Nonmonic Matrix Polynomials with Nonnegative Coefficients

Karl-Heinz Foerster

Abstract

We consider matrix polynomials Q with

$$Q(z) = zI - (z^2A_2 + zA_1 + A_0) = zI - S(z)$$

for $z \in \mathbb{C}$, where A_0, A_1, A_2 are nonnegative square matrices and I is the identity matrix. The function

$$\varrho_S : \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varrho_S(r) =$ spectral radius of $S(r)$

is continuous, nondecreasing and log-convex.

Let S(r) be irreducible for one (and then all) positive r. Then

- 1. ρ_S is analytic on $]0, \infty[$.
- 2. $\rho_S(r) = r$ for all $r \ge 0$ or there exist at most two positive r with $\rho_S(r) = r$.
- 3. $\rho_S(r) = r$ for all $r \ge 0$ if and only if

 $\sigma(Q) = \{ z \in \mathbb{C} : Q(z) \text{ is singular} \} = \mathbb{C}.$

4. If $\rho_S(r) = r$ for exactly two positive r_1 and r_2 with $r_1 < r_2$, then

 $\sigma(Q) \cap \{ z \in \mathbb{C} : r_1 < |z| < r_2 \} = \emptyset,$

and Q has the same finite number of spectral values on the circles with radii r_1 and r_2 , respectively; this number can be characterized by the length of cycles in an appropriate infinite graph.

- 5. A nonnegative right root of Q is irreducible or has zero columns.
- 6. Q has a nonnegative nonzero right root if and only if $\rho_S(r) = r$ for some r > 0.
- 7. $\rho_S(r) < r$ for some positive r implies

$$Q(z) = (B - zA_2)(zI - W)$$

for some nonnegative W and some invertible B with nonnegative inverse. W is a spectral root of Q with spetral radius less then r.

This is a joint work with B. Nagy, Budapest, Hungary.