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Abstract

The dynamic characteristics of a controller designed by the gain-scheduling approach can be strongly dependent on
the realisation adopted; that is, the manner in which the local li near controller designs are combined to obtain a non-
local controller.  The purpose of the present paper is to investigate the choice of appropriate realisations for general
MIMO gain-scheduled controllers.  An extended local li near equivalence condition for MIMO gain-scheduled nonlinear
controllers is proposed which minimises the controller nonlinearity.  It is shown that, with few exceptions, it is possible
to realise all gain-scheduled controllers as nonlinear controllers satisfying the extended local li near equivalence
condition and requiring the controller to do so is not at all restrictive.

1. Introduction

Gain-scheduling control has a long pedigree and, having originated in flight control, is now widely employed in a
variety of applications where high performance has to be achieved over a broad operating envelope.  Traditionally, a
gain-scheduled controller is adjusted with reference to a slowly-varying externally measured quantity which, in some
sense, captures the nonlinear behaviour of the plant (Astrom & Wittenmark 1989).  However, the term ‘gain-scheduled’
is also widely applied to encompass a broad range of controllers including those where the scheduling variable varies
rapidly (Shamma & Athans 1992), where an internal state of the controller is employed to implicitly schedule the
controller (Rugh 1991) and where the plant is essentiall y fixed but the control objectives vary (Leith & Leithead 1994,
1996).

In these latter applications, the controllers may be strongly nonlinear and their dynamic characteristics may, in
general, bear littl e relation to those of slowly-varying exogenously gain-scheduled controllers.  Nevertheless, the
controllers are linked by the design approach employed whereby a nonlinear controller is constructed by continuously
interpolating, in some manner, between the members of a family of linear controllers.  Each linear controller is,
typically, associated with a specific equili brium operating point of the plant and is designed to ensure that, locally to the
equili brium operating point, the performance requirements are met.  (The existence of a set of equili brium operating
points which encompass the envelope of plant operation is central to most gain-scheduling arrangements and it is
insufficient to restrict consideration to a single, isolated, equili brium operating point).  By employing a series expansion
linearisation which, locally to the equili brium operating point, has similar dynamics to the plant, linear techniques may
be used to resolve this local design task.  Continuity is, therefore, maintained with established linear design techniques
for which a considerable body of experience has been accumulated.

It is known that the dynamic characteristics of a controller designed by the gain-scheduling approach can be strongly
dependent on the realisation adopted; that is, the manner in which the local l inear controllers are combined to obtain a
non-local controller (see, for example, Leithead et al. 1991a, Leith & Leithead 1996).  Indeed, the performance
improvement, in comparison to linear control, achieved by employing a gain-scheduled controller can be entirely lost
when an inappropriate controller realisation is adopted (Leith & Leithead 1996).  However, analytic support for the
choice of an appropriate controller realisation is rather poorly developed.

Lawrence & Rugh (1995) propose that the controller realisation should be restricted to ensure that, at each
equili brium operating point, the dynamics of the controller series expansion linearisation matches the corresponding
member of the family of linear controllers.  (A similar approach is also advocated, in a more restricted context, by
Kaminer et al. 1995).  However, their results are of lit tle utility (Leith & Leithead 1996, 1997a).  Leith & Leithead
(1996) propose, instead, that the controller realisation should satisfy a so-called extended local li near equivalence
condition and derive generic realisations which satisfy this condition for a broad class of SISO controllers.  Employing
a realistic example from wind turbine regulation, it is demonstrated that realisations which satisfy the extended local
linear equivalence condition provide a substantial improvement in performance in comparison with realisations which
do not satisfy this condition (including those which satisfy the local li near equivalence condition of Lawrence & Rugh
1995).

The objective of the present paper is to further develop the approach of Leith & Leithead (1996) and, in particular,
extend it to encompass the choice of an appropriate realisation for general multi-input multi -output gain-scheduled



controllers.  The paper is organised as follows.  In section 2, some preliminary details are presented and, in section 3,
criteria for the selection of appropriate realisations are discussed.  In section 4, various practical issues are addressed
and realisations, satisfying the extended local li near equivalence criterion derived in section 3, are investigated.  The
conclusions are summarised in section 5.

2. Gain-scheduling design

The traditional exogenously gain-scheduled controller, which is adjusted with reference to an externally measured
variable, ρρ(t), has the form

x�
 = A(ρρ(t))x + B(ρρ(t))r, y = C(ρρ(t))x + D(ρρ(t))r (1)

The dynamic properties change with ρρ(t) but, provided that the rate of change is not too rapid, then the dynamic
properties of the time-varying controller, (1), are similar to those of the linear controllers obtained by ‘ freezing’ the
value of ρρ; that is, the nonlinear controller inherits the dynamic properties of the family of linear controllers (see, for
example, Desoer 1969).  It is noted that there are no direct restrictions on the state, x, or the input, r.  The only
restriction is on the rate of change of the scheduling variable; indeed, when the scheduling variable is constant, the
controller is linear.  However, matters are not so simple when the scheduling variable is a function of internal quantities.
In this paper, consideration is restricted to the latter.

2.1 Linear synthesis

In the gain-scheduling design approach, the (usually nonlinear) plant dynamics are approximated, locally to a
specific equilibrium operating point, by a series expansion linearisation.  A linear time-invariant controller is then
designed which ensures appropriate closed-loop performance when employed with the plant linearisation.  This process
is repeated for a set of equili brium operating points, covering the envelope of operation, whilst ensuring that the linear
controller designs have compatible structures; for example, when a smoothly gain-scheduled controller is required, the
linear controller designs are selected to permit smooth interpolation, in some appropriate manner, between the designs.

At any equili brium operating point of the plant, all of the plant inputs, including the controller output y∈ℜp, and all
of the plant outputs, including the controller input r∈ℜm, are constant.  It is assumed that the equili brium operating
points of the plant may be minimally parameterised by a quantity, ππ∈ ℜq.  Consequently, both the equili brium operating
points of the gain-scheduled controller and the local li near time-invariant controllers may also be parameterised by ππ.
Hence, there exists a family, (ro(ππ),yo(ππ)), of constant controller inputs and outputs and a family of linear time-invariant
controllers,

δ �x ππ = Aππδxππ + Bππδrππ, δyππ = Cππδxππ + Dππδrππ (2a)
δrππ = r - ro(ππ), y = yo(ππ) + δyππ (2b)

corresponding to the set of plant equili brium operating points.  Clearly, (2a) is not unique and the states, δxππ, may be
subject to a non-singular linear transformation (which may be different for each equilibrium operating point) without
changing the dynamics.  In addition, it is assumed that the degrees of the input, output and state are not dependent on ππ
and that the matrices, Aππ, Bππ, Cππ and Dππ are continuous with respect to ππ.

2.2 Nonlinear realisation

In addition to the synthesis of a family of linear controllers, the gain-scheduling design approach requires the
determination of a suitable nonlinear controller; that is, the determination of an appropriate realisation.  It is this step
which receives consideration in the present paper.  Nonlinear gain-scheduled controller realisations of the form,�x = F(x, r), y = G(x, r) (3)
are considered, where F(·,·) and G(·,·) are continuous and differentiable, and x ∈ ℜn denotes the state of the controller.
The set of equili brium operating points of the nonlinear controller, (3), consists of those points, (xo, yo, ro), for which

F(xo, ro) = 0, yo = G(xo, ro) (4)
Let Φ:ℜn×ℜm denote the space consisting of the union of the state, x, with the input, r.  The locus of the set of
equili brium operating points of the nonlinear controller, (xo, ro), forms a surface in Φ and the response of the controller
to a general time-varying input, r(t), is depicted by a trajectory in Φ.

Assume that (4) is suitably invertible so that the equilibrium values of the state, xo, may be determined from the
equili brium values of the controller input, ro, and output, yo.  This assumption ensures that the equili brium
characteristics are independent of the choice of controller state.  For consistency with section 2.1, the set of equilibrium
operating points, (ro, yo), must be the same as the family (ro(ππ),yo(ππ)) and the surface of equili brium operating points in
Φ must be of dimension q.  The quantity, ππ, provides an index for the equili brium operating points which is independent



of the realisation whereas the points (xo,ro) themselves, and the mapping from ππ to (xo, ro) and the inverse mapping
from (xo,ro) to ππ,  are dependant on the choice of realisation, (3).  The scheduling variable is a function, ρρ:(xo,ro)

� ℜq,
which is an isomorphism of the inverse mapping from (xo,ro) to the parameterisation of the equili brium operating
points.  Hence, the set of equili brium operating points for the nonlinear controller, (3), can be parameterised  with
respect to ρρ; namely, (xo(ρρ), yo(ρρ),ro(ρρ)).  The domain of ρρ is usually not confined to the set of equili brium operating
points, (xo,ro): at a general operating point, (x,r), ρρ:(x,r) � ℜq such that ρρ(x,r) = ρρ(xo,ro) for some (xo,ro).  The
scheduling variable, thereby, indicates some member of the linear family, (2), at any time, regardless of whether the
system is in equili brium. In this paper, it is assumed that ρρ is a continuous function; that is, the discussion here excludes
non-smooth scheduling such as switching.  Typically, the selection of an appropriate scheduling variable is based on
physical insight.

The nonlinear controller, (3), is required to have, in some sense, similar dynamic properties to the members of the
linear family, (2), for the widest possible range of operating conditions.  Initially, consider the case where the controller
is operating locally to a specific equili brium operating point, (xo(ρρo), ro(ρρo)).  There exists a class, 

�ορC , of inputs and

initial conditions for the state, for which the nonlinear controller and the associated member of the linear family are
judged to have similar dynamic behaviour.  (The definition of the criteria, by which the similarity of dynamic behaviour
is assessed, is dependent on the context, in which the requirement for a gain-scheduled controller arises, and on the
nature of the controllers).  Let the class, C, be the union over the ρρo of the classes 

�ορC .  Now consider the case where

the controller is not confined to operating locally to some specific equilibrium operating point.  There exists a class, CN,
of inputs and initial conditions for the state such that the response of the nonlinear controller, whilst in the vicinity of a
particular equili brium operating point, is judged, in some contextually appropriate sense, to have similar dynamic
behaviour to the corresponding member of the family of linear controllers.  The classes, C and CN, are non-empty since
they contain the equili brium values ro(ρρo) and xo(ρρo).  The definitions of the criteria, by which the similarity of dynamic
behaviour is assessed in the two cases, are assumed to be such that, for a sequence of nonlinear realisations for a family
of linear controllers, the trend is for the membership of the class CN to increase as the membership of the class C
increases.  This assumption is not unnatural since the membership of the classes is a reflection of the “strength of the
controller nonlinearity” by whatever means it is defined.

It should be noted that the relationship between the equili brium input and output of the controller, ro(•) and yo(•),
can have a considerable impact on the nonlinear controller design.  Whilst this issue is largely neglected in the
literature, it is clear that a strong restriction is imposed on the class of allowable nonlinear controllers;  for example, the
functions, F(•,•) and G(•,•), in (3) are not independent since,

F(xo(ρρ), ro(ρρ)) = 0, G(xo(ρρ),ro(ρρ)) = yo(ρρ)
must be jointly satisfied and, when F(•,•) is invertible so that xo(•) is determined by ro(•), it follows that the output
function, G(•,•), is, essentially, completely specified by the equili brium input/output relationship and the choice of
F(•,•).  It is possible to satisfy the relationship between the equilibrium input and output, whilst maintaining design
freedom, by including explicit functions for ro(•) and yo(•) within the controller (Shamma & Athans 1990, Lawrence &
Rugh 1995).  However, the derivation of the explicit functions is extremely onerous and quite undesirable in most
applications.  Unless otherwise stated, it is assumed that the controllers discussed below are compatible with the
equili brium input/output conditions.

2.3 Previous approaches

Perhaps the most common approach to realising a gain-scheduled controller is to simply substitute a scheduling
variable, ρρ(x, r), for ππ in the family of local li near controllers, (2), to obtain a nonlinear controller.  When the
scheduling variable, ρρ, varies suff iciently slowly (trivially, when the rate of variation is zero), the dynamic
characteristics of the linear family are inherited by the nonlinear controller.  However, in the nonlinear controller the
scheduling variable, ρρ, varies with the input and/or the state whilst in the local li near controller, (2), it is fixed.  Hence,
in general, the series expansion linearisation of the nonlinear controller about an equili brium operating point, at which
the scheduling variable has the value ρρo, contains terms, related to the perturbations, δρρ, in the scheduling variable, not
present in the linear family, (2) (where δρρ equals ρρ-ρρo).  Consequently, for the nonlinear controller to have similar
dynamics to the linear family, it is necessary to impose a constraint on the variation of ρρ; namely, that the first order
perturbations in δρρ, and so δx and δr, must be negligible.  This constraint applies even when the state is confined to a
small neighbourhood about a single equili brium operating point which is clearly not a priori necessary.  Hence, for this
class of nonlinear controller the constraints imposed on ρρ seem unnecessarily strict.

As an alternative, Lawrence & Rugh (1995) (and also Kaminer et al. 1995, in a more restrictive context) propose
that the nonlinear controller should be selected to ensure that its series expansion linearisation at each equili brium
operating point corresponds to the appropriate member of the linear family, (2).  In other words, within the



neighbourhood, about a specific equili brium operating point, for which the second order perturbations in δx and δr are
negligible, the nonlinear controller is required to have similar dynamics to the appropriate member of the linear family.
The nonlinear controller, therefore, has the required dynamic behaviour, locally to each equili brium operating point, for
a less strict constraint on δx and δr than the previous approach.

3. Selection criteria for the realisation of gain-scheduled  controllers

It is clearly attractive to require that the controllers are consistent with the approach of Lawrence & Rugh (1995)
since the series expansion linearisation of the controller, at each equilibrium operating point, then corresponds to the
appropriate member of the linear family, (2).  However, there exist infinitely many nonlinear controllers satisfying the
local li near equivalence condition of Lawrence & Rugh for a particular family of linear controllers.  The size of the
classes, 

�ορC , of inputs and initial conditions may vary greatly for different choices of controller realisation and may, in

fact, be relatively large for some choices but vanishingly small for others.  Since the size of the classes of valid inputs
and initial conditions is variable and may be unnecessarily restricted by the choice of realisation adopted, the
requirement of local li near equivalence is, by itself, an inadequate guide to the choice of a minimally nonlinear
controller realisation; that is, a realisation for which the restrictions on the inputs and the initial values of the states are
minimal (Leith & Leithead 1997a).  A criterion is, therefore, required which provides guidance to those realisations
satisfying local l inear equivalence that do not unnecessarily diminish the class of valid inputs and initial conditions.

3.1 Extended local linear equivalence

The extent to which the dynamics vary over the locus of equili brium operating points, being defined by the family of
linear controllers, (2), is clearly inherent to the gain-scheduled controller.  However, the extent to which the dynamics
vary as the operating point is displaced away from the locus of equili brium operating points is, in contrast, dependent on
the controller realisation.  Restrictions are imposed on the inputs and initial conditions by both aspects of the controller
nonlinearity.  The restriction imposed by the first aspect is somewhat similar to that encountered in exogenously gain-
scheduled controllers; roughly speaking, the inputs and initial conditions are restricted to prevent the locus of
equili brium operating points from being traversed too rapidly thereby preventing the dynamic properties, which vary
over the locus of equili brium operating points, from varying too rapidly.  When the inputs and initial conditions are
such that the variation in the scheduling variable is small and consideration may be confined to a single member of the
linear family, this restriction does not apply.  However, the second aspect still imposes a restriction on the inputs and
initial conditions.  The restriction imposed by the second aspect is, evidently, additional to and, in some sense,
independent of the first.

The nonlinear controller, (3), may be reformulated as,
δ �x  = ∇xF(xo(ρρo), ro(ρρo))δx + ∇rF(xo(ρρo), ro(ρρo))δr+εεF (5a)
δy = ∇xG(xo(ρρo), ro(ρρo))δx + ∇rG(xo(ρρo), ro(ρρo))δr+εεG (5b)
δr = r - ro(ρρo), y = yo(ρρo)+δy (5c)

where,
εεF = F(x,r) -∇xF(xo(ρρo), ro(ρρo))δx - ∇rF(xo(ρρo), ro(ρρo))δr (5d)
εεG = G(x,r) -G(xo,ro) -∇xG(xo(ρρo), ro(ρρo))δx - ∇rG(xo(ρρo), ro(ρρo))δr (5e)
x = xo(ρρo) + δx (5f)

for any ρρo.  The local li near equivalence requirement is satisfied at an equili brium operating point, at which ρρ has the
value, ρρo, provided the derivatives ∇xF, ∇rF, ∇xG and ∇rG match, within a non-singular transformation of the states,
the matrices, Aππ, Bππ, Cππ and Dππ, of the appropriate member of the family of linear controllers.

When assessing whether the dynamic behaviour of the nonlinear controller, (3), is locally similar to a particular
member of the family of linear controllers, it may naturally be assumed that the criteria employed imposes a restriction
on the magnitude of the residuals, εεF and εεG.  In general, the residuals may be dependent on every element of δx and δr
and, therefore, a restriction is imposed on the magnitude of every element.  However, many of these restrictions are not
a priori necessary.  The inherent nonlinear character of the gain-scheduled controller is embodied in the variation
between the members of the family of linear controllers, (2).  It follows that the gain-scheduled controller is inherently
nonlinear with respect to the scheduling variable, ρρ, and a particular member of the family of linear controllers is
inherently only valid when the perturbation, δρρ, is restricted to some range which is dependent on the properties of the
family of linear controllers.  To minimise the restrictions on the perturbations in the elements of (x, r), it is, therefore,
quite natural to require that the residuals depend purely on δρρ alone; that is, on ρρ and no other combinations of the
element.  Hence, the nonlinearity must purely be a function of ρρ.  Moreover, since ρρ minimally parameterises the family
of linear controllers, it is clear that this is the weakest functional dependence of the residuals possible.



When the controller nonlinearity is purely a function of ρρ, the nonlinear controller, (3), must be of the form,�x   =  Ax + Br + f(ρρ), y  =  Cx + Dr + g(ρρ) (6)
where A, B, C, D are constant matrices, f(•) and g(•) are differentiable nonlinear functions, and ∇xρρ, ∇rρρ are functions
of ρρ alone.  The scheduling variable, ρρ(x, r)∈ℜq, equals the constant value, ρρo, upon a surface of co-dimension q in Φ
and ∇xρρ and ∇rρρ are constant over each surface.  Hence, the normal to each surface is identical at every point on the
surface and each surface is, therefore, affine.  Moreover, to ensure that ρρ is a unique function of x and r, these surfaces
must be parallel for all ρρ.  Consequently, it may be assumed, without loss of generality, that ∇xρρ and ∇rρρ are constant
and ρρ is a linear combination of the elements of the state and input.  The controller dynamics are linear in those
combinations of the elements of (x, r) that are linearly independent of ρρ.

The linearisation of the nonlinear controller, (6), at a specific equili brium operating point, (xo(ρρo), ro(ρρo)), is,
δ �x  = (A+∇ρρf(ρρo) ∇xρρ)δx + (B+∇ρρf(ρρo) ∇rρρ)δr (7a)
δy = (C+∇ρρg(ρρo)∇xρρ)δx + (D+∇ρρg(ρρo) ∇rρρ)δr (7b)

Unnecessary restrictions on the membership of the classes, 
�ορC , of inputs and initial conditions for the state, for which

the linearisations are locally valid, are avoided by the realisation, (6); in this sense, the size of the classes, 
�ορC and so C,

is maximised.  Since the membership of the class, CN, tends to increase as the membership of the class, C, increases,
membership of CN is, in general, greater for a controller with the realisation (6), i.e. satisfying the so-called extended
local li near equivalence condition, than for a controller satisfying the local l inear equivalence condition of Lawrence &
Rugh (1995).  The restriction imposed on the class of inputs and initial conditions by the extent, to which the dynamics
vary as the operating point is displaced away from the locus of equili brium operating points, is completely relaxed for
the realisations satisfying the extended local li near equivalence condition.  Only the inherent restriction imposed on the
class by the extent to which the dynamics vary over the locus of equili brium operating points remains in place.

The formulation, (6), is equivalent, in a SISO context,  to the extended local li near equivalence condition proposed
by Leith & Leithead (1994, 1996).

3.1.1 Linearisation at non-equilibrium operating points

For consistency with the restriction on the magnitude of the residuals imposed by the requirement that the dynamic
behaviour of the nonlinear controller, (3), is locally similar to a particular member of the family of linear controllers, the
state, δx, of the nonlinear controller, (5), and the input, δr, must belong to some neighbourhood of (xo(ρρo), ro(ρρo) within
which they are sufficiently small that εεF and εεG are negligible.  (Alternatively, the state of the linear controller, obtained
from (5) by setting εεF and εεG to zero, and the input could be required to belong to the neighbourhood.  Although the
class, for which this latter requirement is met, is not identical to 

�ορC , it is not substantially different.  When comparing

the membership of the class of inputs and initial conditions for different realisations, this alternative requirement has the
advantage that the state does not change with the realisation since the linearisations are the same).  The situation for a
controller satisfying the local li near equivalence condition of Lawrence & Rugh (1995) is ill ustrated in figure 1 for a
SISO first-order controller whilst the situation for a controller satisfying the extended local li near equivalence
condition, is il lustrated in figure 2: the shaded regions notionall y indicate the neighbourhoods within which the δx and
δr are sufficiently small that εεF and εεG are negligible and a particular linearisation is valid.  It should be noted that the
neighbourhoods for the realisation, (6), are infinite in extent, having no a priori restriction in the directions in which ρρ
is constant.  Irrespective of any difference in scaling of the states, the neighbourhoods in figure 2 are significantly larger
than the neighbourhoods in figure 1.

The nonlinear controller, (6), can be linearised at any operating point, including non-equili brium operating points,
for which the value of ρρ is within its domain; in many cases at any operating point in the space, Φ.  Any point, for
which ρρ has the value ρρo, is in the neighbourhood associated with the equili brium operating point for that value of ρρo.
Hence, at a non-equili brium operating point the nonlinear controller can be linearised by associating it with the linear
controller at the equili brium point for which the value of ρρ is the same; that is, at a point for which the scheduling
variable has the value ρρo, the linearisation of (6) is (7).  (Note, the linearisation is not obtained by perturbing the system
about the non-equili brium operating point and neglecting the inhomogeneous term, although that would result in a
similar description for those systems satisfying the extended local li near equivalence condition).  This linearisation is
valid in any neighbourhood of the non-equili brium operating point which is contained within the neighbourhood
associated with the corresponding equili brium operating point.  Hence, the extended local li near equivalence condition
can be interpreted as requiring that the linearisation of the nonlinear controller corresponds to the appropriate member
of the linear family at all operating points and not just the equili brium operating points as required by the local l inear
equivalence condition of Lawrence & Rugh (1995).



3.2 Example

The foregoing points are il lustrated by the following example.  Suppose that the family of second-order SISO linear
controllers,

δ �x  = Aππδx + Bππδr, δy = Cππδx + Dππδr (8a)
where   δx = [δx1 δx2]
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has been designed, where gπ varies as a continuous function of the equili brium operating point and is non-zero.  The
transfer function of the member of the family associated with π equal to πo is,

       (bs + 1)
Y(s) = gπo  R(s) (9)

  s(s + a)
where Y(s), R(s) are the Laplace transforms of, respectively, δy(t) and δr(t).  The values of gπ are assumed to be finite
and either strictly positive or strictly negative; that is, there exist a1 and a2 such that

0 < a1 ≤ gπ ≤ a2 < ∝ or -∝ < a1 ≤ gπ ≤ a2 < 0 (10)
The output, y, is selected as the scheduling variable on the assumption that the equilibrium operating points of the
controller can be parameterised by y and that there exists a continuous function,

g(•): ℜ→{ gπ} .  (11)
(Owing to the pure integral action present in the members of the family, (8), the input to the controller must be zero at
an equili brium operating point and the locus of equilibrium operating points cannot, therefore, be parameterised by the
input).

Realisation A

Consider the nonlinear controller obtained by simply replacing gπ in (8) by the function g(y) as depicted in figure 3a.
Such an approach is widely employed to construct gain-scheduled controllers.  The dynamics of the nonlinear controller
are described by�x  = Aax + Bar + fa(x, r),y = Cax + Dar  + ga(x, r) (12a)
where  x = [x1 x2]
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and y(x) is a solution to the implicit nonlinear equation,
y = x2 + bg(y)x1 (12c)

From assumptions (10) and (11), the straight lines of constant y, (12c), cover the complete (x1, x2) plane.  Hence, there
exists at least one value of y satisfying (12c) for all x1 and x2.  When more than one value exists, the appropriate one is
determined by continuity.  The initial condition for the state, x, must be accompanied by an appropriate, context
dependent, choice of y.  The locus of equili brium operating points is the set of points, (ayo/g(yo), (1-ab)yo, 0), -∝<yo<∝,
and the scheduling variable, y, is constant on the planes x2+bg(y)x1 = yo.  Locally to an equili brium operating point, at
which the nominal value of y is yo,

r = 0 + δr, x1 = x1o + δx1,x2 = x2o + δx2,y = yo + δy (13)
and the nonlinear controller, (12), can be reformulated as
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δy = [bg(yo) 1]δx + εy (14b)
where

εεx = [0 (1-ab)(g(yo+δy)-g(yo)) (x1o+δx1)]
T, εy = b(g(yo+δy)-g(yo)) (x1o+δx1) (14c)

The linear system obtained by setting εεx and εy to zero in (14) is the same as (8) as required.  For the linearisation to be
locally valid, δx1 and δy must be sufficiently small that εεx and εy are negligible.  It should be noted that, as yo varies and
the magnitude of x1o increases, the membership of the class, 

�ορC , rapidly diminishes until it becomes, in terms of the

context, insignificant.  This is a consequence of the realisation not satisfying the local li near equivalence condition, with



the result that first order perturbations in δy are present in the expressions for εεx and εy.  Unless the operational envelope
of the controller is confined to the vicinity of the equili brium operating points for which the magnitude of x1o is
restricted, εεx and εy can be arbitrarily large for some x1o for any non-zero values of δy. �

Realisation B

An alternative nonlinear controller, which employs a velocity formulation similar to that proposed by Kaminer et al.
(1995) (and with the integral-error form discussed by Lawrence & Rugh 1995), is shown in figure 3b.  The dynamics of
the controller are described by�x  = Abx + Bb �r + fb(x, r), y = Cbx + Dbr + gb(x, r) (15a)
where  x = [x1 x2]

T
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The locus of equili brium operating points is the set of points, (0, yo, 0), -∝<yo<∝, and the scheduling variable, y, is
constant on the planes x2 = yo.  Locally to an equili brium operating point at which the nominal value of y is yo,

r = 0 + δr, x1 = 0 + δx1, x2 = 0 + δx2, y = yo + δy (16)
and the nonlinear dynamics, (15), can be reformulated as
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x  +εεx (17a)

δy = [0 1] δx (17b)
where

εεx =[(1-ab)(g(yo+δy) - g(yo))δr    b(g(yo+δy) - g(yo))δr]T (17c)
The linear system obtained by setting εεx to zero in (17) is the same as (8) as required.  For the linearisation to be valid,
δy and δr must be sufficiently small that εεx is negligible.  It should be noted that, as yo varies, the membership of the
class, 

�ορC , remains significant.  This is a consequence of the nonlinear controller satisfying the local l inear equivalence

condition.  Hence, in general, the classes, 
�ορC , for realisation B, are larger than the classes, 

�ορC , for realisation A.

Clearly, realisation B is more weakly nonlinear than realisation A.  However, it is evident that the controller of figure 3b
does not satisfy the extended local li near equivalence condition. �

Realisation C

Now, consider the nonlinear controller shown in figure 3c.  Its dynamics are described by the differential equation�x  = Acx + Bcr + fc(x, r), y = Ccx + Dcr + gc(x, r) (18a)
where  x = [x1 x2]

T, 
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The realisation, (18), does not explicitly have the extended local li near equivalence condition form, (6).  However, the
controller dynamics, (18), may be reformulated as� � � � � � � � � �

(x A x B f x C x D xc c c c c= + r + ( , r),   y =  + r +  g ,  r)c (19a)

where  �x  = [x1 �x 2]
T, 
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G (y
1

g(s)
ds-1

0
y) = ∫ (19c)

which explicitly satisfies the extended local li near equivalence condition.  (By assumption (10), G(•) exists since
G-1(•) is monotonic and, therefore, invertible).  The locus of equili brium operating points is the set of points (0, yo, 0),
-∝<yo<∝, and the scheduling variable, y, is constant on the planes �x 2 = G-1(yo).  Locally to an equili brium operating
point at which the nominal value of y is yo,

r = 0 + δr, x1 = 0 + δx1, �x 2 = �x 2o + δ �x 2, y = yo + δy (20)
and the nonlinear dynamics, (19), can be reformulated as,



δ �
�
x  = r

b

ab-1
   ˆ

01

0a-
δ








+δ








x (21a)

δy = [ ] 0  g(y   +o y) �δ εx (21b)

where
εy = -g(yo)[G

-1(yo+δy) - G-1(yo) - ∇ G-1(yo)δy] (21c)
The linear system obtained by setting εy to zero in (21) is the same as (8) as required.  For the linearisation to be valid,
only δy must be sufficiently small that εy is negligible.  This is a consequence of the nonlinear controller realisation C
satisfying the extended local li near equivalence condition.  In general, the membership of the classes, 

�ορC , for the

realisation C are larger than the classes, 
�ορC , for realisation B since the magnitude of both the input, δr, and the output,

δy, are restricted in the latter but only the magnitude of the output, δy, is restricted in the former with no a p riori
restriction on the input, δr.  Clearly, realisation C is more weakly nonlinear than realisation B.  The neighbourhoods
associated with the equilibrium operating points cover the entire (x1, �x 2,r) space. 	

When comparing the three realisations, the classes, 
�ορC , are sufficiently different that there is no need to make the

state space forms of the linear controllers identical by transforming the states.
The foregoing simple example does not directly consider the performance benefits of adopting a gain-scheduled

controller that satisfies the extended local li near equivalence condition and which, thereby, has appropriate dynamics
for the widest class of inputs and initial conditions.  However, these benefits, which must, as usual, be confirmed by
analysis and/or simulation studies, can be quite considerable.  For example, in the context of wind turbine regulation,
Leith & Leithead (1996) observe that an appropriately realised gain-scheduled controller achieves a substantial
improvement in performance in comparison to a well-designed linear controller.  However, this performance gain is
effectively lost when gain-scheduled controller realisations are employed which satisfy only local l inear equivalence
about the equili brium operating points rather than the extended local li near equivalence condition.  Consequently, the
nature of the realisation adopted plays a central role in attaining the required performance.  The context of wind turbine
regulation is particularly well suited to assessing the effectiveness of the nonlinear controller in that, even though the
plant is fixed, the controller is strongly scheduled; that is, the nonlinearity is strong and the scheduling variable cannot a
priori be assumed to be slowly varying.

3.3 Relaxation of restriction on initial conditions

In section 3.1, minimally nonlinear controller realisations are defined; namely, those satisfying an extended local
linear equivalence condition, (6).  For these realisations, the restriction imposed on the class of inputs and initial
conditions of the state by the extent, to which the dynamics vary as the operating point is displaced away from the locus
of equili brium operating points, is completely relaxed.  Only the restriction imposed on the class of inputs and initial
conditions by the extent, to which the dynamics vary over the locus of equilibrium operating points, remains.  The latter
is essentiall y a restriction on the rate of variation of the scheduling variable in (6).  The response of the system, (6), and
so the rate of variation of the scheduling variable depends on the input and initial conditions of the state.  In general, the
dependence on the initial conditions becomes stronger as the displacement of the initial conditions from the locus of
equili brium operating points increases.

However, only the dependence of the rate of variation of the scheduling variable on the input is really inherent to
the nonlinear controller and for some choices of realisation the dependence on the initial conditions is weakened.
Consider the situation when the non-zero rows of ∇xρρ are row eigenvectors of A in (6).  Under these circumstances�

ρρ  = ∇xρρ Ax + ∇xρρ Br + ∇xρρ f(ρρ) + ∇rρρ r
�
= ΛΛρρ + ∇xρρ f(ρρ) + ∇xρρ Br - ΛΛ∇rρρ r+ ∇rρρ r

�
(22)

where ΛΛ is a diagonal matrix, the non-zero diagonal elements of which are eigenvalues of A.  A restriction on the rate of
variation of the scheduling variable, ρρ, imposes a restriction on the input, r, and the initial conditions of the scheduling
variable.  There are no restrictions on those linear combinations of the state which are linearly independent of the
scheduling variable.

Example Consider the non-linear controller�x   =  Ax + Br + f(x,r), y  =  Cx + Dr + g(x,r) (23)
where x=[x1  x2]

T and ρ = x1 with
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The transfer functions for the family of linear controllers, obtained by linearising the nonlinear controller, are
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and the dynamic behaviour of the scheduling variable, ρ, is described by
r)(f1 +ρ−=ρ

�
(26)


Of particular interest are those realisations, satisfying the extended local li near equivalence condition, for which the
scheduling variable depends solely on the input; that is, for which ∇xρρ is zero.  With these realisations, there are no
restrictions on the initial conditions of the state: a restriction is imposed by the extent, to which the dynamics vary over
the locus of equili brium operating points, on the class of inputs only and not on the initial conditions.  When the input is
constant, the scheduling variable is constant and the dynamics of the controller are purely linear.  The situation is
exactly analogous to the exogenously gain-scheduled controller, (1).

3.4 Equivalent families of linear controllers

In section 3.1, realisations satisfying the extended local li near equivalence conditions are defined with reference to
the form of the nonlinear controller.  Equivalently, they can be defined with respect to the form of the family of linear
controllers.

Associated with each family of linear controllers, (2), is the family of matrices
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where the dimension of ππ is q.  Consider the difference matrix between a fixed member of the family, ΣΣ(ππo), and any
other member, ΣΣ(ππ1).
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where S(ππ)∈ℜn×n is non-singular and corresponds to a state transformation with respect to which the dynamics of the
linear controller at ππ are unchanged.  Provided that the rank of all ∆∆(ππ1), for some S(ππ1), is q and, in addition, the rows

of all ∆∆(ππ1) belong to a q-dimensional sub-space of ℜ(n+p)×q, then there exists a f̂ (ππ) and ĝ (ππ) such that
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where [M  N] is a constant matrix, has rank q and spans the q-dimensional sub-space.  It follows that
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Assume ππ is related to the q-dimensional scheduling variable, ρρ, by the one-to-one mapping
ππ=h(ρρ) (31)

and that there exist solutions, f(ρρ) and g(ρρ), of, respectively,

  )),((ˆ)(     )),((ˆ)( ρρρρρρρρ ρρρρ hgghff =∇=∇ (32)

The latter assumption is satisfied when ∇ ∇ = ∇ ∇ ∇ ∇ = ∇ ∇ ∀ ≠ρ ρ ρ ρ ρ ρ ρ ρι j j i i j j i
i j� ( ) � ( ), � ( ) � ( ),f f g gρρ ρρ ρρ ρρ     , where ρi

denotes the i th element of ρρ. When the family of controllers is derived by smoothly interpolating between a finite
number of controller designs, this requirement is not restrictive.  The usual gain-scheduling design approach is to design
linear controllers for a number of distinct equili brium operating points spanning the operating envelope.  Moreover, the
dimension the scheduling variable, ρρ, is typically  quite small .  Hence, the condition, (32), is readily satisfied.  The
family of linear controllers, (2), can be realised by a nonlinear controller, (6), for which

ρρ = Mx + Nr (33)
provided that there exists, for all values of ρρ, a solution of
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such that (ro(ρρ1), yo(ρρ1)) ≠ (ro(ρρ2), yo(ρρ2)) when ρρ1 ≠ ρρ2.  Furthermore, the (xo(ρρ), yo(ρρ), ro(ρρ)) are the equilibrium
operating points of the nonlinear controller.

It should be noted that the existence of a solution of (34) does not depend on the choice of h(•) in (31). When the
matrix on the left-hand side of (34) is full rank, the existence of a solution regardless of the choice of h(•) is clear.
When the matrix is not full rank, a solution of (34) exists provided, for some constant matrices X, Y and Z, dependent
on A, B, C, D, M and N and not all zero,

Xf(ρρ) + Yg(ρρ) + Zρρ = 0 (35)
for all ρρ.  The initial conditions for (32) must be chosen such that (35) is satisfied for some ρρo; for example, choose
ρρo=0 and the initial conditions for (35) to be f(0) = g(0) = 0.  It follows that (35) is satisfied provided

X∇ρρf(ρρ) + Y∇ρρg(ρρ) + Z = 0 (36)
which is equivalent to

0)(ˆ)(ˆ =+π+π ZgYfX (37)

Since (37) and the choice of the initial conditions for (35) are independent of h(•), the existence of a solution of (34)
does not depend on the choice of h(•).  Different h(•) correspond to the different isomorphisms possible when defining
the scheduling variable.

Clearly, not all famili es of linear controllers, (2), can be realised by a nonlinear controller, (6), satisfying the
extended local li near equivalence condition.  Hence, extended local li near equivalence might appear to be a rather
strong condition.

3.5 Utility of realisations

Since extended local li near equivalence appears to be a rather strong condition, controllers satisfying it might be
expected to be of limited utility.  It is, therefore, necessary to determine whether requiring the gain-scheduled controller
to be a member of the class of nonlinear controllers, which satisfy the extended local li near equivalence condition, is
overly restrictive.

Consider a family of m-input single-output linear controllers.  The transfer function relating the output, y(t), and the
i th input, ri(t), is

          bi
1s

n + bi
2s

n-1 + ... + bi
ns + bi

n+1

Y(s)  =  d  Ri(s) (38)
        sn + a1s

n-1 + ... + an-1s + an

where Y(s) and Ri(s) are, respectively, the Laplace transforms of y(t) and ri(t), and it is assumed that
Y(s)/Ri(s) ≠ Y(s)/Rj(s) ∀ i ≠ j

The coeff icient, d, is superfluous and could be absorbed into the coefficients, bj
i, without loss of generali ty.

Accordingly, assuming d is unity, it is evident that each transfer function is completely specified by its n+1 numerator
coeff icients, bj

i, and n denominator coefficients, ai.  Since the m transfer functions have, without loss of generality, a
common denominator, the input-output characteristics of the nth order m-input single-output controllers are specified by
n+m(n+1) coeff icients in total.  A corresponding minimal state-space representation is
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where, owing to the particular choice of states, the transfer function coefficients appear in a straightforward manner in
the state-space matrices.  Of course any other, minimal, state-space representation satisfying the input-output
relationships, (38), may be derived from (39) by a suitable state transformation.

It follows from (7) that a family of linear controllers corresponding to a nonlinear controller satisfying the extended
local li near equivalence condition has, at most, q(n+1) degrees of freedom.  In all but the exceptional case when q=m+1
(note, q≤m+1),  q(n+1)<n+m(n+1) and not all of the coefficients of (38) can be freely assigned; that is, only a subset of
q(n+1) coeff icients in (38) can be scheduled independently (subject to satisfying (32)), with the remaining coefficients
either dependent on this subset or constant.  The identity of the constant coefficients, and the relationships between the
remainder, depend on the definition, in terms of linear combinations of the elements of the state and input, of ρρ.
Nevertheless, with few exceptions, all gain-scheduling requirements can be accommodated since, with the penalty of a
non-minimal realisation, the order, n, of the controller may be increased to provide an arbitrary degree of flexibili ty.  A
family of linear controllers, equivalent to the nonlinear controller satisfying the extended local li near equivalence
condition, may be constructed to approximate closely a family of previously designed, perhaps lower order, linear
controllers.  Alternatively, during synthesis, the linear controllers can be directly designed to have the required pattern
of coefficient scheduling dependence.

Example The family of linear controllers, designed for a wind turbine in Leith & Leithead (1996), consist of a fixed
component

K(s) = C(s)/s (40a)
where
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where π parameterises the equili brium operating points.  The choice of π is, of course, not unique.  Selecting π to be
related to the wind speed, V, by

π = -0.044V2+2.95V-24.97 (40d)
the value of π corresponds to the pitch angle of the turbine rotor blades, at the equili brium operating points, and

a1(π) = -0.033π2+0.750π+3.375,  a2(π) = 2.600π+58.040,  g(π) = 0.138π+0.298 (40e)
In (40c) all the poles vary with the operating point while the zeroes are constant.  Suppose it is required, instead, that

the zeroes vary while the poles are constant.  The family of linear controllers, (40), can be re-designed such that
K′(s)=C′(s)/s (41a)

where
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Selecting π′ to be related to the wind speed, V, by
π′= -0.0027V4+0.37V3-19.31V2+469.45V-3404.7 = -1.42π2+88.51π-311.72 (41d)

the value of π′ corresponds to the input to C′π(s), at the equili brium operating points, and
b1(π′) = 4.82x10-6π′2-1.15x10-3π′+1.042,  b2(π′) = 3.34x10-5π′2+1.68x10-3π′+13.57,  
b3(π′) = 2.78x10-4π′2+3.15x10-2π′+146.33,  b4(π′)=5.82x10-4π′2+0.37π′+676.16, (41e)
b5(π′)=1.38x10-3π′2+1.93π′+2295.00

The required scheduling of transfer function coefficients has been achieved.  As might be expected, in comparison to
the order of Cπ(s), the order of C′π(s) is increased from 2 to 4.  However, the overall order of the controller is not
increased since, in comparison to the order of C(s), the order of C′(s) is decreased from 10 to 8.  The Bode plots of the
two famili es of linear controllers, Cπ(s)C(s) and C′π(s)C′(s), are effectively indistinguishable at equivalent equili brium
operating points.

Although the normal motivation, in this context, for converting a family of linear controllers from one form to
another would be to change the family from one not satisfying the extended local li near equivalence condition to one
satisfying this condition, on this occasion both Cπ(s), with the scheduling variable its output, and C′π(s), with the
scheduling variable its input, are equivalent to nonlinear controllers satisfying the extended local li near equivalence
condition.  This example, thereby, also il lustrates the dependence, on the definition of the scheduling variable, of the



manner in which the linear controllers’ transfer function coefficients are related to the scheduling variable; that is, the
identity of the constant coefficients and the interdependence of the remainder. 


The above arguments can clearly be extended to the MIMO case.  Hence, in general, any restriction on the design of
gain-scheduled controllers, due to adopting a realisation satisfying the extended local li near equivalence condition, can
be expected to be rather weak.  The apparent strength of the extended local li near equivalence condition is deceptive,
albeit, at the expense of adopting realisations of, perhaps, non-minimal degree.

4 Practical realisations

In section 3, the properties of particular nonlinear controllers, namely those satisfying the extended local li near
equivalence condition, are investigated.  They are minimall y nonlinear but sufficiently flexible to act as realisations for
all gain-scheduled famili es of linear controllers.  However, several issues central to the practical design and realisation
of gain-scheduled controllers are not addressed: firstly, designing the family of linear controllers, for which the
coeff icients of the transfer functions are not independent of each other but must satisfy certain relationships;  secondly,
determining the nonlinear functions of the scheduling variable in the nonlinear controller, the partial derivatives of
which are related to the linear controllers’ transfer function coefficients; thirdly, ensuring that the controller input and
output have appropriate values at the equili brium operating points.  These issues are discussed below.

4.1 Separation of coefficients

The first issue, namely the interdependence of the linear controllers’ transfer function coefficients, is resolved by
separating a subset of the coefficients, all of which may be essentially freely scheduled, with the remaining coefficients
constant.  Although all of the  previously considered examples, having been chosen for simplicity and clarity, do
conform to this resolution of the interdependence of the linear controllers’ transfer function coefficients, it is clear from
(7) that, in general, the family of linear controllers need not.  Whether the separation of the coefficients occurs is
dependent on the definition of the scheduling variable.  It is suff icient to investigate m-input single-output controllers
since a general MIMO controller may be obtained by suitably combining several multiple-input single-output
controllers.

Consider the m-input single-output nonlinear controller realisation, depicted in figure 4
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for some functions Bj(•), j = 1, 2, ..n+1, where r = [ ]r r r
m

T

1 2
� .  Provided that the locus of equilibrium operating

points can be parameterised by the input, r, the controller, (42), has the form required by (6).  Hence, this controller
realisation satisfies the extended local li near equivalence condition with the scheduling variable simply the input, r.
Moreover, at any equili brium operating point, the linearisation of (42) and its transfer functions have the forms, (39)
and (38), respectively, with

b Bj
i

r j oi
= ∇ ( )r , i = 1, 2, .., m, j = 1, 2, .., n+1 (43)

Adoption of the controller realisation of figure 4 enables the extended local li near equivalence condition to be satisfied
for famili es of m-input single-output linear controllers, for which the controller zeroes are scheduled essentially
independently with respect to the input, r, but the controller poles are fixed.  Hence, the requirement to separate a subset
of coefficients, those of the numerators of the transfer functions in this realisation, all of which can be freely scheduled,
with the remaining coefficients, those of the denominator, constant, is met.  It should be noted that the linear controllers
associated with (42) have the maximum possible scheduling degrees of freedom, (n+1)q.

Alternatively, consider the m-input single-output nonlinear controller realisation, depicted in figure 5,
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for some functions G(•), B1(•) and Bj(•,•), j=2,3…n+1, where, �r [ ]m32 rrr �= T and z = x1+
1
1b r1+B1( �r ).

Provided that the locus of equili brium operating points can be parameterised by input, �r , together with the output, y,
then the controller, (44), has the form required by (6).  Hence, this controller realisation satisfies the extended local

linear equivalence condition with the scheduling variable (x1+
1
1b r1, �r T)T.  Moreover, at any equili brium operating

point, the linearisation of (44) and its transfer functions have the forms (39) and (38), respectively, with
aj = -∇zBj+1(zo, �r o),  j=1,2,..n, d=∇zG(zo);
b1

i= 
ir

∇ B1( �r o),  i=2,3,..m;    bj
i= 

ir
∇ Bj(zo, �r o), i=2,3,..m, j=2,..n+1 (45)

Without loss of generali ty, it may be assumed that the derivative of G(•) is either strictly positive or strictly negative.  It
follows that G(•) is monotonic and G-1(•) exists.  Hence, the nonlinear controller, (44), may be interpreted as being
scheduled on the output y, albeit implicitly, and the elements of the input, r2, … rm.

Adoption of the controller realisation of figure 5 enables the extended local li near equivalence condition to be
satisfied for families of m-input single-output linear controllers, for which the controller poles are scheduled essentiall y
independently with respect to the output, y, and the elements of the input, r2, … rm.  In addition, other than the transfer
function relating r1 to y, for which the zeroes are fixed, the zeroes of the transfer functions relating the inputs
individually to the output are also scheduled essentiall y independently with respect to the output, y, and the elements of
the input, r2, … rm.  Hence, the requirement to separate a subset of coefficients, all of which can be essentially freely
scheduled with the remaining coefficients constant, is met for this realisation, with the subset consisting of all the
transfer function coefficients except those of the numerator of the transfer function relating r1 to y.  The linear
controllers associated with (44) have the maximum possible scheduling degrees of freedom, (n+1)q.  However, only nq
coeff icients are scheduled with respect to both y and, r2, … rm with (q-1) coefficients, namely b1

i, i=2,…m, scheduled
with respect to r2, … rm alone and one coefficient, namely d, scheduled with respect to y alone.

The realisation, (44), is equivalent, in a SISO context, to the realisation satisfying the extended local li near
equivalence condition described in Leith & Leithead (1996).

Example With reference to the wind turbine controllers described in the Example in section 3.5, the transfer function
numerator coefficients of the family of linear controllers, (41b), are scheduled whilst the denominator coeff icients are
constant.  It is appropriate, therefore, to identify the controllers, (41b) with the realisation, (42), specialised to a SISO
system.  In other words, the scheduling variable can be identified as the input to the nonlinear controller equivalent to
the C′π(s), namely, r, and the nonlinear controller, denoted C′π, satisfying the extended local li near equivalence
condition, is
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where
B1(r) = 1.60x10-6r3-5.75x10-4r2+1.042r,  B2(r) = 1.11x10-5r3+8.40x10-4r2+13.57r,
B3(r) = 9.27x10-5r3+1.57x10-2r2+146.33r,  B4(r)=1.94x10-4r3+0.18r2+676.16r, (46b)
B5(r)=4.6x10-4r3+0.96r2+2295.00r

On the other hand, the transfer function denominator coefficients, together with the overall gain, of the family of
linear controllers, (40b), are scheduled whilst the numerator coeff icients are constant.  It is appropriate, therefore, to
identify the controller, (40b) with the realisation, (44), specialised to a SISO system.  In other words, the scheduling
variable can be identified as the output from the nonlinear controller equivalent to the Cπ(s), namely y, and the
nonlinear controller, denoted Cπ, satisfying the extended local li near equivalence condition, is
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where
z = x1+0.00147r,    G(z) = 2.159(e0.138z-1)
B2(z)= -0.557e0.276z+13.96e0.138z+1.602z, B3(z)= 40.67e0.138z+52.42z (47b)

Notice that whilst the transfer function coefficients of the linear family, (40b), are parameterised by the controller
output, the associated nonlinear functions employed in the realisation, (47), are expressed in terms of z.  The realisation
is explicitly scheduled with respect to z but, since G(z) is invertible, implicitly scheduled with respect to the output, y.�

The dependence of the form of the family of linear controllers on the definition of the scheduling variable is very
evident in the foregoing.  It is not difficult to devise other realisations, corresponding to different definitions of the
scheduling variable, which achieve the separation of scheduling dependent coeff icients in other ways; for example, the



Example of section 3.3.  When, as in section 3.4, the members of the family of linear controllers are defined in general
state-space form, their equivalence to a nonlinear controller satisfying the extended local li near equivalence condition is
not obvious.  In contrast, when, as above, the members are defined in transfer function form or, equivalently, in a
canonical state-space form which is explicitly parameterised by the transfer function coefficients, their equivalence is
obvious due to the strong correspondence between the forms of the nonlinear controller and the members of the family
of linear controllers.  In particular, their equivalence and the appropriate definition of the scheduling variable are easily
identified for those famili es exhibiting separation of the scheduling dependent coefficients.  This ease of identification
greatly assists the design of linear controllers to be realised as a gain-scheduled nonlinear controller satisfying the
extended local li near equivalence condition for a particular definition of the scheduling variable.  Conversely, it is clear
that the realisation of the gain-scheduled controller can be facilitated by the judicious choice of an appropriate
scheduling variable.

In general, there are many linear combinations of the elements of (xo, yo, ro), which parameterise the equili brium
operating points; that is, there are many possible choices of scheduling variable.  Choosing the scheduling variable, as
above, to facilit ate the realisation of the nonlinear gain-scheduled controller might appear to conflict with the more
usual approach of choosing the scheduling variable on the basis of physical insight whereby some combinations of the
elements of the input, state and output, representing the variables with respect to which the plant dynamics or the
control objectives (see Leith & Leithead 1996) vary, are chosen.  For the wind turbine of the Example in section 3.5, the
controller would ideally be scheduled with respect to the wind speed.  Unfortunately, a measurement of the wind speed
experienced by the turbine is impossible (Leith & Leithead 1996).  However, provided the controller is effective, the
pitch angle of the rotor blades acts as a good estimate of the wind speed.  Moreover, since the bandwidth of the blade
pitch actuator is, typically, large in comparison to the bandwidth of the closed-loop controlled system, the pitch demand
to the actuator, i.e. the controller output, also acts as a good estimate of the wind speed.  Accordingly, a suitable
controller for the wind turbine is K(s)Cπ, with K(s) positioned before Cπ, and Cπ realised as (47) so that the scheduling
variable is the output of the controller.  Nevertheless, it is only the rate of variation of scheduling that really matters and
any scheduling variable, the spectra of which has similar bandwidth, would be equally suitable.  For the wind turbine,
by design, the input and output of the C′π(s) have similar bandwidths.  Hence, an equally suitable controller is K′(s)C′π,
with K′(s) positioned before C′π, and C′π realised as (46).  Consequently, there is no conflict between choosing the
scheduling variable to facilit ate the realisation of the nonlinear gain-scheduling controller and choosing it on the basis
of physical insight.

4.1.1 Utility revisited

Taking into account the number of transfer function coefficients that can be freely scheduled (namely, m(n+1) out of
n+m(n+1) for the realisations investigated above), the range of possible choices of the scheduling variable
(equivalently, the forms of the family of linear controllers) and the abili ty to design/re-design linear controllers to have
a specific form (see Example in section 3.5), then, even when restricted to those achieving separation of the scheduling
dependent coefficients, the flexibili ty of realisations satisfying the extended local li near equivalence condition is
apparent.  Clearly, it is possible to realise, with few exceptions, all gain-scheduled controllers as nonlinear controllers
satisfying the extended local li near equivalence condition and requiring the controller to be so realised is not at all
restrictive.

4.2 Velocity-based realisations

The second issue, namely the requirement to determine the nonlinear functions of the scheduling variable in the
nonlinear controller, is resolved by adopting realisations for which linear controllers are obtained by “ freezing” the
scheduling variable at its current value.  Implicitly, this procedure requires the nonlinear controller to be linearised at
any operating point, for which the value of the scheduling variable is within its domain, and not just at the equili brium
operating points.  However, this is possible for nonlinear controllers satisfying the extended local li near equivalence
condition as discussed in section 3.1.2.

The nonlinear controller, (6), can be reformulated, by differentiating, as
w

�
 = (A+∇ρρf(ρρ)∇xρρ)w + (B+∇ρρf(ρρ)∇rρρ) r

�
(48a)

y
�
 = (C+∇ρρg(ρρ)∇xρρ)w + (D+∇ρρg(ρρ)∇rρρ) r

�
(48b)

r w rx
��

  ρ∇+ρ∇=ρ (48c)

where w = x
�

.  Dynamicall y, (48), with appropriate initial conditions, namely,
w(0) = Ax(0) + Br(0) + f(ρρ(0)), ρρ(0) = ∇xρρ x(0)+ ∇rρρ r(0) (49)

and (6) are equivalent.  Indeed, when
w = Ax + Br + f(ρρ) (50a)
y = Cx + Dr + g(ρρ) (50b)



is invertible such that x may be expressed as a function of w, r and y, this reformulation is equivalent to an algebraic
state transformation ((48c) can then be replaced by a direct evaluation of ρρ).  Provided that r

�
, required as the input, and

perhaps r, when required by the scheduling variable, are available and provided that any unwanted constant
displacement of the state or output, due to the differentiation of the input followed by the integration to determine the
output from y

�
, is avoided, then (48) is a viable alternative representation for (6).  Comparing the linear controller,

obtained by setting ρρ to ρρo in (48), to the linear controller, (7), it is evident that the transfer functions relating y to r are
the same.  Hence, for the velocity-based realisation, (48), the linear controllers are obtained by simply “ freezing” the
scheduling variable as required.

The equivalent velocity-based realisation for the realisation, (42), depicted in figure 6 with ββi(r)= [ ])(b)(b m
i

1
i rr � ,

i=1, ..n+1, is
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where

)(B)(b jr
i
j i

rr ∇= ,  i = 1, 2, .., m,  j = 1, 2, .., n+1 (51c)

When an is non-zero, this reformulation is equivalent to an algebraic nonlinear state transformation.  The strong
correspondence to the “frozen” scheduling variable linear controllers is evident from comparing (51) to (39).

The equivalent velocity-based representation, for the realisation, (44), depicted in figure 7 with
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where

aj(y, r̂ ) = -∇zBj+1(G
-1(y), r̂ ),  j = 1,2, ..,n; )ˆ(B)ˆ(b 1r

i
1 i

rr ∇= , i = 2,3,…m;

)ˆ),y(G(B)ˆ,y(b 1
jr

i
j i

rr −∇= , i=2,3,..m, j=1,2,..n;  d(y) = ∇zG(G-1(y)) (52c)

When Bn+1(•, r̂ ) is invertible for all r̂ , this representation is equivalent to an algebraic nonlinear state transformation of
(44).  The scheduling with respect to the output is no longer implicit but is now explicit by virtue of the invertibilit y of
G(•).  The strong correspondence to the “ frozen” scheduling variable linear controllers is again evident from comparing
(52) to (39).



Example Returning to the wind turbine Example in section 3.5, the first realisation, (46), can be recast as the velocity-
based realisation,
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where
b1(r) = 4.82x10-6r2-1.15x10-3r+1.042,  b2(r) = 3.34x10-5r2+1.68x10-3r+13.57,  
b3(r) = 2.78x10-4r2+3.15x10-2r+146.33,  b4(r)=5.82x10-4r2+0.37r+676.16, (53b)
b5(r)=1.38x10-3r2+1.93r+2295.00

Similarly, the second realisation, (48), can be recast as
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where
a1(y) = -0.033y2+0.750y+3.375,  a2(y) = 2.600y+58.040,  d(y) = 0.138y+0.298 (54b)

The correspondence to the original families of linear controllers, (41) and (40) respectively, is clear; in particular,
compare (53b) to (41e) and (54b) to (40e). �

Whilst, in general, the reformulation to velocity-based realisations increases the controller order, the realisations of
figures 5 and 6 have the distinct advantage of being directly related to the members of the family of linear controllers.
The associated family of linear controllers for the realisation, (51), now consists simply of (39) or, equivalently, the
transfer functions, (38), with d=1 and b bj

i
j
i= ( )ro , i = 1, 2, .., m; j = 1, 2, .., n+1.  The associated family for the

realisation, (52), consists of (39) or, equivalently, (38), with d=d(yo), aj=aj(yo, r̂ o), 
i
1b = i

1b ( r̂ o), )ˆ,y(bb o
i

1j
i

1j or++ = ,

i=2,..m,j=1,..n.

4.3 Integral Action

The third issue, namely reconciling the equili brium values of the controller input and output, is resolved by
including integral action in the controller.  As noted in section 2.2, y is an input to the plant and r is an output from the
plant, the values of which, at an equilibrium operating point of the plant, are (ro(ππ), yo(ππ)) with ro(ππ) dependent on yo(ππ)
via the plant.  However, since r is the controller input and y is the controller output, (ro(ππ), yo(ππ)) must also be an
equili brium operating point of the controller with yo(ππ) dependent on ro(ππ) via the controller.  Requiring consistency
imposes, in general, a strong restriction on the allowable nonlinear controllers.

Fortunately, the control design task can usuall y be defined such that the controller acts upon an error which is,
typically, required to be zero or small when in equilibrium.  Since, in order to meet performance requirements,
controllers often possess integral action, which ensures that the input must be zero in equili brium, the former case is
frequently encountered.  In the latter case, the lack of precision in defining what is meant by small frequently enables
the equili brium value of the input, r, to be redefined to be zero; that is, the change induced in the equilibrium operating
point by this redefinition is typicall y sufficiently small that it is immaterial.  When the input to the controller is zero in
equili brium, the yo(ππ) are no longer dependent on the ro(ππ), but can have any value.  Hence, the consistency
requirement on the equili brium values of the input and output of the controller is not restrictive (Shamma 1988, in a
rather more restricted context, make a similar observation regarding the role of integral action in gain-scheduled
controllers).

4.3.1Velocity-based realisations revisited

It is noted in section 4.2 that, for a velocity-based realisation to be viable, any unwanted constant displacement of
the state or output, due to the differentiation of the input followed by the integration to determine the output from y

�
,

must be avoided.  This can, also, be achieved by the inclusion of integral action in the controller.
Consider the simple nonlinear controller consisting of a single nonlinear gain together with integral action as

depicted in figure 8a.  The nonlinear component
y = G(r) (55)



itself constitutes a nonlinear controller satisfying the extended local li near equivalence condition.  The scheduling
variable can be considered to be either the input, r, or, when the inverse of G(•) exists, implicitly the output, y.
Positioning the integrator before the nonlinear gain immediately makes both r

�
 and r available.  The nonlinear

controller, with r as the scheduling variable, can be recast as the velocity-based realisation, depicted in figure 8b,
r)r(Gy
�� ∇= (56)

The nonlinear controller, with y as the scheduling variable, can be recast as the velocity-based realisation, depicted in
figure 8c,

))y(G(G  g(y)      ,r)y(gy -1∇== �� (57)

In both figures 8b and 8c, the differentiation and integration, associated with the velocity-based realisation, do not
appear explicitly but merely cause a repositioning of the pure integrator from before to after the nonlinear element.
Note that in the realisation, (56), the scheduling variable, r, must be determined by integrating r

�
, but in the realisation,

(57), the scheduling variable, y, is directly available.  Since the closed-loop system is stable, any error in the initial
condition for y rapidly evolves out.  The realisation, depicted in figure 8c, is a rather simple and effective means of
realising a system consisting of a single nonlinear gain together with integral action.  It is widely applicable; for
example, in wind turbine control to cater for the variation in the aerodynamics with wind speed, see Leithead et al.
(1992).  (A somewhat more rigorous explanation for the remarkable effectiveness of this approach to scheduling the
controller, when applied to wind turbines, is presented in Leith & Leithead (1997b)).

The reason for adopting the velocity-based realisations is to avoid having to determine the nonlinear functions of the
scheduling variable in the nonlinear controller from the relationships of their partial derivatives to the linear controllers’
transfer function coefficients.  Unfortunately, with the introduction of integral action, the velocity-based realisation no
longer resolves this issue since the equili brium operating points cannot be parameterised by the input, ro.  Consider the
simple nonlinear controller, (55), without integral action and its velocity-based realisation with the scheduling variable
r, (56).  The equili brium operating points, (ro, yo), may be parameterised by ro or yo.  Hence, when designing the linear
controllers (the gains) at the equilibrium operating points, it is possible to directly parameterise them by ro and so to
directly determine ∇G(r).  However, when integral action is included and initially positioned, as above, before the
nonlinear element, the equili brium values of the input, ro, are no longer related to the plant input but are related to the
controller output, yo, via the nonlinear controller itself.  Hence, when designing the linear controllers, it is not possible
to directly parameterise the gains by ro.  Instead, the gains must first be parameterised by yo, say gyo.  From (55) and
(57), it then follows that

∇G(r) = g(G(r)) (58)
with

G-1(ρ)= ∫ρ
o ds

)s(g

1
, g(s) = gs (59)

and integration of the coefficients, in this case the inverse of the gain, cannot be avoided.
Of course, the two realisations, (42)/(51) and (44)/(52), can be treated in a similar manner to the above simple

nonlinear controller consisting of a single nonlinear gain together with integral action.  Adoption of the velocity-based
realisations, (51) and (52), merely causes the repositioning of the integral action from before to after the nonlinear
controller.  Except for realisation (52), when specialised to the SISO case, the scheduling variable still requires to be
determined by integrating r

�
 and the inverses of the controller gains still require to be integrated to obtain a direct

parameterisation of the linear controllers in terms of the input, r.

Example Returning to the wind turbine Example in section 3.5, the fixed component, K(s) or K′(s), which is positioned
before the gain-scheduled component, Cπ or Cπ′, includes integral action.  Hence, the first velocity-based realisation,
(53), can be reformulated as depicted in figure 9a with the coefficients bi(r) i=1,..5, defined by (53b).  The
parameterisation of the bi(r), (53b), and equivalently the bi(π), (41e), are obtained by a similar procedure to that
described above for the simple nonlinear controller consisting of a nonlinear gain together with integral action.  The
relationship between the ro and yo is ro=-1.42yo

2+88.51yo-311.72.  The scheduling variable, r, is obtained by integrating
r
�
.  A stable weak feedback from the controller output is employed to ensure that any error in the initial condition for r

evolves out.
The second velocity-based realisation, (54), can be reformulated as depicted in figure 9b, with the coefficients a1(y),

a2(y) and d(y) defined by (54b).  This realisation is the one reported in Leith & Leithead (1996).  Both of these
realisations, figure 9a and figure 9b, have been implemented on a detailed non-linear simulation of the wind turbine and
their performance assessed: they are found to be equally effective. �

It is well known empirically, although rarely reported in the literature (Lawrence & Rugh 1995), that it is beneficial,
where possible, to position a pure integrator at the output of a gain-scheduled controller.  The foregoing discussion
provides analytic support for this heuristic rule.



4.4 Direct realisations

In sections 4.1-4.3, several issues related to the practical design of nonlinear controllers satisfying the extended local
linear equivalence conditions are investigated and various ways of resolving them determined.  Of course, in any
particular application, the most appropriate methods for the context should be adopted.  However, a realisation which
automatically resolves all of these issues would be useful.  Just such a realisation for MIMO controllers is developed
below.

The general structure of the realisation is depicted in figure 10a.  The components Cpo and Cpr are fixed, with all of
the scheduled components in Cρ, and the controller is assumed to include integral action positioned as shown explicitly
in figure 10a.  Without loss of generality, Cpo and Cρ are assumed square; that is, any non-squareness is incorporated
into Cpr.  Because the input to the controller is zero at the equili brium operating points, the maximum number of
scheduling variables which can be accommodated by the realisation of figure 10a is p, the degree of the output; that is,
the degree of y since Cpo is square.  The component Cpo is chosen such that the parameterisation of the equili brium
operating points by the elements of y is compatible, in as natural a manner as possible, with the scheduling
requirements.  Any necessary non-singular transformation of the outputs is incorporated into Cpo.

A further requirement on the assignment of components of the controller to Cpr and Cpo is to ensure that, as
discussed in section 4.1, the spectra of the scheduling variable has suitable bandwidth.  For the wind turbine Example in
section 3.5, it is appropriate to schedule the controller with respect to the pitch angle of the rotor blades.  When the
bandwidth of the actuator is large, a suitable alternative to the pitch angle is the pitch demand to the actuator; that is, the
controller output.  However, for some wind turbines, particularly large-scale machines, the bandwidth of the actuator
can be very low (see, for example, Leith & Leithead 1997b and the references therein).  Consequently, the rate of
variation of the pitch demand can be significantly faster than the pitch angle itself.  The remedy, adopted in Leith &
Leithead (1997b) (albeit, more rigorously justified), is to choose Cpo to be an inverse or pseudo-inverse, A-1, of the
actuator dynamics.  When this remedy is applied to the simple controller of figure 8c, it is amended as shown in figure
8d.  The integral action is exploited by permitting A-1 to be a simple lead term, with transfer function (s+b)/b, since their
combined transfer function is proper.

The nonlinear component, Cρ, of the controller is scheduled with respect to the input, r.  With this choice of
scheduling variable, the realisation, satisfying the extended local li near equivalence condition, for Cρ and the
corresponding family of linear controllers have the most convenient form, see section 4.1, and the restrictions on the
class of valid inputs and initial conditions is reduced to an absolute minimum, see section 3.3.  Interpreting Cρ to consist
of p multi-input single-output nonlinear controllers, the realisation for each conforms to that of figure 4.

For each of the p multi-input single-output nonlinear controllers, let the variable, z, be the scalar function, Bn+1(r), of
the input, r.  To distinguish this relationship for the different multi-input single-output controllers, an index k is used;
for the controller relating r to the kth element of y, zk=Bk

n+1(r).  Let z be the vector whose elements are the zk, and B(r)
be the vector whose elements are the Bk

n+1(r), then
z = B(r) (60)

Assume that the inverse, B-1(•), of B(•) exists.  The controller of figure 10a can then be reformulated as shown in figure
10b.  The nonlinear controller, C*

ρ, consists of p multi-input single-output nonlinear controllers with the realisation
depicted in figure 11, where, for the kth multi-input single-output nonlinear controller, c is the vector for which the kth

element is unity, all other elements being zero, and ))(()(ˆ 1 •=• −Bk
ii BB , i=1,..n.  It should noted that, due to the

definition of B(•), the elements of z are equal to the scaled elements of y (by the an) at an equilibrium operating point.
The equivalent velocity-based realisation for the multi-input single–output nonlinear controller of figure 11 is (51)

with the coefficients defined by

)(B̂)(b jz
i
j zz

i
∇= ,  i=1,..m, j=1,..n, bi

n+1=ci, i=1,..,m (61)

where ci is the i th element of c.  This realisation is depicted in figure 12, which corresponds to figure 6, with

 )](b   ...   )(b[)(ˆ m
i

1
i� zzz =ββ , i=1,..n.  In figure 12, the feedback loops have all been shifted one integration to the right.

It should be noted that z is available internally to the realisation depicted in figure 12 and, therefore, only z�  is needed
as an input to Cρ

*.  Since the closed-loop system would be stable, any error in the initial conditions for the integration of
z
�

 rapidly evolves out.
The nonlinear controller, consisting of the function, B(•), together with the integral action, can also be reformulated

in a similar manner to the simple scalar case considered in section 4.3 as the velocity-based realisation depicted in

figure 13, where ))]((B[)](B̂[)(ˆ
irij j

zBzzB 1−∇== .  Since z is not required as an input to Cρ
*, the integral action in the

velocity-based realisation can be omitted  when the complete controller has the realisation depicted in figure 11c, Cρ
*

being realised as in figure 12.  Moreover, since z has been chosen so that, at an equili brium operating point, the



elements of z and y are related by simple scaling factors, the equili brium operating points, and so the family of linear
controllers, may be parameterised equally well by z or y.

A practical procedure, based on the foregoing (with minor modifications so that the parameterisations of the
equili brium operating points with respect to y and z are identical), for the design of MIMO gain-scheduled controllers is
as follows.  Design a family of linear controllers, parameterised by the output, y, such that the denominator coeff icients
of all the elements in a row of the transfer function matrix, G(s), are the same and fixed, but the numerator coeff icients
may vary essentially independently.  For each member of the family, determine the two matrices, G(0) and
H(s)=G(s)G-1(0).  H(s) is implemented directly as p multi-input single-output nonlinear controllers realised as in figure
12, with the unity element of c changed to an and the bj

i(z) the numerator coefficients of H(s) parameterised with respect

to z.  G(0) is implemented directly as the gain matrix, )(ˆ zB , of figure 10c, with the elements of )(ˆ zB identical to the

elements of G(0) parameterised with respect to z.

Example Returning to the wind turbine Example in section 3.5, the family of linear controllers (41b), Cπ′(s), re-
parameterised in terms of π, the equili brium value of the pitch angle of the turbine rotor blades (equivalently, the
controller output), is

C′
204000s26150s3818s8.135s

)(bs)(bs)(bs)(bs)(b
 = s)(

234
54

2
3

3
2

4
1

++++
π+π+π+π+π

π (62a)

where
b1(π) = 0.0119π2-0.0863π+1.128,  b2(π) = 0.0666π2+0.307π+10.923,  
b3(π) = 0.532π2+4.010π+119.269,  b4(π)=62.543π+418.033, b5(π)=180.49π+1591.50 (62b)

Hence,
C′π(0) = b5(π)/204000 (63)

C′π(s)/C′π(0)
204000s26150s3818s8.135s

204000s)(b̂s)(b̂s)(b̂s)(b̂
234

4
2

3
3

2
4

1

++++
+π+π+π+π

= (64a)

with  

b̂ i(π)=204000bi(π)/b5(π),  i=1,2,3,4 (64b)
Following the above procedure, the realisation of the gain-scheduled nonlinear controller is that shown in figure 14.
Note, that the varying coefficients employed in the nonlinear realisation are related directly to the corresponding
coeff icients of the linear family, (64); in fact, they are identical, attaining the value of the coefficients at the equili brium
operating point currently indicated by the value of the scheduling variable.

5. Conclusions

In this paper, the extended local li near equivalence condition of Leith & Leithead (1996) is extended to encompass
MIMO gain-scheduled nonlinear controllers.  The extended local li near equivalence condition minimises the controller
nonlinearity and, thereby, maximises the class of inputs and initial conditions for which the dynamic properties of the
gain-scheduled nonlinear controller are similar to those of the members of the family of linear controllers on which it is
based.  Indeed, when the controller satisfies the extended local li near equivalence condition and the scheduling variable
is selected to be the input to the gain-scheduled controller, there is no restriction on the initial conditions and the
situation is exactly analogous to the linear time-varying case.  The class of allowable inputs and initial conditions is, in
particular, considerably greater than when the local l inear equivalence condition of Lawrence & Rugh (1995) at
equili brium operating points alone is satisfied.

Although the dynamic behaviour of the nonlinear controller must, as usual, be confirmed by analysis and/or
simulation, the extended local li near equivalence condition does facil itate the design of gain-scheduled controllers by
providing strong guidance to the most effective way of realising the controller.  Several different classes of realisations,
satisfying the extended local li near equivalence condition, are investigated and it is determined that the issues central to
the practical design of gain-scheduled controllers can be resolved by these realisations.  The design of the gain-
scheduled nonlinear controllers is facil itated by several realisations for which linear controllers are obtained by
“ freezing” the scheduling variable at its current value; that is, the varying coefficients of the nonlinear controller
correspond precisely to the coefficients of the linear family, parameterised by the scheduling variable, on which the
gain-scheduled design is based.  Integral action has an important role in these direct realisations.  In addition, it permits
the equili brium relationships, imposed by the plant, between the controller input and output to be accommodated in an
elegant manner.  The analysis, therefore, provides analytic support for the benefits, previously observed in practice, of
including integral action in a gain-scheduled controller.

Whilst extended local li near equivalence might appear to be a rather strong condition, it is shown that it is possible
to realise, with few exceptions, all gain-scheduled controllers as nonlinear controllers satisfying the extended local
linear equivalence condition and requiring the controller to be so realised is not at all restrictive.
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Figure 1 Nominal neighbourhoods for system satisfying the local l inear equivalence condition.

Figure 2 Nominal neighbourhoods for system satisfying the extended local li near equivalence condition.

Figure 3 Different realisations of Example controller.

Figure 4 Realisation of m-input single-output controller, satisfying extended local li near equivalence condition,
scheduled on input, r.

Figure 5 Realisation of m-input single-output controller, satisfying extended local li near equivalence condition,
scheduled on m-1 elements, �r , of the inputs and implicitly on the output, y.

Figure 6 Velocity-based realisation of m-input single-output controller, satisfying extended local li near equivalence
condition, scheduled on input,. r.

Figure 7 Velocity-based realisation of m-input single-output controller, satisfying extended local li near equivalence
condition, scheduled on m-1 elements, �r , of the inputs and explicitly on the output, y.

Figure 8 Nonlinear controller realisations for family of linear controllers consisting simply of a varying gain together
with integral action.

Figure 9 Velocity-based realisation for wind turbine controller example.

Figure 10 MIMO nonlinear controller realisations

Figure 11 Multi-input single-output controller realisation corresponding to C*
ρ  in figure 11b

Figure 12 Velocity-based realisation of multi-input single-output controller of figure 12.

Figure 13 Velocity-based realisation corresponding to B(r) in figure 11b.

Figure 14 Direct realisation of wind turbine controller example.
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