo,r o)—+0°,
which is an isomorphism of the inverse mapping from (X.,r,) to the parameterisation of the equili brium operating
points. Hence, the set of equili brium operating points for the nonlinea controller, (3), can be parameterised with
resped to p; namely, (Xo(p), Yo(P),ro(p)). The domain of p is usualy not confined to the set of equili brium operating
points, (Xo,lo): at a general operating point, (x,r), p:(x,r)—09 such that p(x,r) = p(Xo,ro) for some (X,,ro). The
scheduling variable, thereby, indicates sme member of the linea family, (2), at any time, regardless of whether the
systemisin equili brium. In this paper, it is assumed that p is a continuous function; that is, the discussion here excludes
norrsmooth scheduling such as switching. Typicdly, the seledion of an appropriate scheduling variable is based on
physicd insight.

The nonlinea controller, (3), is required to have, in some sense, similar dynamic properties to the members of the
linea family, (2), for the widest possble range of operating conditions. Initially, consider the cae where the controll er
is operating localy to a spedfic equili brium operating point, (Xo(Po), ro(Po)). There &ists a dass, C, , of inputs and

initial conditions for the state, for which the nonlinea controller and the associated member of the linea family are
judged to have similar dynamic behaviour. (The definition of the aiteria, by which the similarity of dynamic behaviour
is ases%d, is dependent on the cntext, in which the requirement for a gain-scheduled controller arises, and on the
nature of the controllers). Let the dass C, be the union over the p, of the dasses C, . Now consider the case where

the controller is not confined to operating locdly to some spedfic equilibrium operating point. There eists a dass, Cy,
of inputs and initial conditions for the state such that the response of the nonlinea controll er, whilst in the vicinity of a
particular equili brium operating point, is judged, in some @ntextually appropriate sense, to have similar dynamic
behaviour to the mrresponding member of the family of linea controllers. The dasses, C and Cy, are non-empty since
they contain the eguili brium values r o(p,) and X(po). The definitions of the aiteria, by which the similarity of dynamic
behaviour is asessd in the two cases, are asaumed to be such that, for a sequence of nonlinea redisations for afamily
of linea controllers, the trend is for the membership of the dass Cy to increase as the membership of the dass C
increases. This assumption is not unnatural since the membership of the dasses is a refledion of the “strength of the
controller nonlineaity” by whatever meansit is defined.

It should be noted that the relationship between the eguili brium input and output of the controller, rq(*) and yo(*),
can have aconsiderable impad on the nonlinea controller design. Whilst this issue is largely negleded in the
literature, it is clea that a strong restriction isimpased on the dass of all owable nonlinea controllers; for example, the
functions, F(¢,*) and G(*,*), in (3) are not independent since,

F(Xo(P), ro(p)) = 0, G(Xo(P).F o(P)) = Yo(P)

must be jointly satisfied and, when F(e,¢) is invertible so that x,(*) is determined by ry(¢), it follows that the output
function, G(s,*), is, esentialy, completely spedfied by the eguili brium input/output relationship and the choice of
F(s,*). It is posshle to satisfy the relationship between the eguilibrium input and output, whilst maintaining design
freedom, by including explicit functions for ry(*) and yo(*) within the controller (Shamma & Athans 199Q Lawrence &
Rugh 1995. However, the derivation of the explicit functions is extremely onerous and quite undesirable in most
applicdions. Unless otherwise stated, it is assumed that the cntrollers discussed below are cwmpatible with the
equili brium input/output conditi ons.

2.3 Previous approaches

Perhaps the most common approach to redising a gain-scheduled controller is to simply substitute a scheduling
variable, p(x, r), for 1t in the family of locd linea controllers, (2), to oktain a nonlinea controller. When the
scheduling variable, p, varies sufficiently slowly (trivially, when the rate of variation is zero), the dynamic
charaderistics of the linea family are inherited by the nonlinea controller. However, in the nonlinea controller the
scheduling variable, p, varies with the input and/or the state whil st in the locd linea controller, (2), it isfixed. Hence
in general, the series expansion lineaisation of the nonlinea controller about an equili brium operating point, at which
the scheduling variable has the value p,, contains terms, related to the perturbations, op, in the scheduling variable, not
present in the linea family, (2) (where dp eguals p-p,). Consequently, for the nonlinea controller to have similar
dynamics to the linea family, it is necessary to impose a onstraint on the variation of p; namely, that the first order
perturbations in &p, and so dx and or, must be negligible. This constraint applies even when the state is confined to a
small neighbourhood about a single equili brium operating point which is clealy not a priori necessary. Hence, for this
classof nonlinea controller the mnstraintsimpased on p sean unnecessarily strict.

As an dternative, Lawrence & Rugh (1995 (and also Kaminer et al. 1995, in a more restrictive context) propcse
that the nonlinea controller should be seleded to ensure that its sries expansion lineaisation at each equili brium
operating point corresponds to the gpropriate member of the linea family, (2). In other words, within the



neighbourhood, about a spedfic equili brium operating point, for which the second order perturbations in dx and ér are
negligible, the nonlinea controller is required to have similar dynamics to the gpropriate member of the linea family.
The nonlinea controll er, therefore, has the required dynamic behaviour, locdly to ead equili brium operating point, for
aless grict constraint on dx and or than the previous approad.

3. Selection criteriafor the realisation of gain-scheduled controllers

It is clealy attradive to require that the controllers are consistent with the gproac of Lawrence & Rugh (1995
since the series expansion lineaisation of the controller, at ead equilibrium operating point, then corresponds to the
appropriate member of the linea family, (2). However, there exist infinitely many nonlinea controllers satisfying the
locd linea equivalence @ndition of Lawrence & Rugh for a particular family of linea controllers. The size of the
classs, C, , of inputsand initial conditions may vary grealy for different choices of controller redisation and may, in

fad, be relatively large for some choices but vanishingly small for others. Sincethe size of the dasses of valid inputs
and initial conditions is variable and may be unnecessarily restricted by the choice of redisation adoped, the
requirement of locd linea equivalence is, by itself, an inadequate guide to the choice of a minimally nonlinea
controller redisation; that is, a redisation for which the restrictions on the inputs and the initial values of the states are
minimal (Leith & Leithead 199%). A criterion is, therefore, required which provides guidance to those redisations
satisfying locd linea equivalencethat do not unnecessarily diminish the dassof valid inputs and initial conditions.

3.1Extended local linear equivalence

The extent to which the dynamics vary over the locus of equili brium operating points, being defined by the family of
linea controllers, (2), is clealy inherent to the gain-scheduled controller. However, the extent to which the dynamics
vary asthe operating point is displacel away from the locus of equili brium operating pointsis, in contrast, dependent on
the controller redisation. Restrictions are imposed on the inputs and initial conditions by both aspeds of the cntroller
nonlineaity. The restriction impased by the first asped is ©mewhat similar to that encountered in exogenously gain-
scheduled controllers; roughly speeing, the inputs and initial conditions are restricted to prevent the locus of
equili brium operating points from being traversed too rapidly thereby preventing the dynamic properties, which vary
over the locus of equili brium operating points, from varying too rapidly. When the inputs and initial conditions are
such that the variation in the scheduling variable is small and consideration may be mnfined to a single member of the
linea family, this restriction does not apply. However, the second asped still impases a restriction on the inputs and
initial conditions. The restriction imposed by the seand asped is, evidently, additional to and, in some sense,
independent of the first.

The nonlinea controller, (3), may be reformulated as,

OX = LxF(Xo(Po), T o(Po))OX + LI F(Xo(Po), I'o(Po))Or +€F (59)

6y = DXG(Xo(po)a ro(po))6X + DrG(Xo(po)a ro(po))ér REE (Sb)

O =T -To(Po), Y =Yo(Po)+dy (5¢)
where,

&r = F(,r) -0xF(Xo(Po), To(P0))0X - Lr F(Xo(Po), To(Po))Or (5d)

&= G(X,I’) 'G(ero) 'DXG(Xo(po)v ro(po))6X - DrG(Xo(po)a ro(po))ar (56)

X = Xo(Po) + OX ()

for any p,. The locd linea equivalence requirement is satisfied at an equili brium operating point, at which p has the
value, p,, provided the derivatives OiF, O,F, UG and O,G match, within a non-singular transformation of the states,
the matrices, A ,B_,C,_andD,, of the gopropriate member of the family of linea controllers.

When assessing whether the dynamic behaviour of the nonlinea controller, (3), is locdly similar to a particular
member of the family of linea controllers, it may naturally be assumed that the aiteria employed impaoses a restriction
on the magnitude of the residuals, €r and €. In general, the residuals may be dependent on every element of ox and or
and, therefore, arestriction isimposed on the magnitude of every element. However, many of these restrictions are not
a priori necessry. The inherent nonlinea charader of the gain-scheduled controller is emboded in the variation
between the members of the family of linea controllers, (2). It follows that the gain-scheduled controller is inherently
nonlinea with resped to the scheduling variable, p, and a particular member of the family of linea controllers is
inherently only valid when the perturbation, dp, is restricted to some range which is dependent on the properties of the
family of linea controllers. To minimise the restrictions on the perturbations in the dements of (x, r), it is, therefore,
quite natural to require that the residuals depend purely on dp alone; that is, on p and no ather combinations of the
element. Hence, the nonlineaity must purely be afunction of p. Moreover, since p minimally parameterises the family
of linea controllers, it is clea that thisis the weakest functional dependence of the residuals passible.



When the antroller nonlineaity is purely afunction of p, the nonlinea controller, (3), must be of the form,

X = Ax+Br +f(p), y = Cx+Dr +g(p) (6)
where A, B, C, D are mnstant matrices, f(*) and g(*) are differentiable nonlinea functions, and [yp, O,p are functions
of p alone. The scheduling variable, p(x, r)009, equals the constant value, p,, Upon a surfaceof co-dimension ¢ in ®
and Oyp and O, p are mnstant over each surface Hence the normal to ead surfaceis identical at every point on the
surface ad ead surfaceis, therefore, affine. Moreover, to ensure that p is a unique function of x and r, these surfaces
must be paralel for all p. Consequently, it may be asumed, without lossof generality, that O,p and O,p are @nstant
and p is a linea combination of the dements of the state and input. The ntroller dynamics are linea in those
combinations of the dements of (x, r) that are linealy independent of p.

The lineaisation of the nonlinea controller, (6), at a spedfic equili brium operating point, (Xo(Po), ro(Pa)), IS,

Ox = (A+Lf(po) Ckp)OX + (B+Lf(po) LIrp)dr (73)

dy = (C+0,9(Po) Lxp)0x + (D+L1,9(po) Lrp)or (7b)
Unnecessary restrictions on the membership of the dasses, C, , of inputs and initial conditions for the state, for which

the lineaisations are locdly valid, are avoided by the redisation, (6); in this ense, the size of the dasses, C, and so C,

is maximised. Since the membership of the dass Cy, tends to increase as the membership of the dass, C, increases,
membership of Cy is, in genera, greaer for a wntroller with the redisation (6), i.e. satisfying the so-cdled extended
locd linea equivalence mndition, than for a controller satisfying the locd linea equivalence ondition of Lawrence &
Rugh (1995. Therestriction imposed on the dassof inputs and initial conditions by the extent, to which the dynamics
vary as the operating point is displaceal away from the locus of equili brium operating points, is completely relaxed for
the redisations stisfying the extended locd linea equivalence ondition. Only the inherent restriction imposed on the
classby the extent to which the dynamics vary over the locus of equili brium operating points remainsin place

The formulation, (6), is equivalent, in a SISO context, to the extended locd linea eguivalence @ndition propased
by Leith & Leithead (1994 1996).

3.1.1 Linearisation at non-equilibrium operating points

For consistency with the restriction on the magnitude of the residuals impased by the requirement that the dynamic
behaviour of the nonlinea controller, (3), islocdly similar to a particular member of the family of linea controll ers, the
state, dx, of the nonlinea controller, (5), and the input, &r, must belong to some neighbourhood d (Xo(po), ro(Po) Within
which they are sufficiently small that & and € are negligible. (Alternatively, the state of the linea controll er, obtained
from (5) by setting € and &g to zero, and the input could be required to belong to the neighbourhood Although the
class for which this latter requirement is met, is not identicd to C, , it is not substantially different. When comparing

the membership of the dassof inputs and initial conditions for different redisations, this alternative requirement has the
advantage that the state does not change with the redisation since the lineaisations are the same). The situation for a
controller satisfying the locd linea equivalence ondition of Lawrence & Rugh (1999 isiill ustrated in figure 1 for a
SISO first-order controller whilst the situation for a cntroller satisfying the extended locd linea equivalence
condition, isillustrated in figure 2: the shaded regions notionally indicae the neighbourhoods within which the dx and
or are sufficiently small that - and g are negligible and a particular lineaisation is valid. It should be noted that the
neighbourhoods for the redisation, (6), are infinite in extent, having no a priori restriction in the diredions in which p
isconstant. Irrespedive of any differencein scding of the states, the neighbourhoods in figure 2 are significantly larger
than the neighbourhoods in figure 1.

The nonlinea controller, (6), can be lineaised at any operating point, including non-equili brium operating points,
for which the value of p is within its domain; in many cases at any operating point in the space ®. Any point, for
which p has the value p,, is in the neighbourhood associated with the eguili brium operating point for that value of po.
Hence at a nonequili brium operating point the nonlinea controller can be lineaised by assciating it with the linea
controller at the equili brium point for which the value of p is the same; that is, at a point for which the scheduling
variable has the value p,, the lineaisation of (6) is (7). (Note, the lineaisation is not obtained by perturbing the system
about the non-equili brium operating point and neglecting the inhomogeneous term, although that would result in a
similar description for those systems satisfying the extended locd linea equivalence ®ndition). This lineaisation is
valid in any neighbourhood d the non-equili brium operating point which is contained within the neighbourhood
asciated with the rresponding equili brium operating point. Hence the extended locd linea equivalence ndition
can be interpreted as requiring that the lineaisation of the nonlinea controller corresponds to the gpropriate member
of the linea family at al operating points and not just the equili brium operating points as required by the locd linea
equivalence ondition of Lawrence & Rugh (1995.



3.2 Example

The foregoing points are il lustrated by the foll owing example. Suppose that the family of second-order SISO linea
controllers,

OX =AO0x+Bor, dy=Cox+D2or (84)
where 8x = [8x; O%;]"
o o 0 EJ

"= Q-ab)g, -au %)m Cr=[bg, 1] D, =0 (8b)

has been designed, where g, varies as a mntinuous function of the equili brium operating point and is non-zero. The
transfer function of the member of the family associated with TTequal to 11, is,
(bs+ 1)
Y9 =0npd OO0 R(S (9)
S(s+a)
where Y(s), R(s) are the Laplacetransforms of, respedively, dy(t) and or(t). The values of g, are asumed to be finite
and either strictly paositive or strictly negative; that is, there exist & and & such that
O<gy<gpsap<l or -O<a <grsa<0 (20
The output, v, is Elected as the scheduling variable on the asumption that the equilibrium operating points of the
controller can be parameterised by y and that there exists a mntinuous function,
o(+): O-{ar. 1y
(Owing to the pure integral adion present in the members of the family, (8), the input to the controller must be zeo at
an equili brium operating point and the locus of equilibrium operating points cannot, therefore, be parameterised by the
input).

Redisation A

Consider the nonlinea controller obtained by simply repladng g, in (8) by the function ¢(y) as depicted in figure 3a.
Such an approadc is widely employed to construct gain-scheduled controllers. The dynamics of the nonlinea controll er
are described by

X = AX+Bar +f4X, 1),y =CX+Dar +gaX, 1) (128)
where x =[x, X;]"

© 00O

[0 0
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r)= X))X 12
51 a6 3 0D =bgbe, (120
and y(x) is asolution to the implicit nonlinea equation,

y =Xz + bg(y)x (12c)
From assumptions (10) and (11), the straight lines of constant y, (12c), cover the cmplete (X1, X,) plane. Hence, there
exists at least one value of y satisfying (12c) for al x;, and X,. When more than one value eists, the gpropriate oneis
determined by continuity. The initial condition for the state, x, must be acompanied by an appropriate, context
dependent, choiceof y. The locus of equili brium operating pointsis the set of points, (ay,/g(y.), (1-ab)y,, 0), -O<y.<[,
and the scheduling variable, v, is constant on the planes x,+bg(y)x; = y,. Locdly to an equili brium operating point, at
which the nominal value of y isy,,

r=0+0r  X;=Xyo+ OX,Xo = Xog + OXp,Y = Y, + Oy (13
and the nonlinea controll er, (12), can be reformulated as
O 0
sy o B e
= [bg(yo) 110 + &, (14b)
where
&=[0  (1-ab)(9(YotdY)-O(Yo)) (XatOX1)]", £ = b((Yo+DY)-G(Yo)) (Xe+X1) (14c)

The linea system obtained by setting €, and €, to zero in (14) isthe same & (8) as required. For the lineaisation to be
locdly valid, dx; and dy must be sufficiently small that €, and €, are negligible. It should be noted that, asy, varies and
the magnitude of x,, increases, the membership of the dass, C, , rapidly diminishes urtil it becomes, in terms of the

context, insignificant. Thisisa consequence of the redisation not satisfying the locd li nea equivalence ondition, with



the result that first order perturbationsin dy are present in the expressions for €, and g,. Unless the operational envelope
of the wntroller is confined to the vicinity of the eguilibrium operating points for which the magnitude of Xy, is
restricted, &, and €, can be abitrarily large for some x,, for any non-zero values of dy.

.

Redisation B

An dternative nonlinea controll er, which employs a velocity formulation similar to that proposed by Kaminer et al.
(1995) (and with the integral-error form discussed by Lawrence & Rugh 1995, is siown in figure 3b. The dynamics of
the controller are described by

X =ApX+Bpi + fb(X, r), Y = CpX + Dyr + gb(x, r) (153.)
where x =[x, X5] "
f+a 0O [@(x,)(1-ab)m
Ay=p0, G B,=0Cy=[0 1] D,=0fxn=0" 3 gp(01) =0 (15b)
0l of 0 bglx)r 0O

The locus of equili brium operating points is the set of paints, (0, y,, 0), -0<y,<[, and the scheduling variable, vy, is
constant on the planes x, = y,. Locdly to an equili brium operating point at which the nominal value of y isy,,

r=0+3or, X;=0+0X;, Xo=0+0X,, Y=Y,+ 0y (16)

and the nonlinea dynamics, (15), can be reformulated as
0 1-ab
X = Sa %x + g(y")( )%r +8, (17a)
L 0g g balo) O

oy =[0 1] &x (17b
where

& =[(1-ab)(g(yo+dy) - 9(Yo))dr  b(9(YotdY) - 9(¥o))dr]" (17c)

The linea system obtained by setting €, to zero in (17) is the same as (8) as required. For the lineaisation to be valid,
oy and &r must be sufficiently small that €, is negligible. It should be noted that, as y, varies, the membership of the
class C, , remainssignificant. Thisisa ansequence of the nonlinea controller satisfying the locd linea equivalence

condition. Hence, in general, the dases, C, , for redisation B, are larger than the dasses, C, , for redisation A.
Clealy, redisation B is more we&kly nonlinea than redisation A. However, it isevident that the cntroller of figure 3b
does not satisfy the extended locd linea equivaence @ndition.

.
Redisation C

Now, consider the nonlinea controller shown in figure 3c. Its dynamics are described by the diff erential equation

X =AX+Bd +1(x, 1),y =Cx+ D +ge(X, 1) (18a)
where x =[x, x|,
Ha 0O 1-abd O 0 O
A.= B. = C.=|0 1f D.=0,f.(x,n= g.(x,r)=0 (18b
= o3 B0 [ ST B OO0 gy o

The redisation, (18), does not explicitly have the extended locd linea equivalence ®ndition form, (6). However, the
controller dynamics, (18), may be reformulated as

$=Ax+B.r+f (x,r), y = Cx+D.r + g.(x, 1) (199)
where % =[x, %],
~ Ha 00O - -abd -~ A A n .
Ac=0 O Bc=p, @Cc=0 D=0, fo(x,r)=0, gc(x,1)=G(X,) (19b)
0 0g ob O

a(s)
which explicitly satisfies the extended locd linea equivalence @ndition. (By assumption (10), G(¢) exists snce
G™(+) is monotonic and, therefore, invertible). The locus of equili brium operating pointsis the set of paints (0, Y, 0),
-O<y.<0, and the scheduling variable, y, is constant on the planes %, = G™(y,). Locdly to an equili brium operating
point at which the nominal value of y isys,
r=0+03r, X;=0+0dXy,, Xo= X+ 00X, Y=Y,+ 0y (20
and the nonlinea dynamics, (19), can be reformulated as,



55 = 52 M E'ab%r (213)

ol 09 b g
dy=[0 oW,)o% +e, (21b)
where
&y = -9(Yo)[G(YotdY) - G (Yo) - 0 G™(¥o)3Y] (210)

The linea system obtained by setting €, to zero in (21) is the same as (8) asrequired. For the lineaisation to be valid,
only 8y must be sufficiently small that €, is negligible. Thisis a amnsequence of the nonlinea controller redisation C
satisfying the extended locd linea equivalence ondition. In general, the membership of the dasss, C, , for the

redisation C are larger than the dasses, C,, , for redisation B since the magnitude of both the input, dr, and the output,

oy, are redtricted in the latter but only the magnitude of the output, dy, is restricted in the former with no apriori
restriction on the input, or. Clealy, redisation C is more weakly nonlinea than redisation B. The neighbourhoods
associated with the eguili brium operating points cover the entire (x4, X »,I) space

.

When comparing the threeredisations, the dasses, C, , are sufficiently different that there is no need to make the

state spaceforms of the linea controll ersidenticd by transforming the states.

The foregoing simple example does not diredly consider the performance benefits of adopting a gain-scheduled
controller that satisfies the extended locd linea equivalence ®ndition and which, thereby, has appropriate dynamics
for the widest classof inputs and initial conditions. However, these benefits, which must, as usual, be confirmed by
analysis and/or simulation studies, can be quite wnsiderable. For example, in the mntext of wind turbine regulation,
Leith & Leithead (1996 observe that an appropriately redised gain-scheduled controller achieves a substantial
improvement in performance in comparison to a well-designed linea controller. However, this performance gain is
effectively lost when gain-scheduled controller redisations are employed which satisfy only locd linea equivaence
about the eguili brium operating pants rather than the extended locd linea equivalence ndition. Consequently, the
nature of the redisation adopted plays a aentral role in attaining the required performance. The @ntext of wind turbine
regulation is particularly well suited to assessing the dfediveness of the nonlinea controller in that, even though the
plant is fixed, the cntroller is grongly scheduled; that is, the nonlineaity is grong and the scheduling variable canot a
priori be sssumed to be sowly varying.

3.3Relaxation of restriction on initial conditions

In sedion 3.1, minimally nonlinea controller redisations are defined; namely, those satisfying an extended locd
linea equivalence @ndition, (6). For these redisations, the restriction imposed on the dass of inputs and initia
conditi ons of the state by the extent, to which the dynamics vary as the operating point is displaced away from the locus
of equili brium operating points, is completely relaxed. Only the restriction impased on the dassof inputs and initial
conditi ons by the extent, to which the dynamics vary over the locus of equilibrium operating padnts, remains. The latter
isesentialy arestriction on the rate of variation of the scheduling variable in (6). The response of the system, (6), and
so the rate of variation of the scheduling variable depends on the input and initial conditions of the state. In general, the
dependence on the initial conditions becmes gronger as the displacement of the initial conditions from the locus of
equili brium operating points increases.

However, only the dependence of the rate of variation of the scheduling variable on the input is redly inherent to
the nonlinea controller and for some choices of redisation the dependence on the initial conditions is weakened.
Consider the situation when the non-zero rows of yp are row eigenvectors of A in (6). Under these drcumstances

p =L Ax+ Lo Br + Lip f(p) +Uprf= Ap + L f(p) +Lxp Br - ADrp r+bpr (22)
where A\ isadiagona matrix, the non-zero diagonal elements of which are égenvalues of A. A restriction on the rate of
variation of the scheduling variable, p, imposes a restriction on the input, r, and the initial conditi ons of the scheduling
variable. There ae no restrictions on those linea combinations of the state which are linealy independent of the
scheduling variable.

Example Consider the non-linea controll er
X = Ax+ Br +f(x,r), y = Cx+Dr+g(x,r) (23

where x=[x; x,]" and p = x; with
M 00O o1 0O

a -f O
A=l B[ ayC=l0 -UD=dfn=g ® Baxn =d6E0-f6) (24

b-a)d(f,(p) -f1(P)
The transfer functions for the family of linea controll ers, obtained by lineaising the nonlinea controller, are



d(s+a)(s+0,f2(p)

(25)
(s+b)(s+0,f1(p))
and the dynamic behaviour of the scheduling variable, p, is described by
p=-fi(p)+r (26)
8

Of particular interest are those redi sations, satisfying the extended locd linea equivalence @ndition, for which the
scheduling variable depends lely on the input; that is, for which Oyp is zero. With these redisations, there ae no
restrictions on the initial conditions of the state: arestriction isimposed by the extent, to which the dynamics vary over
the locus of equili brium operating points, on the dassof inputs only and not on the initial conditions. When the input is
constant, the scheduling variable is constant and the dynamics of the cntroller are purely linea. The situation is
exadly ana ogous to the exogenously gain-scheduled controller, (1).

3.4Equivalent families of linear controllers

In sedion 3.1, redisations stisfying the extended locd linea equivalence @nditions are defined with reference to
the form of the nonlinea controller. Equivalently, they can be defined with resped to the form of the family of linea
controllers.

Asgciated with ead family of linea controllers, (2), isthe family of matrices

B.C
T s 2
« Dt @7

where the dimension of 1tis g. Consider the difference matrix between a fixed member of the family, 2(1y), and any
other member, Z(Tt).

Z(n)z@

(1) 00 $™*(m) oC

A =xm)- om0 (28)
0oo0 10 § O | E

where S(mM)JO™" is non-singular and corresponds to a state transformation with resped to which the dynamics of the

linea controller at 11 are unchanged. Provided that the rank of al A(1t), for some S(1t), is q and, in addition, the rows

of all A(T) belong to ag-dimensional sub-spaceof 0™, then there existsa f (1) and § (1) such that

Ay = (%) @M N] (29
()
where[M N] isa mnstant matrix, has rank q and spans the g-dimensional sub-space It foll ows that

_ BA +f(mM B +f(mMNLC

3(m) . i (309)
[ +g(mM  D+g(mNE
where
B
2 Be=sm,) (309
€ D
Assume Ttis related to the g-dimensional scheduling variable, p, by the one-to-one mapping
T=h(p) (31)
and that there exist solutions, f(p) and g(p), of, respedively,
O,f(P) =f(h(p)), T,a(p) = g(h(p)), (32

The latter asuumption is stisfied when Dp’Dij(p):Dijpif(p), 0,0,6p)=0,0,8p), Oi#j, where p

denotes the i™ element of p. When the family of controllers is derived by smoothly interpolating between a finite
number of controller designs, this requirement is not restrictive. The usual gain-scheduling design approach isto design
linea controllers for a number of distinct equili brium operating points gpanning the operating envelope. Moreover, the
dimension the scheduling variable, p, is typicdly quite small. Hence the mndition, (32), is redily satisfied. The
family of linea controllers, (2), can be redised by anonlinea controller, (6), for which

p=Mx+Nr (33)
provided that there exists, for al values of p, a solution of



G-A 0 -BX,(p)O O(p)O
]

Hc 1 -DH LM BT (34)

BM 0 NH.(HE He B
such that (ro(p1), Yo(P1)) # (ro(P2), Yo(P2)) When p; # po. Furthermore, the (Xo(p), Yo(p). ro(P)) are the eguilibrium
operating points of the nonlinea controller.

It should be noted that the existence of a solution of (34) does not depend on the choice of h(e) in (31). When the

matrix on the left-hand side of (34) is full rank, the existence of a solution regardless of the choice of h(e) is clea.

When the matrix is not full rank, a solution of (34) exists provided, for some @nstant matrices X, Y and Z, dependent
onA,B,C,D,M and N and not all zero,

Xf(p) +Yg(p) +Zp=0 (39
for al p. Theinitial conditions for (32) must be dhosen such that (35) is satisfied for some p,; for example, choose
P,=0 and the initial conditions for (35) to be f(0) = g(0) = 0. It followsthat (35) is stisfied provided

XU f(p) +YU,9(p) +Z2=0 (36)
whichisequivalent to
Xf(m)+Yg(m+Z=0 (37)

Since (37) and the choice of the initial conditions for (35) are independent of h(e), the existence of a solution of (34)
does not depend on the choice of h(s). Different h() correspond to the different isomorphisms passible when defining
the scheduling variable.

Clealy, not al families of linea controllers, (2), can be redised by a nonlinea controller, (6), satisfying the
extended locd linea equivalence @ndition. Hence extended locd linea equivalence might appea to be arather
strong conditi on.

3.5 Utility of realisations

Since extended locd linea equivalence gpeas to be arather strong condition, controllers stisfying it might be
expeded to be of limited utility. It is, therefore, necessary to determine whether requiring the gain-scheduled controll er
to be amember of the dass of nonlinea controllers, which satisfy the extended locd linea equivalence mndition, is
overly restrictive.

N Consider afamily of m-input single-output linea controllers. The transfer function relating the output, y(t), and the
input, r;(t), is

b, +b,s™ + ...+ b s+ b
Y(9 =d000000000000 R(S (39)
S+t +.. +aus+a,

where Y (s) and Ri(s) are, respedively, the Laplacetransforms of y(t) and r;(t), and it is assumed that

Y (9)/Ri(s) # Y(9)/Ri(9) Oi#]
The wefficient, d, is siperfluous and could be @sorbed into the wmefficients, b, without loss of generality.
Accordingly, assuming d is unity, it is evident that ead transfer function is completely spedfied by its n+1 numerator
coefficients, b,', and n denominator coefficients, . Since the m transfer functions have, without loss of generality, a
common denominator, the input-output charaderistics of the n order m-input single-output controll ers are spedfied by
n+m(n+1) coefficientsin total. A corresponding minimal state-spacerepresentation is

Exl E E' al 1 O i-- O Ol:":lxl |:| D a_lb1+b2 -a_lbjz_ +b% e -a_lbin +bg] DDl |:
X2pg g2 01 0 Ommxz 0 O-3bi+b;  -a,bf +b3 -azbin +byg Da, C
o: d=0: o Yoo D+D : ! (3%)
0 0 O o O . 2 mDD :
EXHE %an 00 0 OHEX E Ijanbl+bn+l anbl +bn+l T 'anbl +bnm+lE "
Ox, O
O O nC
0%2 O E’LzE
= 0! edlt p? ... m] L
y=d 0 0 o]D. Crdlor bf b |57 ¢ (39h)
Xn-10 O C

Exn H OmC



where, owing to the particular choice of states, the transfer function coefficients appea in a straightforward manner in
the state-space matrices. Of course any other, minimal, state-space representation satisfying the input-output
relationships, (38), may be derived from (39) by a suitable state transformation.

It follows from (7) that a family of linea controll ers corresponding to a nonlinea controller satisfying the extended
locd linea equivalence mndition has, at most, q(n+1) degrees of freedom. In all but the exceptional case when g=m+1
(note, g=m+1), g(n+1)<n+m(n+1) and not all of the wefficients of (38) can be fredy assigned; that is, only a subset of
g(n+1) coefficients in (38) can be scheduled independently (subjed to satisfying (32)), with the remaining coefficients
either dependent on this aubset or constant. The identity of the constant coefficients, and the relationships between the
remainder, depend on the definition, in terms of linear combinations of the dements of the state and input, of p.
Nevertheless with few exceptions, all gain-scheduling requirements can be acommodated since, with the penalty of a
non-minimal redisation, the order, n, of the controller may be increased to provide an arbitrary degreeof flexibility. A
family of linea controllers, equivalent to the nonlinea controller satisfying the extended locd linea equivalence
condition, may be mnstructed to approximate dosely a family of previously designed, perhaps lower order, linea
controllers. Alternatively, during synthesis, the linea controllers can be diredly designed to have the required pettern
of coefficient scheduling dependence

Example The family of linea controllers, designed for awind turbinein Leith & Leithead (1996, consist of afixed
component

K(s) = C(9)/s (409)
where
C(s)= (s+1.7)(s+1.8)(§ +7.5%+68.06)($ +25+104.04)($ +3s+416.16)220 (408)
(s+0.3)(s+3.7)(s+30)(s+100)(< +115+104.04)($ +8s5+416.16)(S +65.85+ 2209)
together with a component, which varies with the equili brium operating paint,.
C.()=g(m 0.0014%° +0.11%k+1 (400)

s® +ay(1)s+a, (M)
where Tt parameterises the equili brium operating points. The choiceof Ttis, of course, not unique. Seleding Ttto be
related to the wind speed, V, by

Tt =-0.044V?+2.95V-24.97 (400
the value of Tt corresponds to the pitch angle of the turbine rotor blades, at the eyuili brium operating points, and
ay(T0) = -0.0331%+0.7501+3.375, (™) = 2.600m+58.040, g(1) = 0.1387+0.298 (40e)

In (40c) al the poles vary with the operating point whil e the zeoes are @mnstant. Supposeit isrequired, instead, that
the zeoes vary whil e the poles are constant. The family of linea controll ers, (40), can be re-designed such that

K'(s)=C'(9)/s (418)
where
o (s+1.7)(s+1.8)( +25+104.04)(3 +3s+416.16)220
C (s)= (41b)
(s+0.3)(s+3.7)(§ +11s+104.04)(3 +8s+416.16)(3 +65.85+ 2209)
and
C . (s)= bl(n')54 +b, (T[')S3 + bS(T[')SZ +b,(1)s+ by () (41¢c)

s* +1358s® +3818” + 26156+ 204000
Seleding 1t to be related to the wind spedd, V, by

= -0.0027V*+0.37V*-19.31V?+469.45V-34047 = -1.4217+88.511-311.72 (410
the value of 1T correspondsto the input to C',(s), at the equili brium operating points, and

by(Tt) = 4.82x10°m%-1.15x10°w+1.042, by(1t) = 3.34x10°1t%+1.68x10°1+13.57,

bs(1t) = 2.78x10°*1r2+3.15x 101t +146.33, by(11)=5.82x10*1*+0.3 717 +676.16, (41e)

bs(1t)=1.38x10°1'?+1.93r7 +2295.00

The required scheduling of transfer function coefficients has been achieved. As might be expeded, in comparison to
the order of C,(s), the order of C',(s) is increased from 2 to 4. However, the overall order of the controller is not
increased since, in comparison to the order of C(s), the order of C'(s) is deaeased from 10to 8 The Bode plots of the
two famili es of linea controllers, C(s)C(s) and C',(s)C'(s), are dfectively indistinguishable & equivaent equili brium
operating points.

Although the normal motivation, in this context, for converting a family of linea controllers from one form to
another would be to change the family from one not satisfying the extended locd linea equivalence mndition to one
satisfying this condition, on this occasion both C(s), with the scheduling variable its output, and C',(s), with the
scheduling variable its input, are equivalent to nonlinea controllers stisfying the extended locd linea equivalence
condition. This example, thereby, aso illustrates the dependence on the definition of the scheduling variable, of the



manner in which the linea controllers’ transfer function coefficients are related to the scheduling variable; that is, the
identity of the constant coefficients and the interdependence of the remainder.
.

The dove aguments can clealy be extended to the MIMO case. Hence in general, any restriction on the design of
gain-scheduled controllers, due to adopting a redi sation satisfying the extended locd linea equivalence ondition, can
be expeded to be rather weak. The gparent strength of the extended locd linea equivalence mndition is deceptive,
albeit, at the expense of adopting redi sations of, perhaps, non-minimal degree

4 Practical realisations

In sedion 3, the properties of particular nonlinea controllers, namely those satisfying the extended locd linea
equivalence ondition, are investigated. They are minimally nonlinea but sufficiently flexible to ad as redisations for
al gain-scheduled families of linea controllers. However, several issues central to the pradicd design and redisation
of gain-scheduled controllers are not addressed: firstly, designing the family of linea controllers, for which the
coefficients of the transfer functions are not independent of each other but must satisfy certain relationships; secondly,
determining the nonlinea functions of the scheduling variable in the nonlinear controller, the partial derivatives of
which are related to the linea controllers’ transfer function coefficients; thirdly, ensuring that the controller input and
output have gpropriate values at the equili brium operating points. These issues are discussed below.

4.1 Separation of coefficients

The first issue, namely the interdependence of the linea controllers' transfer function coefficients, is resolved by
separating a subset of the wefficients, all of which may be essentially freely scheduled, with the remaining coefficients
constant. Although al of the previously considered examples, having been chosen for simplicity and clarity, do
conform to this resolution of the interdependence of the linea controllers' transfer function coefficients, it is clea from
(7) that, in genera, the family of linea controllers need not. Whether the separation of the cefficients occurs is
dependent on the definition of the scheduling variable. It is sufficient to investigate m-input single-output controll ers
since a genera MIMO controller may be obtained by suitably combining several multiple-input single-output
controllers.

Consider the m-input single-output nonlinea controller redisation, depicted in figure 4

DXlD D'al 1 O L 0 ODDX:LD D-alBl(l’)+Bz(I’) |:| DX1D

. 0 0

o0 @ 01 0 09K, g H-aBi(r)+Bs(r) x, B
O: O=0:% ! ! ri00: OvO : O,y=[1 0 - 0 o0 C+By(r) (42)
g o O 0 0Oad U U g
Xn1id [&a 0 0 0 IgXnag mamBi() +Bq(r)p Knad
FnH Ha, 00 - 0 0k, H HaiBu(r)+Bra(n) B B

T
for some functions By(¢), j = 1, 2, .n+1, Wherer:[r1 r, --- rm] . Provided that the locus of equilibrium operating

points can be parameterised by the input, r, the controller, (42), has the form required by (6). Hence this controller
redisation satisfies the extended locd linea equivalence @ndition with the scheduling variable ssmply the input, r.
Moreover, at any equili brium operating point, the lineaisation of (42) and its transfer functions have the forms, (39)
and (38), respedively, with

b, =0,B(r,), i=12..m [=12_,n+l (43)

Adoption of the controller redisation of figure 4 enables the extended locd linea equivalence mndition to be satisfied
for families of m-input singe-output linea controllers, for which the mntroller zeroes are scheduled essentially
independently with resped to the input, r, but the mntroller poles are fixed. Hence, the requirement to separate asubset
of coefficients, those of the numerators of the transfer functions in this redisation, al of which can be fredy scheduled,
with the remaining coefficients, those of the denominator, constant, is met. It should be noted that the linea controllers
asciated with (42) have the maximum possble scheduling degrees of freedom, (n+1)q.

Alternatively, consider the m-input single-output nonlinea controller redisation, depicted in figure 5,

00 © 1 0 - 0 00X, O OBy(z,f)+bsr, U
.0 NN N
Fog @01 0 00 OBy@h)+bln O
0 o0=0 ! ! ol kO : U y=G(z 44
28 %) = g'o P g (2) (44)
Xna0 00 0 1mXnag OBL(zF)+byn O
%XHE @ 0 O 0 O%EXHE %nﬂ(zvf)"'b}\ﬂ"lg



for some functions G(¢), By(*) and Bj(*,*), j=2,3...n+1, where, :[r2 rg - rm]T and z = x;+ b}r1+Bl(r“).

Provided that the locus of equili brium operating points can be parameterised by input, T, together with the output, v,
then the antroller, (44), has the form required by (6). Hence, this controller redisation satisfies the extended locd

linea equivalence ndition with the scheduling variable (x;+ b} ri, ¥1)'. Moreover, a any equili brium operating
point, the lineaisation of (44) and its transfer functions have the forms (39) and (38), respedively, with

3=-0Bju(z T o), 5120, d=0,G(z);

b,'= O, BT o), i=2,3,.m; b/'= Or Bj(zo, F o), 1=2,3,.m, j=2,.n+1 (45)

Without loss of generdity, it may be asumed that the derivative of G(¢) is either strictly positive or strictly negative. It
follows that G(+) is monotonic and G™(+) exists. Hence, the nonlinea controller, (44), may be interpreted as being
scheduled on the output y, albeit implicitly, and the dements of theinput, ro, ... .

Adoption of the controller redisation of figure 5 enables the extended locd linea equivalence mndition to be
satisfied for families of m-input single-output linea controll ers, for which the @ntroller poles are scheduled essentially
independently with resped to the output, y, and the dements of the input, r,, ... r,. In addition, other than the transfer
function relating r; to y, for which the zeoes are fixed, the zeoes of the transfer functions relating the inputs
individually to the output are dso scheduled essentially independently with resped to the output, y, and the dements of
the input, r,, ... r,. Hence the requirement to separate asubset of coefficients, all of which can be esentialy freely
scheduled with the remaining coefficients constant, is met for this redisation, with the subset consisting of al the
transfer function coefficients except those of the numerator of the transfer function relating r; to y. The linea
controll ers associated with (44) have the maximum possble scheduling degrees of freedom, (n+1)g. However, only ngq
coefficients are scheduled with resped to bah y and, r,, ... ryp, with (g-1) coefficients, namely b, i=2,...m, scheduled
withresped tor,, ... r, done and one wefficient, namely d, scheduled with resped to y alone.

The redisation, (44), is equivaent, in a SISO context, to the redisation satisfying the extended locd linea
equivalence ondition described in Leith & Leithead (1996).

Example With reference to the wind turbine antroll ers described in the Example in sedion 3.5, the transfer function
numerator coefficients of the family of linea controllers, (41b), are scheduled whilst the denominator coefficients are
congtant. It is appropriate, therefore, to identify the controllers, (41b) with the redisation, (42), spedalised to a SISO
system. In other words, the scheduling variable can be identified as the input to the nonlinea controller equivalent to
the C'i(s), namely, r, and the nonlinear controller, denoted C';, satisfying the extended locd linea equivalence
condition, is

x,0 0-1358 1 0 OOx;0 [-1358B,(r)+B,(r) O

0 0 BN 0

-3818 0 1 0 -3818,(r) +B,(r
%20 O 0, O OB [ s
&35 5—26150 00 1%;(35 0-2615@,(r) +B,(r) T
5'(45 [T204000 0 O O[X4[] [T 20400®,(r)+Bs(r)
where

B4(r) = 1.60x10°r>-5.75x10*r*+1.042r, By(r) = 1.11x10°r*+8.40x10*r*+13.57r,
B(r) = 9.27x10°r*+1.57x10%r*+146.33r, B,(r)=1.94x10**+0.18r*+676.16r, (46b)

Bs(r)=4.6x10r*+0.96r*+2295.00r
On the other hand, the transfer function denominator coefficients, together with the overall gain, of the family of
linea controllers, (40b), are scheduled whilst the numerator coefficients are @mnstant. It is appropriate, therefore, to
identify the antroller, (40b) with the redisation, (44), spedalised to a SISO system. In other words, the scheduling
variable can beidentified as the output from the nonlinea controll er equivalent to the C(s), namely y, and the
nonlinea controll er, denoted C, satisfying the extended locd li nea equivalence ondition, is

0 O 10x,0 B,y(z)+0.1110

= =G(z 474
%I of.0H -es@+r § Y76 @
where
z=x,40.00147r, G(2) = 2.159(*3¥-1)
B,(2)= -0.557€”?"%+13.96e"*%+1.602z, Bs(z)= 40.67**¥+52427 (47b)

Notice that whilst the transfer function coefficients of the linea family, (40b), are parameterised by the controller
output, the assciated nonlinea functions employed in the redisation, (47), are expressed in terms of z. The redisation
is explicitly scheduled with resped to z but, since G(z) isinvertible, implicitly scheduled with resped to the output, y.

.

The dependence of the form of the family of linea controllers on the definition of the scheduling variable is very
evident in the foregoing. It is not difficult to devise other redisations, corresponding to dfferent definitions of the
scheduling variable, which achieve the separation of scheduling dependent coefficients in other ways; for example, the



Example of sedion 3.3. When, asin sedion 3.4, the members of the family of linea controllers are defined in general
state-spaceform, their equivalenceto a nonlinea controll er satisfying the extended locd linea equivalence ondition is
not obvious. In contrast, when, as above, the members are defined in transfer function form or, equivaently, in a
canonicd state-spaceform which is explicitly parameterised by the transfer function coefficients, their equivalence is
obvious due to the strong correspondence between the forms of the nonlinea controller and the members of the family
of linea controllers. In particular, their equivalence and the gpropriate definition of the scheduling variable ae eaily
identified for those famili es exhibiting separation of the scheduling dependent coefficients. This ease of identificaion
gredly asdsts the design of linea controllers to be redised as a gain-scheduled nonlinea controller satisfying the
extended locd linea equivalence ondition for a particular definition of the scheduling variable. Conversely, it isclea
that the redisation of the gain-scheduled controller can be fadlitated by the judicious choice of an appropriate
scheduling variable.

In general, there ae many linea combinations of the dements of (Xo, Yo, I'o), Which parameterise the euili brium
operating points, that is, there ae many possible choices of scheduling veriable. Choosing the scheduling variable, as
above, to fadlitate the redisation of the nonlinea gain-scheduled controller might appea to conflict with the more
usua approadch of choosing the scheduling variable on the basis of physicd insight whereby some cmbinations of the
elements of the input, state and output, representing the variables with resped to which the plant dynamics or the
control objedives (seeLeith & Leithead 1996 vary, are chosen. For the wind turbine of the Example in sedion 3.5, the
controll er would idedly be scheduled with resped to the wind speed. Unfortunately, a measurement of the wind speed
experienced by the turbine is impossible (Leith & Leithead 199%). However, provided the antroller is effective, the
pitch angle of the rotor blades ads as a good estimate of the wind speed. Moreover, since the bandwidth of the blade
pitch aduator is, typicdly, large in comparison to the bandwidth of the dosed-loop controlled system, the pitch demand
to the aduator, i.e. the @ntroller output, also ads as a good estimate of the wind speed. Accordingly, a suitable
controller for the wind turbine is K(s)C,,, with K(s) positioned before C,, and C; redised as (47) so that the scheduling
variable is the output of the wntroller. Nevertheless, it is only the rate of variation of scheduling that redly matters and
any scheduling variable, the spedra of which has smilar bandwidth, would be egually suitable. For the wind turbine,
by design, the input and output of the C';(s) have similar bandwidths. Hence an equally suitable antroller isK'(s)C'y,
with K'(s) positioned before C';;, and C';; redised as (46). Consequently, there is no conflict between choosing the
scheduling variable to fadlit ate the redisation of the nonlinear gain-scheduling controller and choosing it on the basis
of physicd insight.

4.1.1 Utility revisited

Taking into ac@unt the number of transfer function coefficients that can be fredy scheduled (namely, m(n+1) out of
n+m(n+1) for the redisations investigated above), the range of possble choices of the scheduling variable
(equivalently, the forms of the family of linea controllers) and the aility to design/re-design linea controllers to have
a spedfic form (seeExample in sedion 3.5), then, even when restricted to those adieving separation of the scheduling
dependent coefficients, the flexibility of redisations stisfying the extended locd linea equivalence @ndition is
apparent. Clealy, it is posdgble to redise, with few exceptions, al gain-scheduled controllers as nonlinea controllers
satisfying the extended locd linea equivalence mndition and requiring the controller to be so redised is not at all
restrictive.

4.2Velocity-based realisations

The second isaue, namely the requirement to determine the nonlinea functions of the scheduling variable in the
nonlinea controller, is resolved by adopting redisations for which linea controllers are obtained by “freeing” the
scheduling variable & its current value. Implicitly, this procedure requires the nonlinea controller to be lineaised at
any operating point, for which the value of the scheduling variable is within its domain, and not just at the eguili brium
operating points. However, this is posshble for nonlinea controllers satisfying the extended locd linea equivalence
condition as discussed in sedion 3.1.2.

The nonlinea controller, (6), can be reformulated, by differentiating, as

w = (A+0f(p)Oxp)w + (B+Of(p)Tip) f (483)
y = (C+0,9(p)Uxp)w + (D+L,g(p)0p) ¥ (480)
p=0O,pw+0,p ¥ (48c)

wherew = x. Dynamicdly, (48), with appropriate initial conditions, namely,

w(0) = Ax(0) + Br(0) + f(p(0)),  p(0) = Cp x(0)+ Liip 1 (0) (49)
and (6) are equivalent. Indeed, when
w = Ax + Br +f(p) (50a)

y =Cx +Dr +g(p) (50b)



is invertible such that x may be expressed as a function of w, r and y, this reformulation is equivalent to an algebraic
state transformation ((48c) can then be replaced by adired evaluation of p). Provided that f , required as the input, and
perhaps r, when required by the scheduling variable, are available and provided that any unwanted constant
displacement of the state or output, due to the differentiation of the input followed hy the integration to determine the
output from Yy, is avoided, then (48) is a viable dternative representation for (6). Comparing the linea controller,

obtained by setting p to p, in (48), to the linea controller, (7), it is evident that the transfer functions relatingy tor are
the same. Hence for the velocity-based redisation, (48), the linea controllers are obtained by simply “freeang’ the
scheduling variable & required.

The aquivalent velocity-based redisation for the redisation, (42), depicted in figure 6 with Bi(r):[bil(r) bi"‘(r)],
i=1, .n+1,is

leg E-al 100 ODDW15 O-abi(r) +b5(r) - -abl(r)+b3(r) U
Woh A 01 0 OTWo[ gabl)+bir) bl +bY() ph L
O: O=0: ! ! iy e : . DDE (51a)
0O 0 O M O L .
Wni H@a 0 O 0 1gWnap Eranlb (r)+by(r) -an1by’ (r)+b (r)D@mE
Hv,H Ha, 00 - 0 0w, H Habi(r)+blu(r) - -a,bf(r)+bMs(r)
Ow, O
Bw, B 0, C
=[t 0 - 0 o]D D+[b1(r) bm(r)]D C (518
|jlvn-1|] H.mE
Hw, B
where
bi(r)=0,B;(r), i=1,2,..m, j=12 .,ntl (51c)

When &, is non-zero, this reformulation is equivalent to an algebraic nonlinea state transformation. The strong
correspondenceto the “frozen” scheduling variable linea controllersis evident from comparing (51) to (39).
The eauivalent velocity-based representation, for the redisation, (44), depicted in figure 7 with

Bt )=[ot 2@ - I adBy.t)=lol BIF) - BP(.)] i=2, vl is

DWlE Eal(yr) 10 0 Og[lwllj 0- al(y’)b1+b2 =y b (F) + 05 v.7) U
B""’zm math 01 0 D"Vzm O-a,(y.h)by + b -a,(y.H)bY" (r)+b3 ./ D1 C
O: 0=0 ot rordt kO ! _ DE(E’Z"")
O 0O O ) oo’ OO L
Wnad [anaeh) 0 0 0 Igwnip Banl(yr>b1+b -an4(y,1)by" (r)+b (v.H) OHm E
A, H Ha,o.h 0 0 0 0w, H Ha bl +bh, - - bJ" (7) + b (v. )
n n n O Gan.fHby +bhy an (v, 1)by" (F) + bl (v.1) ]
Ow, O
0.~ 0O
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where
Q(yaf) :_DZB]-‘Fl(G-l(y)! f:)! J: 112! -'vn; b_![(f:) = Dri Bl(F) H I :213!--'m;
bl(y.F) =0, B;(G™(y).F),i=2,3,.m,j=1,2..m d(y) = 0,G(G(y)) (520)

When B,.1(s, 7 ) isinvertible for all 7, this representation is equivalent to an algebraic nonlinea state transformation of
(44). The scheduling with resped to the output is no longer implicit but is now explicit by virtue of the invertibility of
G(*). The strong correspondenceto the “frozen” scheduling variable linea controll ersis again evident from comparing
(52) to (39).



Example Returning to the wind turbine Example in sedion 3.5, the first redisation, (46), can be recast as the velocity-
based redisation,

W,0 0-1358 1 0 OIw;0 [-1358b;(r)+b,(r) O
0 O N 0
-3818 0 1 0 - 3818, (r) +by(r

200 %"mﬂ] 1(1) +bs(r) B Y =wy +by(r)f (53a)
SN% 5—26150 00 1%%% 5—2615031(r)+b4(r)|j

W, 7204000 0 O Ow,[ [T 204000, (r)+bs(r)g

where
by(r) = 4.82x10°%*1.15x10%+1.042, by(r) = 3.34x10°r*+1.68x10°r+13.57,
bs(r) = 2.78x10r*+3.15x10%r+146.33, b,(r)=5.82x10**+0.37r+676.16, (53b)

bs(r)=1.38x10°%%+1.93r+2295.00
Similarly, the second redisation, (48), can berecast as

Ov, 0 Fay(y) 10w,0 [30.0014%,(y)+0.111]
E{"’ o=d %\, org _ + O
20 Tax(y) Omw. g —0.0014%,(y)+1 [
where
ay(y) = -0.033y%*+0.750y+3.375, a(y) = 2.600y+58.040, d(y) = 0.138y+0.298 (54b
The oorrespondenceto the original families of linea controllers, (41) and (40) respedively, is clea; in particular,
compare (53b) to (41€) and (54b) to (40e).

y = d(y)w, —d(y)0.0014% (54a)

Whilst, in general, the reformulation to velocity-based redisations increeses the controller order, the redi sations of
figures 5 and 6 have the distinct advantage of being diredly related to the members of the family of linea controllers.
The ssociated family of linea controllers for the redisation, (51), now consists smply of (39) or, equivaently, the

transfer functions, (38), with d=1 and b; =b(r,),i=1,2 ., m j =1, 2 ., ntl. The awciated family for the

redisation, (52), consists of (39) or, equivalently, (38), with d=d(y,), =3 (Yo F o), bi=bi(f ), bi]-+l = bi]-+1(yo,Fo),
i=2,.mj=1,..n.

4.3Integral Action

The third issue, namely reconciling the equili brium values of the @ntroller input and output, is resolved by
including integral adion in the mntroller. Asnoted in sedion 2.2, y isan input to the plant and r is an output from the
plant, the values of which, at an equilibrium operating paint of the plant, are (r (1), Yo(10)) With r4(17) dependent on y(TT)
via the plant. However, sincer is the cntroller input and y is the controller output, (r(T7), Yo(T)) must also be an
equili brium operating point of the cntroller with y,(T) dependent on r(1) via the @ntroller. Requiring consistency
imposes, in general, a strong restriction on the dl owable nonlinea controll ers.

Fortunately, the control design task can usually be defined such that the controller ads upon an error which is,
typicdly, required to be zego o smal when in equilibrium. Since in order to med performance requirements,
controllers often possessintegral adion, which ensures that the input must be zeo in equili brium, the former case is
frequently encountered. In the latter case, the ladk of predsion in defining what is meant by small frequently enables
the equili brium value of the input, r, to be redefined to be zeo; that is, the change induced in the eguilibrium operating
point by this redefinition is typicdly sufficiently small that it isimmaterial. When the input to the ntroller is zero in
equili brium, the y,(m) are no longer dependent on the ry(m), but can have any value. Hence the mnsistency
requirement on the equili brium values of the input and output of the controller is not restrictive (Shamma 1988 in a
rather more restricted context, make a similar observation regarding the role of integral adion in gain-scheduled
controllers).

4.3.1Veocity-based realisationsrevisited

It is noted in sedion 4.2 that, for a velocity-based redisation to be viable, any unwanted constant displacement of
the state or output, due to the differentiation of the input followed by the integration to determine the output from v,
must be avoided. Thiscan, aso, be atieved by theinclusion o integral adion in the cntroller.

Consider the simple nonlinea controller consisting of a single nonlinea gain together with integral adion as
depicted in figure 8a. The nonlinea component

y =G(r) (59)



itself constitutes a nonlinea controller satisfying the extended locd linea equivalence @ndition. The scheduling
variable can be mnsidered to be dther the input, r, or, when the inverse of G(*) exists, implicitly the output, y.
Positioning the integrator before the nonlinea gain immediately makes both F and r available. The nonlinea
controller, with r as the scheduling variable, can be recast as the velocity-based redi sation, depicted in figure 8b,

y = OG(r)t (56)
The nonlinea controller, with y as the scheduling variable, can be recast as the velocity-based redisation, depicted in
figure 8c,

y=gWt 9()=0G(G™(y)) (57)

In both figures 8b and 8c, the differentiation and integration, associated with the velocity-based redisation, do not
appea explicitly but merely cause arepositioning of the pure integrator from before to after the nonlinea element.
Note that in the redisation, (56), the scheduling variable, r, must be determined by integrating f, but in the redisation,
(57), the scheduling veriable, y, is diredly available. Since the dosed-loop system is gable, any error in the initial
condition for y rapidly evolves out. The redisation, depicted in figure 8c, is a rather smple and effedive means of
redising a system consisting of a single nonlinea gain together with integral adion. It is widely applicable; for
example, in wind turbine control to caer for the variation in the agodynamics with wind speed, see Leitheal et al.
(1992). (A somewhat more rigorous explanation for the remarkable effediveness of this approach to scheduling the
controller, when applied to wind turbines, is presented in Leith & Leithead (1997)).

The reason for adopting the velocity-based redisationsis to avoid having to determine the nonlinea functions of the
scheduling variable in the nonlinea controll er from the relationships of their partial derivativesto the linea controllers
transfer function coefficients. Unfortunately, with the introduction of integral adion, the velocity-based redisation no
longer resolves this issue since the euili brium operating points cannot be parameterised by the input, r,. Consider the
simple nonlinea controller, (55), without integral adion and its velocity-based redi sation with the scheduling veriable
r, (56). The eyuili brium operating points, (ro, Yo), May be parameterised by r, or y,. Hence when designing the linea
controllers (the gains) at the eguilibrium operating points, it is possble to dredly parameterise them by r, and so to
diredly determine JG(r). However, when integral adion is included and initially positioned, as above, before the
nonlinea element, the eyuili brium values of the input, r,, are no longer related to the plant input but are related to the
controller output, y,, viathe nonlinea controller itself. Hence, when designing the linea controllers, it is not possble
to dredly parameterise the gains by r,. Instead, the gains must first be parameterised by y,, say g,,. From (55) and
(57), it then follows that

0G(r) = g(G(r)) (58
with
SIS -
G(p)= Iog(s) ds, 9(s)=0s (59)

and integration of the wefficients, in this case the inverse of the gain, cannot be asoided.

Of course, the two redisations, (42)/(51) and (44)/(52), can be treged in a similar manner to the aove simple
nonlinea controller consisting of a single nonlinea gain together with integral adion. Adoption of the velocity-based
redisations, (51) and (52), merely causes the repasitioning of the integral adion from before to after the nonlinea
controller. Except for redisation (52), when spedalised to the SISO case, the scheduling variable still requires to be
determined by integrating  and the inverses of the cntroller gains gill require to be integrated to oktain a dired
parameterisation of the linea controllersin terms of the input, r.

Example Returning to the wind turbine Examplein sedion 3.5, the fixed component, K(s) or K'(s), which is positioned
before the gain-scheduled component, C; or C, includes integral adion. Hence the first velocity-based redisation,
(53), can be reformulated as depicted in figure 9a with the mefficients by(r) i=1,..5, defined by (53b). The
parameterisation of the by(r), (53b), and equivaently the b(m), (41e), are obtained by a similar procedure to that
described above for the simple nonlinea controller consisting of a nonlinea gain together with integral adion. The
relationship between the r, and y, is ro=-1.42y,2+88.51y,-31172. The scheduling variable, r, is obtained by integrating
. A stable weak feedbadk from the controller output is employed to ensure that any error in the initial condition for r
evolves out.

The second velocity-based redisation, (54), can be reformulated as depicted in figure 9b, with the wefficients ay(y),
a(y) and d(y) defined by (54b). This redisation is the one reported in Leith & Leithead (1996. Both of these
redisations, figure 9a and figure 9b, have been implemented on a detail ed norn-linea simulation of the wind turbine and
their performance asessed: they are found to be equally effedive.

.

It iswell known empiricdly, athough rarely reported in the literature (Lawrence & Rugh 1995, that it is beneficial,
where possble, to pasition a pure integrator at the output of a gain-scheduled controller. The foregoing discusdon
provides analytic suppart for this heuristic rule.



4.4Direct realisations

In sedions 4.1-4.3, several isaues related to the pradicd design of nonlinea controllers satisfying the extended locd
linea equivalence onditions are investigated and various ways of resolving them determined. Of course, in any
particular applicaion, the most appropriate methods for the antext should be adopted. However, a redisation which
automaticdly resolves al of these issues would be useful. Just such a redisation for MIMO controllers is developed
below.

The general structure of the redisation is depicted in figure 10a. The components C,, and C,, are fixed, with all of
the scheduled components in C,, and the antroller is assumed to include integral adion positioned as shown explicitly
in figure 10a. Without lossof generality, Cy, and C, are assumed square; that is, any non-squarenessis incorporated
into C,. Because the input to the cntroller is zero at the eguilibrium operating points, the maximum number of
scheduling variables which can be acommodated by the redisation of figure 10ais p, the degreeof the output; that is,
the degree of y since C, is sjuare. The cmponent Cy, is chosen such that the parameterisation of the eguili brium
operating points by the dements of y is compatible, in as natura a manner as possble, with the scheduling
requirements. Any necessary non-singular transformation of the outputsisincorporated into Cy.

A further requirement on the asignment of components of the wntroller to C, and C,, is to ensure that, as
discussed in section 4.1, the spedra of the scheduling variable has suitable bandwidth. For the wind turbine Examplein
sedion 3.5, it is appropriate to schedule the @ntroller with resped to the pitch angle of the rotor blades. When the
bandwidth of the aduator islarge, asuitable dternative to the pitch angle is the pitch demand to the aduator; that is, the
controller output. However, for some wind turbines, particularly large-scale machines, the bandwidth of the aduator
can be very low (see for example, Leith & Leithead 199D and the references therein). Consequently, the rate of
variation of the pitch demand can be significantly faster than the pitch angle itself. The remedy, adopted in Leith &
Leithead (1997b) (albeit, more rigoroudly justified), is to choose Cy, to be an inverse or pseudo-inverse, Al of the
aduator dynamics. When this remedy is applied to the ssmple controller of figure 8c, it is amended as shown in figure
8d. Theintegral adion isexploited by permitting A™ to be asimple lead term, with transfer function (s+b)/b, sincetheir
combined transfer function is proper.

The nonlinea component, C,, of the wntroller is sheduled with resped to the input, r. With this choice of
scheduling veriable, the redisation, satisfying the extended locd linea equivalence mndition, for C, and the
corresponding family of linea controll ers have the most convenient form, see sedion 4.1, and the restrictions on the
classof valid inputs and initial conditions is reduced to an absolute minimum, see sedion 3.3. Interpreting C, to consist
of p multi-input single-output nonlinea controll ers, the redisation for eat conforms to that of figure 4.

For eadt of the p multi-input single-output nonlinea controllers, let the variable, z, be the scdar function, B,,.4(r), of
theinput, r. To dstinguish this relationship for the different multi-input single-output controllers, an index k is used;
for the mntroller relating r to the k™ element of y, Z“=B¥,,4(r). Let z be the vedtor whose dements are the Z*, and B(r)
be the vedor whose dements are the Bkn+1(r), then

z=B(r) (60)
Assume that the inverse, B™X(s), of B(+) exists. The antroller of figure 10a can then be reformulated as shown in figure
10b. The nonlinea controller, C*p, consists of p multi-input single-output nonlinea controllers with the redisation
depicted in figure 11, where, for the k™ multi-input single-output nonlinea controller, ¢ is the vedor for which the k™

element is unity, al other elements being zero, and éi (*) =B*(B™(+)), i=1,.n. It should noted that, due to the
definition of B(*), the dements of z are egual to the scded elements of y (by the a) at an equilibrium operating point.

The equivalent velocity-based redisation for the multi-input single—output nonlinea controller of figure 11 is (51)
with the aoefficients defined by

bl(2) =0, B,(), i=L.m,j=1.n, b.=c,i=1,..m (61)

where ¢ is the i"™ element of c. This redisation is depicted in figure 12, which corresponds to figure 6, with
B,(2= [bi(2) ... b™(2)] ,i=1,.n. Infigure 12, the feedbadk loops have dl been shifted one integration to the right.
It should be noted that z is avail able internally to the redisation depicted in figure 12 and, therefore, only z is needed
asaninput to Cp*. Sincethe dosed-loop system would be stable, any error in the initial conditi ons for the integration of
z rapidly evolvesodi.

The nonlinea controller, consisting of the function, B(*), together with the integral adion, can also be reformul ated
in a similar manner to the simple scdar case mnsidered in sedion 4.3 as the velocity-based redisation depicted in

figure 13, where B(2) =[B, (2)] = [0,B,(B™(2)]. Sincez is not required as an input to C,’, the integral adion in the

velocity-based redisation can be omitted when the complete cntroller has the redisation depicted in figure 11c, Cp*
being redised as in figure 12. Moreover, since z has been chosen so that, at an equili brium operating point, the



elements of z and y are related by simple scding fadors, the eguili brium operating points, and so the family of linear
controllers, may be parameterised equally well by z or y.

A pradicd procedure, based on the foregoing (with minor modificaions © that the parameterisations of the
equili brium operating points with resped to y and z are identicd), for the design of MIMO gain-scheduled controllersis
asfollows. Design afamily of linea controll ers, parameterised by the output, y, such that the denominator coefficients
of al the dementsin arow of the transfer function matrix, G(s), are the same and fixed, but the numerator coefficients
may vary essentialy independently. For ead member of the family, determine the two matrices, G(0) and
H(9=G(9G(0). H(s) isimplemented dredly as p multi-input single-output nonlinea controllers redised as in figure
12, with the unity element of ¢ changed to &, and the b;'(z) the numerator coefficients of H(s) parameterised with respea
to z. G(0) isimplemented dredly as the gain matrix, B(z) , of figure 10c, with the dements of B(z) identicd to the

elements of G(0) parameterised with resped to z.

Example Returning to the wind turbine Example in sedion 3.5, the family of linea controllers (41b), C;(s), re-
parameterised in terms of 11, the eguilibrium value of the pitch angle of the turbine rotor blades (equivaently, the
controller output), is

by (195" +b, (m)s° + by ()s” +b, (M)s+ by (1)

Cre)=—2 3 2 (622)
s* +1358s° +3818&” + 26156+ 204000
where
b(17) = 0.0119r?-0.08631t+1.128, by(11) = 0.0666TC+0.3071+10.923,
bs(T0) = 0.53217+4.0107+119.269, b,(T)=62.543r+418.033, bs(11)=180.491+1591.50 (62b)
Hence
C'(0) = bs(11)/204000 (63)
CH9ICH0) = bl(1'?s4 + b2(1;r)s3 + b3(2n)sz +b, (T)s+ 204000 (640)
s* +1358s° +3818&7 + 26156 + 204000
with
b i(T)=204000b (T)/bs(T7), i=1,2,3,4 (64b)

Following the aove procedure, the redisation of the gain-scheduled nonlinea controller is that shown in figure 14.
Note, that the varying coefficients employed in the nonlinea redisation are related directly to the crresponding
coefficients of the linea family, (64); in fact, they are identicd, attaining the value of the wefficients at the equili brium
operating point currently indicated by the value of the scheduling variable.

5. Conclusions

In this paper, the extended locd linea equivalence @ndition of Leith & Leithead (199%) is extended to encompass
MIMO gain-scheduled nonlinea controllers. The extended locd linea equivalence @ndition minimises the mntroller
nonlineaity and, thereby, maximises the dassof inputs and initial conditions for which the dynamic properties of the
gain-scheduled nonlinea controller are similar to those of the members of the family of linea controllers on whichiit is
based. Indeed, when the mntroller satisfies the extended locd linea equivalence mndition and the scheduling variable
is sleded to be the input to the gain-scheduled controller, there is no restriction on the initial conditions and the
situation is exadly analogous to the linea time-varying case. The dassof allowable inputs and initial conditionsis, in
particular, considerably greder than when the locd linea equivalence ondition of Lawrence & Rugh (1995 at
equili brium operating points alone is stisfied.

Although the dynamic behaviour of the nonlinea controller must, as usual, be @nfirmed by analysis and/or
simulation, the extended locd linea equivalence @ndition does fadlitate the design of gain-scheduled controll ers by
providing strong guidanceto the most eff ective way of redising the controller. Several different classes of redisations,
satisfying the extended locd linea equivalence @ndition, are investigated and it is determined that the issues central to
the pradicd design of gain-scheduled controllers can be resolved by these redisations. The design of the gain-
scheduled nonlinea controllers is fadlitated by several redisations for which linea controllers are obtained by
“freeiang” the scheduling variable & its current value; that is, the varying coefficients of the nonlinea controller
correspond predsely to the wefficients of the linea family, parameterised by the scheduling variable, on which the
gain-scheduled design is based. Integral adion has an important role in these dired redisations. In addition, it permits
the equili brium relationships, imposed by the plant, between the wntroller input and output to be acommodated in an
elegant manner. The analysis, therefore, provides analytic suppart for the benefits, previously observed in pradice, of
including integral adion in a gain-scheduled controll er.

Whilst extended locd linea equivalence might appea to be arather strong condition, it is $own that it is possible
to redise, with few exceptions, al gain-scheduled controllers as nonlinea controllers stisfying the extended locd
linea equivalence ®ndition and requiring the controller to be so redised isnot at al restrictive.
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Figure1l Nomina neighbourhoods for system satisfying the locd linea equivalence @ndition.
Figure2 Nominal neighbourhoods for system satisfying the extended locd linea equivalence ndition.
Figure3 Different redisations of Example controller.

Figure4 Redisation of m-input single-output controll er, satisfying extended locd li nea equivalence ondition,
scheduled oninput, r.

Figure5 Redisation of m-input single-output controll er, satisfying extended locd li nea equivalence @ndition,
scheduled on m-1 elements, T, of the inputs and implicitly on the output, y.

Figure6 Velocity-based redisation of m-input single-output controll er, satisfying extended locd linea equivalence
condition, scheduled on input,. r.

Figure7 Velocity-based redisation of m-input single-output controll er, satisfying extended locd linea equivalence
conditi on, scheduled on m-1 elements, T, of the inputs and explicitly on the output, y.

Figure 8 Nonlinea controller redisations for family of linea controllers consisting simply of a varying gain together
with integral adion.

Figure9 Velocity-based redisation for wind turbine controller example.

Figure 10 MIMO nonlinea controll er redisations

Figure 11 Multi-input single-output controller redi sation corresponding to C*p infigure 11b
Figure 12 Velocity-based redisation of multi-input singe-output controller of figure 12.
Figure 13 Velocity-based redisation corresponding to B(r) in figure 11hb.

Figure 14 Dired redisation of wind turbine controll er example.
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