LOWER BOUNDS ON THE MINIMAL COORDINATE-DEPENDENT GROWTH RATE IN A NONNEGATIVE MULTIPLICATIVE SYSTEM

by

Eric V. Denardo and Uriel G. Rothblum

Abstract

This paper concerns a nonnegative $N \times N$ matrix Q and, more generally, a system $\{Q^{\delta} : \delta \in D\}$ of such matrices whose rows are in product form. Denote as $\sigma(Q)$ the spectral radius of Q, and call a nonempty subset J of $\{1, ..., N\}$ closed under Q if $Q_{ij} = 0$ for $i \in J$ and $j \notin J$. Linear systems that characterize upper bounds on $\sigma(Q)$ and $\max_{\delta} \sigma(Q^{\delta})$ are classic. This paper presents linear systems that characterize lower bounds on $\min_{\delta} \min_{J} \sigma[(Q^{\delta})_{JJ}]$ where δ ranges over D and J ranges over sets that are closed under Q^{δ} . These results are used to characterize lower bounds on the minimal coordinate-dependent growth rate in the corresponding multiplicative systems.