Measures, Metrics and Meters: Some Mathematical Aspects of Privacy Interdisciplinary Workshop on Privacy Maynooth University Hamilton Institute

Ollie Mason Work with Naoise Holohan & Doug Leith

September 29th, 2014

Talk Outline

2 Monotone Classes and Differential Privacy

< E.

Databases, Queries and Outputs

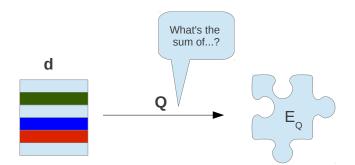
Databases

- Data entries belong to a set *D* (contained in some larger set *U*).
- Database $\mathbf{d} = (d_1, \ldots, d_n)$ in D^n .
- Each entry in , d_i corresponds to one *member* or *row*.

Queries and Outputs

- The answers/outputs of a query Q take values in some set E_Q.
- Q maps from Dⁿ to E_Q. If **d** is the database, the correct query response is Q(**d**).

Databases and Queries



- - E + - E +

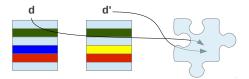
э

Databases, Queries and Privacy

- GENERAL AIM: Answer queries *accurately* without compromising *individual* privacy.
- A popular approach is to appropriately "*perturb*" the correct response to *a given query* on *a given database*.
- Not a new problem: Approaches developed in context of statistical disclosure control go back decades survey article by Adam and Wortmann (1989).

Differential Privacy

- Introduced by C. Dwork in 2006 following on from earlier work by Dinur, Nissim and others (blatant non-privacy).
- CORE IDEA: If *one member* changes their entry, this does not have a "large impact" on the response to the query.



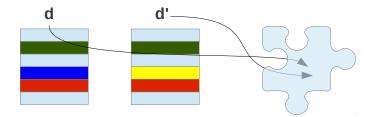
Differential Privacy

A lot of work done on different aspects:

- algorithms (eigenvalue, singular value decompositions);
- theory (lower bounds on error, optimal mechanisms, statistical implications);
- applications (Recommender Systems, Network Data).
- Focus is typically on data of some specific type and/or a particular problem.

Differential Privacy

One change doesn't make a significant difference.



Differential Privacy in the Abstract

Advantages of taking an abstract view:

- Provides a uniform framework within which to discuss different mechanisms.
- Allows different data types to be handled in a uniform way.
- Results can be widely applied.
- Identifies precisely what is needed.
- Simplifies proofs in some instances.

Differential Privacy

- To talk about randomness or probability, we need a *Probability Space* (Ω, F, P).
- At a minimum we need to equip the data spaces U, U^n (and naturally D, D^n), output space E_Q with measure structures.
- Denote by \mathcal{A}^n , \mathcal{A}_Q the σ -algebras on U^n , E_Q .

Differential Privacy

- Given a query Q on a database , a mechanism generates a "random" response in E_Q .
- The "randomness" comes in via our probability space Ω.
- Mechanism is defined as a family of *measurable* maps X_{Q,d} from Ω to E_Q; we have one mapping for each d, Q.
- $\mathbf{d} \sim \mathbf{d}'$ if they differ in exactly 1 entry.

Differential Privacy

Given $\epsilon > 0$, $\delta \ge 0$, the mechanism is (ϵ, δ) differentially private (DP) if

Differential Privacy

$$\mathbb{P}(X_{Q,\mathbf{d}} \in A) \leq e^{\epsilon} \mathbf{P}(X_{Q,\mathbf{d}'} \in A) + \delta$$

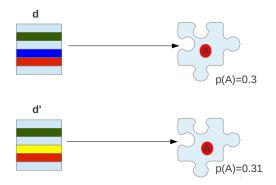
for all $\mathbf{d} \sim \mathbf{d}'$ and all $A \in \mathcal{A}_Q$.

If we set $\delta=$ 0, we obtain the definition of relaxed differential privacy.

伺 ト く ヨ ト く ヨ ト

Differential Privacy

A change in one entry of **d** doesn't make a big difference to the probability of the mechanism response being in A(p(A)).



Ollie Mason Work with Naoise Holohan & Doug Leith Measures, Metrics and Meters: Some Mathematical Aspects of P

Output Perturbations

Basic Idea

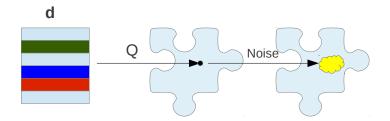
Randomise the correct response to each query - usually by adding noise.

Popular approaches for real-valued data include:

- Laplacian Noise;
- Gaussian Noise

Output Perturbations

First answer the query, then perturb.



Output Perturbations - Formal Description

- For each $q \in E_Q$, $Y_q : \Omega \to E_Q$ E_Q -valued random variable.
- If $L(\omega)$ is a Laplacian Random Variable, $Y_q(\omega) = q + L(\omega)$.
- For a query Q and database d:

$$X_{Q,\mathbf{d}} := Y_{Q(\mathbf{d})}.$$

We do not need to assume any algebraic structure on E_Q .

伺 ト く ヨ ト く ヨ ト

Sanitised Response Mechanisms

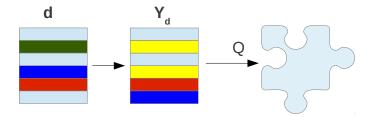
Basic Idea

Perturb the database *once* and then answer queries on perturbed/sanitised database.

- Repeating the same query will always generate the same response.
- Intuition: Worst case is releasing the database privately.

Sanitised Response Mechanisms

First perturb the database, then answer the query.



Sanitised Response Mechanisms - Formal Description

- For each **d** in D^n , $Z_d : \Omega \to D^n D^n$ valued Random Variable
- Z_d represents the *sanitised* database.
- For any query Q, and database **d**

$$X_{Q,\mathbf{d}} := Q(Z_{\mathbf{d}}).$$

Sanitisations correspond to answering the identity query: $I: D^n \rightarrow D^n - (I(\mathbf{d}) = \mathbf{d}).$

伺下 イヨト イヨト

Differential Privacy and the Identity Query

The formal setup matches the intuition (phew!)

Differential Privacy for Sanitised Response Mechanisms

If the sanitisation Z_d is (ϵ, δ) differentially private then the sanitised response mechanism $Q(Z_d)$ is (ϵ, δ) differentially private for any measurable query Q.

- In the abstract setting, the argument for this is extremely simple.
- The output space E_Q could consist of sequences in theory, we can answer an unlimited number of queries in a differentially private manner.

(4月) (4日) (4日)

Sanitised Response and Output Perturbation

• Ask the same query k times: this can be modelled as a single query

$$Q^{(k)}(\mathbf{d}) = (Q(\mathbf{d}), \ldots, Q(\mathbf{d})).$$

• Result for sanitised response mechanisms guarantees that if the sanitisation is differentially private then so is the response to $Q^{(k)}$ (for any k)

Sanitised Response and Output Perturbation

In contrast, we can construct a binary-valued query and an output perturbation mechanism such that:

- the mechanism is differentially private for the query asked once;
- it violates differential privacy if the query is asked twice.

Differential Privacy and Monotone Classes

Abstract observation:

Monotonicity for Increasing Unions

If the differential privacy (DP) inequality holds for a seqence of sets M_1, M_2, \ldots with $M_1 \subseteq M_2 \subseteq \ldots$ then it also holds for $M = \bigcup_i M_i$.

Monotonicity for Decreasing Intersections

Similarly, if the DP inequality holds for a sequnce of sets M_1, M_2, \ldots with $M_1 \supseteq M_2 \supseteq \ldots$ then it also holds for $M = \bigcap_i M_i$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Verifying Differential Privacy

Formally, a mechanism is required to satisfy the DP inequality on all sets in the $\sigma\text{-algebra}.$

Algebra is Sufficient

If the DP inequality holds for all sets belonging to an algebra that generates \mathcal{A}_Q (often a significantly smaller collection of sets), then it holds on \mathcal{A}_Q .

For instance, for real-valued queries it is enough to verify the inequality on finite (rather than countable) unions and intersections of intervals.

周 ト イ ヨ ト イ ヨ ト

Differential Privacy and Functional Data

- Query Q takes values in $E_Q = C([0, 1])$
- Can represent time-courses, continuous measurements for example.
- C([0, 1]) equipped with Borel σ-algebra (where the topology is that given by the sup norm).
- Given a positive integer k and real numbers $0 \le t_1 < \cdots < t_k \le 1$ define $\pi_{t_1,\dots,t_k} : C([0,1]) \to \mathbb{R}^k$ by

$$\pi_{t_1,\ldots,t_k}(f)=(f(t_1),\ldots,f(t_k)).$$

伺い イラト イラト

Differential Privacy and Functional Data

To any mechanism $X_{Q,d}$ taking values in C([0, 1]) associate the finite dimensional mechanism

$$X_{Q,\mathbf{d}}^{t_1,\ldots,t_k} \circ X_{Q,\mathbf{d}}.$$

Using the fact that DP on an algebra is sufficient, we can show:

DP for C([0, 1])-valued queries

If the finite-dimensional mechanisms $X_{Q,\mathbf{d}}^{t_1,\ldots,t_k}$ are differentially private for all k and t_1,\ldots,t_k in [0,1], then the mechanism $X_{Q,\mathbf{d}}$ is differentially private

Relates differential privacy for functional (infinite dimensional) data back to finite dimensional case.

Ollie Mason Work with Naoise Holohan & Doug Leith

Measures, Metrics and Meters: Some Mathematical Aspects of P

Differential Privacy and Product Mechanisms

The monotonicity property of differential privacy also allows us to construct sanitisations coordinate-wise (entry-by-entry).

- Start with a 1-dimensional sanitisation: Y_d defined for $d \in D$.
- Define a sanitisation on D^n by $Y_d := (Y_d^1, \dots, Y_d^n)$.
- $Y_{\mathbf{d}}^{i}$ has the same distribution as $Y_{d_{i}}$ and all the $Y_{\mathbf{d}}^{i}$ are independent.

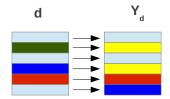
Differential Privacy and Product Mechanisms

We call Y_d a product sanitisation.

Product Mechanisms

 Y_d is differentially private if and only if Y_d (the 1-dimensional sanitisation) is differentially private.

Allows high dimensional sanitisations to be simply constructed.



E 990

Ollie Mason Work with Naoise Holohan & Doug Leith Measures, Metrics and Meters: Some Mathematical Aspects of F

Categorical Example

- *D* has *m* + 1 elements corresponding to categories, hobbies of individuals etc.
- Define the 1-d sanitisation

$$\mathbb{P}(Y_d = d) = 1 - pm, \quad \mathbb{P}(Y_d = d') = p,$$

 $d \neq d'$.

- Assume that 1 − pm > p.
- Y_d is differentially private if and only if

$$p \geq \frac{1-\delta}{m+e^{\epsilon}}$$

Accuracy for Sanitisations

- We need to measure error assume that D is a metric space with metric (distance) ρ.
- Assume D is compact and write diam(D) for its diameter.
- Focus on accuracy of 1-dimensional mechanisms can be used to obtain formulae for higher-dimensional case.
- Maximal expected error of a sanitisation Y_d

$$\mathcal{E} := \max_{d \in D} \mathbb{E} \left[\rho(Y_d, d) \right].$$

Accuracy for Sanitisations

Two results giving lower bounds for \mathcal{E} : one applies to general metric spaces, the other to finite metric spaces.

General Lower Bound

If Y_d is differentially private then

$$\mathcal{E} \geq (1-\delta) \left(rac{\operatorname{diam}(D)}{2(1+e^{\epsilon})}
ight).$$

Accuracy for Finite Metric Spaces

Let
$$\kappa = \min\{\rho(x, y) \mid x \neq y\}.$$

Finite Case

Suppose D is finite containing m + 1 elements and Y_d is differentially private. Then:

$$\mathcal{E} \geq (1-\delta)\left(rac{\kappa m}{(m+e^{\epsilon})}
ight).$$

Ollie Mason Work with Naoise Holohan & Doug Leith Measures, Metrics and Meters: Some Mathematical Aspects of P

ゆ ト イヨ ト イヨト

Example

- Earlier example: D has m + 1 elements; equip D with discrete metric (ρ(d, d') = 1 for all d ≠ d').
- Can define a differentially private mechanism Y_d with $p = \frac{1-\delta}{m+e^{\epsilon}}$, where $1 p = \mathbb{P}(X_d = d)$ (for all d).

• In this case \mathcal{E} is given by:

$$\sum_{d' \neq d} p = mp = (1 - \delta) \left(\frac{m}{m + e^{\epsilon}} \right).$$

• Lower bound is tight in this case.

Thanks!

Thank you for your attention!

Ollie Mason Work with Naoise Holohan & Doug Leith Measures, Metrics and Meters: Some Mathematical Aspects of F

< ∃ >