
1

AQM’s for achieving fairness between competing
TCP flows

Rade Stanojević and Robert Shorten

Abstract— Making drop decisions to enforce max-min fair re-
source allocation without any explicit information is a challenging
problem. Here we develop a spectrum of stateless queue manage-
ment schemes: MLC(l) (Multi-Level Comparison with index l).
We show analytically that for arbitrary network topology of TCP
users and queues employing MLC(l) resource allocation converge
to max-min fair, as l grows. Our second algorithm MAY (Markov
Active Yield) exploits the following surprising observation: the
information on dropped packets is enough for enforcing max-min
fairness among arbitrary set of AIMD flows. MAY enforce max-
min fairness by keeping only the information on short history
of already dropped packets. By doing this amount of memory
required for storing the state can be significantly reduced. The
properties of MLC(l) and MAY are evaluated and characterized
theoretically using a Markov chain model, and experimentally
using packet level ns2 simulations.

Index Terms— AQM, congestion control, max-min fairness,
Markov chains, TCP.

I. I NTRODUCTION

Resource allocation has been an important research problem
in communication networks for more than a decade[25]. In
the current Internet most of traffic uses TCP as transport
protocol, and most of Internet routers are oblivious: they do not
differentiate packets from different flows. In order to change
resource allocation, one can do the following: (1) Design the
new end-to-end protocol(s) and leave the network infrastruc-
ture (routers) unchanged[15], [17], [16]. (2) Design the new
end-to-end protocol(s) and network support that will allow
cooperation between end-users and network; (routers)[13],
[1], [14]; (3) Leave the end-to-end protocol(s) unchanged
but design the network based scheme that determines desired
resource allocation[10], [7], [8].

Most of current proposals have as a performance objective
resource allocation that is max-min fair. In this paper we
propose two schemes MLC and MAY that belong to the
third group whose performance goal is enforcing max-min fair
resource allocation. The main features are:

- They do not require change in the end-to-end transport
protocol TCP.

- Since end users use TCP, the only congestion indicator is
binary: packet drop or ECN marking.

- Decision which packet to drop (mark) is made by each
router independently with locally available information.

- No multiple queues neither per flow counters are used.
Briefly, our goal is:
The design of a stateless active queue management scheme

that can enforce max-min fairness in the network of TCP users.
While there exist a large amount of work related to analysis

and design of distributed algorithms that enforce max-min

fairness to the best of our knowledge this is the first attempt
to design a stateless active queue management scheme that
enforce max-min fairness in the network of TCP users.

A. Paper contributions

Why reaching the goal stated above is hard? First, recall
that in the max-min fair regime, a TCP flowf experiences
drops atone and only onelink lf at its path (we say that
f is bottlenecked atlf), and therefore must be protected
at other links (that can be congested) by receiving lossless
service. Second, if two or more flows are bottlenecked at the
same link they must receive nonuniform loss rates that are
function of their aggressiveness (Round-trip times, queuing
delays, etc). Assuming the knowledge on flow rates (written
in IP header[10] or estimated by the router itself[11]) or
existence of multiple queues that are appropriately scheduled
a number of solutions to this two problems exist and are
developed in previous work. However in our case it is highly
nontrivial to make the drop (mark) decision without any
explicit information.

The main contributions of this paper are:

• The stateless queue management scheme Multi Level
Comparisons with indexl (MLC(l)) which makes the drop
decision based on the structure of packets that are already in
the queue.

• The queue management scheme Markov Active Yield:
MAY. The only state information that is kept by MAY is a
short history ofalready dropped packets.

• The Markov chain analysis of the randomized algorithms
MLC(l) and MAY that show that (1) Resource allocation of
MLC(l) converge to the max-min fair, for arbitrary network
topology and arbitrary set of TCP users, as indexl grows. (2)
The resource allocation of TCP users using MAY queue at
single bottleneck topology is max-min fair (each TCP users
receive same throughput).

• The packet level simulations that supports analytical
findings and suggest that MAY resource allocation is very
close to max-min fair for general network topologies.

As we will see later the router based algorithm MLC(l) can
be seen as a dual to well known Mo&Walrand[23] end-to-end
(p, α)-proportionally fair algorithm. While MAY algorithm
is not completely stateless it only keep state of flows that

2

have experienced drops which can be significantly smaller
than keeping per flow state at heavy-tailed flow size/rate
environments which are typical at Internet links. Quite surpris-
ingly, we show that information on dropped packets is enough
to establish an dropping decision algorithm which allocates
bandwidth fairly amongst TCP users.

B. Related work

Allocating bandwidth fairly amongst competing users in the
Internet is an important task. The central point in the current
Internet is the fact that most of traffic is generated by respon-
sive TCP users. However, the level of responsiveness of an
individual user might depend on implementation of transport
protocol as well as global characteristics of flow such as round
trip time or queueing delays. Schemes to ensure fair bandwidth
allocation would play a role of protecting less aggressive users
from aggressive ones and therefore would allow existence of
various end-to-end congestion control algorithms. Motivated
by the widespread deployment of highspeed links, many new
aggressive congestion control protocols have been recently
proposed [17], [16]. Such protocols are known to be very
aggressive when competing with standard TCP, and in such
environments, it is likely that some form of forced fairness is
necessary to protect less aggressive flows. Thus, if we assume
networks with heterogenous end-to-end congestion control
strategies, the only way to control fairness in the network is
to do it at routers using some form of queue management.

The design of router queue management algorithms has
been a very active research area during last decade. Typically, a
number of separate strategies can be discerned when reviewing
this work; those strategies that use a single queue and do
not require the router to process state information; those that
require the router to process some state information and/or
may utilize multiple router queues; and those that require
changes to existing IP infrastructure. We use the term (AQM)
to refer to the first of these, Fair Scheduling to refer to the
second of these, and New Architecture Proposals to refer to
the last of these.

(1) Active Queue Management(AQM) :Traditional AQM’s
[3], [4], [5], [6] have been designed with the ultimate goal
of providing high link utilization, low queueing delays, and
small number of packet losses. A key issue in the design
of AQM schemes is the complexity of their implementation
and the requirement that they should be implementable on a
wide range of Internet routers. As most AQM schemes do not
differentiate packets from different flows, bandwidth allocation
among users is mainly determined by end-to-end congestion
control policies. For example, over routers with constant loss
probability, the amount of bandwidth that standard TCP user
obtain is proportional to inverse of its round-trip time[29],
[28].

(1a) CHOKe : CHOKe[27] is an example of an AQM that
differentiates packets from different flows; flows with higher
bandwidth are punished more than in RED or BLUE for
example. This has the effect of improving fairness amongst
responsive users, and the degree of improvement for some
AQM schemes based on the basic CHOKe idea will be
examined in Section II

(2) Fair Scheduling:Fair scheduling mechanisms[7], [8],
[9], [11], [12], require the router to maintain some per-
flow state information and to use this information to manage
arriving packets. Although they achieve excellent fairness, they
are not widely deployed in real networks, mainly because high
computational costs associated with obtaining, processing and
managing this state information.

(3) New Architecture Proposals :Several new proposals, in-
cluding CSFQ[10], XCP[13] and MaxNet[14], require changes
to the packet IP header. Although they perform quite well
in terms of fairness and resource utilization, they assume
cooperation of most (if not all) routers in the entire network
which is clearly very restrictive.

II. CHOKE-LIKE AQM SCHEMES

It has been noticed in many studies that both drop tail and
RED routers have large bias against large-RTT flows. For
example Lakshman&Madhow [19] have made the empirical
observation that for a drop-tail router and two flows with
round trip timesRTT1 and RTT2, the ratio of asymptotic
throughput of the first and the second flow is in the ratio
(RTT2/RTT1)a for somea ∈ (1, 2). Similarly, it has also
been noticed in a number of studies, that oblivious (ones
that do not differentiate packets from different flows) AQM
schemes (RED [3], BLUE [4], etc.) which attempt to estimate
the loss probability for a given traffic pattern and to drop
packets according to this estimation, share bandwidth among
competing users with round trip timesRTT1 and RTT2 in
the ratio RTT2/RTT1, [29], [28]. In this section we will
investigate RTT unfairness characteristics for more general
AQM schemes. In particular, we shall characterize the fairness
properties of CHOKe-like AQM schemes.

Definition 2.1: An AQM is CHOKe-like if it drops a packet
from a flow with current throughput1 U with probability
ρ0U

l−1, where ρ0 is variable controlled by router andl
positive integer called index of given CHOKe-like AQM.

Comment : With l = 1 this corresponds to a router which
drops packets with loss probabilityρ0, exactly as BLUE in
steady state. The case whenl = 2 is similar to CHOKe in
the limit when the average queue size does not go the below
minimum threshold, and in addition, when there is neither
a RED nor an overflow drop. Indeed, comparing a packet
at the entrance of queue with a packet from the queue and
making drop-decision based on this comparison is actually
dropping a packet with probability which is proportional to
current throughput of the flow.

In this section we will describe a class of CHOKe-like
AQM’s called Multi Level Comparison (MLC) AQM’s. In
particular, we will describe and analyze the fairness charac-
teristics of this queueing discipline for TCP flows competing
for bandwidth.

We will see that the MLC scheme with indexl achieves
1/RTT 1/(l+1)-fairness2 under the assumption of low loss

1Throughput is measured in packets per unit of time.
2Two flows with round trip timesRTT1 and RTT2 which have

a single bottleneck operating with MLC, obtain bandwidth in ratio:
(RTT1/RTT2)1/(l+1).

3

probability. More generally, Theorem 2.2 shows that increas-
ing l leads to fairness among TCP users arbitrary close to
max-min in general network topologies.

A. Description of MLC

The basic strategy in MLC(l) is to extend the core idea
from CHOKe of comparing of a packet arriving at the
queue with packets which are already in queue; these stored
packets are a measure of the proportion of bandwidth used
by certain flow. MLC(l) maintains a variablehM which
is used to control the probability of dropping an arriving
packet: at every packet arrivalhM dropping trials are executed.

Dropping trial: Pick randomlyl − 1 packets from the
queue: ifall l packets belong to same flow, then the arriving
packet is dropped3.

If the arriving packet is not dropped after execution ofhM

dropping trials then it is enqueued. IfhM is not an integer, the
number of dropping trials is given as follows. ForhM < 1 we
execute 1 dropping trial with probabilityhM and0 dropping
trial with probability 1− hM . Similarly, hM > 1 we execute
bhMc+1 dropping trials with probability{hM} = hM−bhMc
andbhMc dropping trials with probability1− {hM}.

Proposition 2.1:For a givenhM , MLC(l) is CHOKe-like
scheme with indexl.

Proof: Let Uf be the throughput of a flowf , andU0 the
aggregate throughout on the link. A packet is dropped at one
dropping trial with probability

q1 =
(

Uf

U0

)l−1

.

Probability that a packet is dropped afterhM trials is 1-
p[packet is not dropped at any ofhM trials] which is given
by

q = 1− (1− q1)hM ≈ q1 · hM = U l−1
f

hM

U l−1
0

.

Taking ρ0 = hM

U l−1
0

we conclude that MLC(l) satisfies Defini-
tion 2.1.

The higherhM the more frequent the losses are. Conse-
quently, if the link is under-utilizedhM should be decreased
in order to decrease probability of dropping packets. On the
other hand if the aggregate traffic on the link is grater then
the link capacity thenhM should be increased to reduce traffic
load.

Controlling the variable hM : MLC uses a parameter
SampleT ime to affect changes in the variablehM (in our
simulations this is set to100ms). hM is adjusted once per
SampleT ime using a MIMD (Multiplicative Increase - Mul-
tiplicative Decrease) scheme; see Figure 1. The performance
goal is to keep the utilization at a certain levelu0. Namely,
if within the previousSampleT time the link utilization was
less than desiredu0, hM is set toγhM for someγ ∈ (0, 1),
otherwisehM is adjusted ashM := hMδ for someδ > 1.

3If l = 1 the arriving packet is dropped by default.

1 UpdateFrequency(hM)
2 if (now − LastUpdate > SampleT ime)
3 if utilization < u0
4 hM = hM · γ;
5 else
6 hM = hM · δ;
7 endif
8 LastUpdate = now;
9 endif;

Fig. 1. Control ofhM

At this point it is important to emphasize a few differences
between MLC and CHOKe. First, note that CHOKe makes
a comparison only when the average queue size becomes
greater thanminth (RED minimum threshold), and therefore
its performance (in terms of resource allocation between TCP
users) depends mainly on the number of users: a small number
of users will affect the synchronization of losses, while for
large number of users, the number of CHOKe-drops will be
much less then number of RED-drops and therefore the effect
of CHOKe to TCP fairness would be negligible. Second, in
MLC, if a packet is not dropped at the entrance of the queue,
it will not be dropped latter while in the queue. On the other
hand the original CHOKe algorithm allows dropping both
arriving packet and packet(s) from the queue, for the purpose
of reducing the unresponsive flow(s) throughput.

Our experiments indicate that the parameterSampleT ime
should be in the range of round trip times of the connections
using the link (in order to allow users to react to changes in
hM). The parametersγ andδ control the speed of adaptation
to changes in network traffic and are set such that, for a
givenSampleT ime, hM can be doubled/halved within a few
seconds.

B. Model and analysis of CHOKe-like AQM

In this section we present a model of CL-AQM’s servicing
multiple TCP users. We present results that characterize this
situation for both a single bottleneck and for general network
topologies.

Single bottleneck case: We considerN TCP-flows with
heterogenous round trip timesRTTi, i = 1, . . . , N , traversing
a single bottleneck link that employs CL-AQM with an index
l. If we assume thatρ0 does not fluctuate much so that we
can model it as constant and that the drop probability for a
packet is small, then our analysis shows that the asymptotic
rates achieved byTCP users are proportional to 1

RTT
2/(l+1)
i

.

This is the main result of this section and is given in Theorem
2.1.

Model : At the flow level, let∆ to be length of sampling
interval over which we evaluate changes in throughput. If a
flow with a round trip timeRTT does not see a drop within
interval of length∆, then its throughput will be increased
for ∆/RTT 2. If a flow registers a drop within this sampling
interval then its throughput will be halved4. The probability
that the first event will happen is equal to probability that each
of ∆U packets from the flow are not dropped. This probability

4Throughout this paper, variations in round trip times are neglected.

4

is given by:

η1 = (1− ρ0U
l−1)∆U ≈ e−∆ρ0U l

.

Clearly, the probability that a flow with current throughputU
will see a drop within a sampling interval of length∆ is equal
to

η2 = 1− (1− ρ0U
l−1)∆U ≈ 1− e−∆ρ0U l

.

The previous approximations are valid under the assump-
tion of a small probability that a packet will be dropped :
ρ0U

l−1 ¿ 1. This assumption seems reasonable, since if this
probability is not small, a flow would suffer too many losses
an therefore would not get chance to grow.

Let U
(ρ)
k be a stochastic process which describes the evo-

lution of throughput of a TCP flow with round-trip time RTT
traversing over link with a CHOKe-like AQM scheme with
index l. Hereρ = ∆ρ0. Since∆ is fixed we can assume that
∆ to be equal to one unit of time.

We modelU (ρ)
k as a Markov chain on[0,∞) defined by

U
(ρ)
0 = 0 and:

U
(ρ)
k+1 = U

(ρ)
k +

1
RTT 2

with probability e−ρ(U
(ρ)
k)l

U
(ρ)
k+1 =

1
2
U

(ρ)
k with probability 1− e−ρ(U

(ρ)
k)l

.

The following theorem characterizes the time averaged
throughput of a TCP flow with round trip time given by
RTT , running over CL queue management scheme with
index l.

Theorem 2.1:The time averaged throughput of thei’th
flow: 1

M

∑M
i=1 U

(ρ)
i converges almost surely to:

lim
M→∞

1
M

M∑

i=1

U
(ρ)
i =: U

(ρ)
=

1

RTT
2

l+1 ρ
1

l+1
DCL(l)+

1

ρ
1

l+1
S(ρ)

whereDCL(l) is a constant that does not depend onρ neither
RTT andS(ρ) converges to 0 asρ goes to 0.

Remark: The previous theorem is generalization of well
known square root formula. Indeed, forl = 1, CL scheme is
a oblivious AQM that drops packets with probabilityρ = hM

and Theorem 2.1 says that time averaged throughput converge
to 1

RTT
√

ρDCL(1) + o(1√
ρ)

To conclude this section we prove that for a given network
with routers employing a CL AQM with indexl, and assuming
that the steady state throughput is given by the previous
theorem, we can find large enoughl such that bandwidth
allocation is arbitrary close to max-min fairness. The following
characterization of max-min fairness can be found in [25].

Lemma 2.1:A set of ratesxr is max-min fair if and only
if for every flow r there exists a link on its path, such that the
rates of all flows which traverse through that link are less or
equal thenxr.

With this characterization of max-min fair allocation in
mind, we shall prove that increasing the index of the CL
scheme will result in allocation of bandwidth in such fashion
that each flow will have link on its path such that its asymptotic
rate is “almost” the largest among all flows using that link.

Theorem 2.2:For any given network topology, and given
ε > 0, there existsl such that if all queues employ CL-AQM
with index l and loss probabilities are small then for every
flow r there exist a link on its path, such that the rates of all
flows which traverse through that link are less then(1 + ε)xr

(herexr is steady state rate of flowr).
Proof: Let L be the number of links in the network and

N the number of flows. We label flows byi = 1, 2, . . . , N
and links bys = 1, 2, . . . , L. By R we denote the routing
matrix: Ris = 1 if flow i uses links otherwiseRis = 0. On
each links, a router drops a packet from the flow with current
throughputU with probabilityρ(s)U l−1. Let M be the length
(in number of links) of the path of the flow with most links on
its route andν the ratio of the largest and the smallest round
trip time in the network. Choosel such that

ν
2

l+1 M
1

l+1 < 1 + ε.

For each flowr, let s
(r)
1 , . . . , s

(r)
w be links used by it and

let s
(r)
max the most congested link on its route in the following

sense:

ρ(s(r)
max) = max{ρ(s(r)

j)| j = 1, . . . , w}. (1)

If the current rate of flowr is U , a packet from that flow will be
dropped with probabilityλrU

l−1, whereλr =
∑w

j=1 ρ(s(r)
j),

and therefore the steady state throughput for flowr is given
by

xr =
1

RTT
2

l+1
r λ

1
l+1
r

C0.

For any other flowt which uses the links(r)
max with λt =∑

j:Rjt=1 ρ(lj) ≥ ρ(s(r)
max) the steady state throughput is given

by:

xt =
1

RTT
2

l+1
t λ

1
l+1
t

C0.

Recall that we have defined the links(r)
max as the most

congested link on route of flowr in the sense of (1). This
implies thatλr ≤ Mρ(s(r)

max). Now

xt

xr
=

(
RTTr

RTTt

) 2
l+1

(
λr

λt

)
≤

(
RTTr

RTTt

) 2
l+1

(
Mρ(s(r)

max)

ρ(s(r)
max)

) 1
l+1

≤

≤ ν
2

l+1 M
1

l+1 < 1 + ε

Remark: Note that for a single bottleneck topologies re-
source allocation given by C

RTT
2/(l+1)
i

is ((RTT 2
i), l +1) pro-

portionally fair. Indeed, for any resource allocation(xi), utility
U(x) =

∑N
i=1

RTT 2
i

xl
i

, and link capacityc0 we have(using
Holder’s inequality):

U(x) · c0 =

(
N∑

i=1

RTT 2
i

xl
i

)
· (

N∑

i=1

xi) =

N∑

i=1

RTT

2/(l+1)
i

x
l

l+1
i

l+1

1
l+1

·
(

N∑

i=1

(
x

l
l+1
i

) l+1
l

) l
l+1

≤

5

≤
N∑

i=1

RTT
2/(l+1)
i

x
l

l+1
i

· x
l

l+1
i =

N∑

i=1

RTT
2/(l+1)
i

U(x) is maximized if equality holds in the inequality above,
which is equivalent toxi = C

RTT
2/(l+1)
i

for some constantC.

It is interesting to notice that the fairness of well known
eXplicit Congestion Control - XCP, features a similar property.
Namely, in the recent paper [18] the authors proved that
”... given any network topology, one can choose a shuffling
parameter,γ, sufficiently small so that the resulting allocation
is close to max-min fairness. For any fixedγ > 0, however,
there are topologies in which some flow rates can be far away
from their max-min allocations”. In the case of CL schemes
for given network topology we can chose sufficiently large
index l so that resulting allocations are close to max-min, but
for any fixedl there are topologies in which some flow rates
can be far away from their max-min allocations.

C. CC-l, a version of CHOKe-like scheme with additional field
in IP header

As we noticed earlier, MLC becomes too computationally
demanding when its index becomes large as it requires too
many comparisons per packet for large number of user and
largel. On the other hand if we use the basic idea from CSFQ
[10] in which core routers have explicit information on current
throughput for each flow, then the router can explicitly control
ρ0 and drop packets according to Definition 2.1. Recall that
controllinghM in MLC actually implicitly determinesρ0 and
essentially the effects of MLC and CC are same in terms of
fairness.

III. M ARKOV ACTIVE Y IELD (MAY) AQM’ S

In the previous section we have seen that the procedure of
comparing an arriving packet with packets from the queue, and
making drop decision based on this comparison, can lead to
fairness that is arbitrarily close to max-min fairness. A basic
problem with this strategy is that it can be computationally
expensive to implement and it is therefore of interest to
examine other methods of enforcing max-min fairness.

In order to enforce fairness among users with different levels
of aggressiveness, and responsiveness, it is clear that more
aggressive and less responsive users must be punished more.
The question is “by how much” and how this strategy should
be implemented in an efficient manner.

If an AQM does not differentiate among different flows, a
packet drop will adversely affect less aggressive users. This
is the source of unfairness among different TCP flows. The
following synthetic example can be helpful in understanding
the motivation for MAY.

Consider single bottleneck topology, where the con-
gested link servicesN TCP users with round-trip times
RTT1, . . . , RTTN . For an AQM schemeΓ, denote byσ(Γ)
the set of serviced packets during the unit of time, and by
δ(Γ) the set of dropped packets during the unit of time. If we
denote byUi andpi the throughput and the loss rate of flow
i, then the proportionσi of packets from flowi in σ(Γ) is

1 UpdateLossRates()
2 t = 1;
3 for i = 1 : N
4 δi(t) = A′

RT Ti
;

5 endfor;
6 while forever
7 pi(t) = ρδi(t);
8 Drop packet from flowi with prob. pi(t);
9 Control ρ such that utilization isu0
10 On the end oft-th time stepdo
11 for i = 1:N
12 δi(t + 1) =

NDropsi(t)
T otalDrops(t) ;

13 endfor;
14 t = t + 1;
15 enddo;
16 endwhile;

Fig. 2. Positive feedback loop for calculating drop probabilitiespi.

equal toUi · a1 and the proportionδi of packets from flow
i in δ(Γ) is equal toUi · pi · a2, for some constantsa1 and
a2 independent ofi. For the TCP flowi from the square root
formula Ui = C0

RTTi·√pi
we conclude that

σi · δi =
A

RTT 2
i

, (2)

for some constantA that does not depend oni. For example
if Γ is oblivious (like RED or BLUE), loss rate for each
flow is constant (pi = p) and σi = A′

RTTi
and δi = A′

RTTi
,

for A′ = 1∑N
j=1

1
RT Tj

. When Γ is MLC(2), throughput of

i-th flow (and thereforeσi) is approximately proportional
to 1

RTT
2/3
i

and from (2) we conclude thatδi = A′′

RTT
4/3
i

and pi = A′′′

RTT
2/3
i

. Thus very aggressive TCP connections

(ones with very small RTT) receive smaller throughput, than
in oblivious case by increasing their loss rate, which gives
additional throughput to connections with longer RTT (and
smaller aggressiveness). Consider now the positive feedback
system(δ(k)) given in Figure 2: dropping probability for the
flow i during the time stept+1 is proportional to the number
of dropped packets during the time stept. If we start with
vectorδ(1) = A′(1

RTT1
, . . . , 1

RTTN
), on the end of time step 1,

δ(2) will be equal to(B(1)

RTT
3/2
i

, . . . , B(1)

RTT
3/2
N

). Actually from the

relation (2) we can deduce thatδ(t) = (B(t)

RTT
e(t)
i

, . . . , B(1)

RTT
e(t)
N

)

where sequencee(t) satisfiese(1) = 1, and the following
recurrence equation

e(t + 1) = 1 +
e(t)
2

. (3)

By taking ê(t) = 2−e(t), (3) is equivalent tôe(t+1) = ê(t)
2 .

Thuse(t) = 2−2−(t−1), and from (2),Ui(t) = C(t)

(RTTi)2
−(t−1)

does depend onRTTi for for larget, meaning that asymptot-
ically all flows achieve same throughput.

Now we proceed with description of MAY. Our basic idea
is to keep information of recently dropped packets and to use
that statistics to regulate the drop probability for each of the
flows.

Basic data structure used is a
hash table H that stores quadruples
(FlowID, p(FlowID), TS(FlowID), ND(FlowID)),
wherep(FlowID) is the drop probability of the flow given

6

u0 desired utilization
∆ length of update period

PctNew percentage of new drop entries inH
qw weighted average parameter
T0 Timeout value

TABLE I

PARAMETERS OFMAY.

1 OnPacketArrival(pkt, F lowID)
2 if FlowID ∈ H
3 with probability p(FlowID) do
4 drop(pkt);
5 ND(FlowID) + +;
6 TS(FlowID) = now;
7 enddo
8 elsewith probability q0 do
9 create(FlowID, H)
10 p(FlowID) = 0;
11 ND(FlowID) = 1;
12 TS(FlowID) = now;
13 drop(pkt);
14 enddo

15 Update(H)
16 if now − LastUpdate > ∆
17 νold = ν;
18 ν = ν + (utilization− u0);
19 TotalND =

∑
F ID∈H ND(FID);

20 for all FID in H
21 if now − TS(FID) > T0
22 remuve(FID, H)
23 else
24 p(FID) = ν((1− qw)

p(F ID)
νold

+ qw
ND(F ID)
T otalND);

25 ND(FlowID) = 0;
26 endelse
27 endfor
28 q0 = PctNew · T otalND

T otalNArrivals ;
29 LastUpdate = now;
30 endif

Fig. 3. Pseudocode of MAY.

by identifier FlowID, TS(FlowID) is the time stamp that
tracks the time of last update of the given hash table entry
and ND(FlowID) number of dropped packets from the
flow FlowID during the current update interval of length
∆. On each packet arrival itsFlowID is calculated. If there
exist entry inH that corresponds toFlowID, the arriving
packet is dropped with probabilityp(FlowID), we call these
dropsold drops.In order to accept new flows toH, we allow
PctNew% of drops to be reserved to for flows that does-not
have entry inH. The drop probability of flowFID is product
of control variableν and weighted average of proportion of
drops corresponding toFID (see line 24). Finally a control
variableν determines size of drop probabilities and therefore
the utilization: if current utilization is less than desired (u0)
ν should be decreased to allow lower drop probabilities and
increase utilization, while if current utilization is greater
than u0, then ν should be increased to allow higher drop
probabilities and decrease utilization.

A. Analysis of MAY

Having described the main algorithm, we will now prove
that under following assumptions, arbitrary AIMD flows (flows
with arbitrary linear increase parameter and arbitrary multi-
plicative decrease parameter), sharing a single link asymptoti-
cally obtain equal amount of available throughput. Throughout

this section we make the following assumptions.
Assumption 3.1:There areN long-lived flows that use a

congested link and all of them employ AIMD congestion
control algorithms with an additive increase parameterγi > 0
packets per unit of time, and a multiplicative decreaseδi ∈
(0, 1), i = 1, 2, . . . , N .

Assumption 3.2:The network is in steady state: the utiliza-
tion is equal tou0 and the drop probability fori-th flow p(i)
is constant and equalsλi · ν > 0.

The first assumption defines the type of congestion control
algorithms employed by users on the link. The second assump-
tion is actually saying that in the interval of interest the drop
probabilities do not change. Note that under static network
conditions, due to of statistical multiplexing, the proportion of
drops from certain flow in the drop history is asymptotically
constant. In our model we assume that it is constant at each
instant of time.

Preamble to main result :
In order to precisely formulate the main result, we present

a model of the evolution of throughput for thei’th flow
traversing the link.

Let U
(i)
k be the throughput of flow(i) measured afterk

units of time. Since we have assumed that MAY is in steady
state, the loss probability for a packet from flow(i) is constant
and is equal toµi = λiν. Having this, we can considerU (i)

k

as a Markov chain onR+ given by the transition:

U
(i)
k+1 = U

(i)
k + γi with probability e−λiνU

(i)
k

U
(i)
k+1 = δiU

(i)
k with probability 1− e−λiνU

(i)
k .

We can scale the Markov chainU (i)
k , such that additive

increase is equal to 1:W (i)
k = (1/γi)U

(i)
k .

W
(i)
k+1 = W

(i)
k + 1 with probability e−θiW

(i)
k

W
(i)
k+1 = δiW

(i)
k with probability 1− e−θiW

(i)
k .

Here θi = γiλiν. In [20], techniques for the analysis of
Markov the chainW (i)

k were developed. Employing these tools
we will prove the main result of this section:

Theorem 3.1:Under assumptions (1-3), the asymptotic
throughput of flow (i)

T (i)(γi, δi) = lim
m→∞

1
m

m∑

k=1

U
(i)
k

converges almost surely, and for smallν, T (i)(γi, δi) does
not depend on the additive increase parameterγi or the
multiplicative decrease parameterδi. Formally, there exist a
constantc > 0 such that:

T (i)(γi, δi) =
1

cν + o(
√

ν)
+ o(

1√
ν

) (4)

Proof: Before we begin the proof, we introduce some
notation from [20]. ByV

(i)
m we denote the Markov process

with states ofW (i)
k just after packet losses, i.e.:V

(i)
m = W

(i)
sm ,

7

wheresm is the m-th smallestk such thatW (i)
k = δiW

(i)
k−1.

It is clear thatV (i)
k is Markov chain with transition given by:

V
(i)
k+1 = δi(V

(i)
k + G

(i)

V
(i)

k

)

whereG
(i)
x is random variable on positive integers defined by

P (G(i)
x ≥ m) =

x+m−1∏

k=x

e−θik.

The following proposition is Corollary 1 from [20].
Lemma 3.1:If the initial state of the Markov chainV (i)

k is
0, then asθi goes to 0, the Markov chain

√
θiV

(i)
k converges

in distribution to the Markov chainV k defined byV 0 = 0
with transition:

V k+1 = δi(V k + GV k
) (5)

where Gx is a random variable given by the distribution
P (Gx ≥ y) = e−

1
2 y2−xy.

From the Proposition 7 [20] we conclude that the Markov
chain with transition given by (5), has a unique stationary
distributionV∞. From Proposition 5[20] we get that

E(V∞) =
δi

1− δi
E(GV∞). (6)

Further, from Theorem 1[20] and Lemma (3.1), we conclude
that asθi goes to 0, the invariant distribution of

√
θiV

(i)
m

converges toV∞ and therefore

E(G
V

(i)
∞

) =
1√
θi

E(GV∞) + o(
1√
θi

) (7)

On the other handG
V

(i)
∞

determines the times between
drops from the flow(i). Thus the asymptotic proportion of
drops from the flow(i) in the drop history is determined by
frequency of drops and therefore equal to

λi =
c

E(G
V

(i)
∞

)
(8)

for some constantc that is equal to average time between two
consecutive drops at MAY link.

Now we are ready to conclude the proof of the Theorem.
From the Proposition 9 from [20] we have almost sure
convergence of asymptotic throughput toT (i)(γi, δi) and:

T (i)(γi, δi) = γi lim
m→∞

1
m

m∑

k=1

U
(i)
k

=
γi√
θi

δi

(1− δi)E(V∞)
+ o(

1√
ν

). (9)

Combining (9) with (6),(7) and (8) we obtain:

T (i)(γi, δi) =
γi√
γiλiν

δi

(1− δi) δi

1−δi
E(GV∞)

+ o(
1√
ν

)

=
γi√
γiλiν

1
E(GV∞)

+ o(
1√
ν

)

=
γi√
γiλiν

1√
γiλiνE(G

V
(i)
∞

) + o(1)
+ o(

1√
ν

)

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

maxcwnd

sh
are

 of
 lin

k t
hro

ug
hp

ut

Fig. 4. Maximal window size vs share of throughput

=
γi√
γiλiν

1√
γiλiν

c
λi

+ o(1)
+ o(

1√
ν

).

Thus we have

T (i)(γi, δi) =
1

cν + o(
√

ν)
+ o(

1√
ν

)

and the proof is finished.

B. Discussion of MAY

Fairness in general network topologies.We have observed
empirically that the bandwidth allocation of AIMD users
over topologies with multiple congested links operating MAY
schemes is very close to being max-min fair. To com-
pare how far bandwidth allocationsU = (U1, . . . , UN)
deviate from max-min fair bandwidth allocations,Umm =
(U1,mm, . . . , UN,mm), one may use Jain’s index the given by:

j(U) =

(∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(
Ui

Ui,mm

)2 . (10)

Clearly, j(U) has a global maximum 1 that is attained at
U = Umm and since it is continuous, by measuring how far
the index is from 1, one can get some intuition on how far is
vectorU from Umm.

In the Section IV-B the following indices for DropTail, RED
andMAY were obtained:

j(UDropTail) = 0.35, j(URED) = 0.73, j(UMAY) = 0.985.

We believe that such fairness properties of MAY follows
from the fact that the drop history at a congested link is made
up mainly from packets from flows which get most bandwidth
and therefore flows which are not bottlenecked at the link
(with average rate less then maximal average rate at the link)
experience very few drops at that link. This means that a
large majority of packets dropped at the link are from the
flows bottlenecked at that link. If we ignore all other flows
in network, we are in a situation where all bottlenecked flows
represent the single bottleneck case, and therefore results from
the previous subsection apply.

To illustrate the fact that flows with average rate less than
fair share are afforded extra protection at a link employing
MAY we performed the following experiment using the net-
work simulator ns − 2. We ran a simulation with 5 TCP

8

flows: f1, f2, f3, f4 and f5 over a single congested link
employingMAY . Flowsf1, f2, f3 andf4 have an unlimited
maximal window size (maxcwnd), while maxcwnd for flow
f5 is varied from 1 to 200 packets. For a maximal window
size 38, flowf5 would get approximately its max-min fair
share of available bandwidth. As we can see from Figure 4,
the throughput obtained by flowf5 in the presence of MAY
drops formaxcwnd from [1,38] is almost equal to throughput
which would be achieved without any drops (straight line). For
maxcwnd ∈ [38, 200], MAY keeps the bandwidth allocated
to flow f5 close its fair share of20%.

Isolating the high-rate nonresponsive flow.Nonresponsive
flows that have sending rate higher than responsive flows
bottlenecked at given link have significantly higher drop rates
and can be easily identified, but we do not discuss it here
because of space limitation.

Parameter calibration.The initial tests show that MAY is
highly robust to the choice of parameters. The update interval
∆ should be taken to cover several “typical” RTT, thus to
belong to interval[500, 5000]ms. PctNew should be small
positive number (for example taken in range[0.01, 0.1]) to
allow new flows to get anH entry. The weighted average
qw should be chosen to allow averaging over several update
interval:qw ∈ [0.01, 0.1]. TimeoutT0 depends on the available
memory and can be controlled based on memory consumption:
the higher the memory consumption the lowerT0 should be.
Self tuning of other parameters is also possible but is out of
scope of the present paper.

IV. EXPERIMENTAL RESULTS

In this section we briefly describe some experiments that
demonstrate the behavior of proposed AQM schemes.

A. Single bottleneck

The first set of experiments are designed to demonstrate
the fairness properties of the proposed AQM schemes over
single link. Specifically, we present results for a single link
with service rate of80Mbps that services 100 long-lived TCP
users with round trip times uniformly distributed in range40−
440ms and approximately10ms of queueing delay. To provide
baseline results, we include the performance of RED for the
same scenario. Share of total throughput taken by each of 100
flows in these 3 schemes is depicted in Figure 5

It can be clearly seen from our results that that the fair-
ness of RED is approximately proportional to the inverse of
RTT. This is in accordance with our theoretical results under
assumption that drop probability flow independent and is also
consistent with results and observations made by other authors
[28], [29]. It can also be observed that the fairness of MLC
with index 2 is proportional to1/RTT 2/3 as predicted by
Theorem 2.1. The MLC parameters used are in the experiment
are: index = 2, SamplingT ime = 100ms, γ = 0.99,
δ = 1.01, u0 = 0.98. The MAY parameters used in the
experiment are:∆ = 500ms, u0 = 0.98, PctNew = 0.05,
qw = 0.05, T0 = 10sec.

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Flow ID

%
 o

f t
ot

al
 b

an
dw

id
th

RED
Scaled 1/RTT
MLC(2)
Scaled 1/RTT(2/3)

MAY
Fair share

Fig. 5. Scaled throughput for 100 flows over congested link employing RED,
MLC(2) and MAY.

Fig. 6. Network topology

B. Multiple bottleneck topologies

Our second set of simulations demonstrate Theorem 2.2.
The network topology that we considered is given in Figure
6. Here, we consider a network of 24 nodes:n1− n5, m1−
m5, p1−p5, q1−q5, andc1, c2, c3, c4 and 30 flows traversing
the network as follows:n(i) → p(i); n(i) → q(i),m(i) →
p(i); m(i) → q(i);n(i) → m(i); p(i) → q(i) where i =
1, 2, 3, 4, 5.

The delays on each of the links inms are defined as follows:

ni → c1 : 40 ∗ i + 1
pi → c3 : 40 ∗ i + 1

mi → c2 : 40 ∗ i + 1
qi → c4 : 40 ∗ i + 1

and the delaysc1−c2, c2−c3, c3−c4 are10ms. The capacities
of all links are10Mbps. With this topology, the max min fair
shares are 0.5Mbps for 20 flows that uses linkc2 − c3, and
1Mbps for other 10 flows (n(i) → m(i) andp(i) → q(i)).

Each flow uses the standard TCP-SACK algorithm, with
a packet size 1000B. The aggressiveness of each flow is
mainly determined by its RTT. The behavior of the network
is evaluated with each linkc1− c2, c2− c3 andc3− c4 using:
DropTail, RED, CC-1, CC-2, CC-4, CC-5, CC-9, CC-17 and
MAY with a queue size 100 packets. CC-l parameters are:
index = l, SamplingT ime = 100ms, γ = 0.99, δ = 1.01,
u0 = 0.98. The MAY parameters used in the experiment
are: ∆ = 500ms, u0 = 0.98, PctNew = 0.05, qw = 0.1,
T0 = 10sec.

9

0 10 20 30
0

5000

D
ro

p
T

a
il

0 10 20 30
0

5000

R
E

D
0 10 20 30

0

5000

C
C

−
1

0 10 20 30
0

5000

C
C

−
2

0 10 20 30
0

5000

C
C

−
3

0 10 20 30
0

5000

C
C

−
5

0 10 20 30
0

5000

C
C

−
9

0 10 20 30
0

5000

C
C

−
1

7

0 10 20 30
0

5000

M
A

Y

FID

Measured throughput
max−min fair allocation

Fig. 7. Amount of bandwidth taken by each of 30 flows. x-axis is flowID,
y-axis is of time aberrated throughput in Kbps. Droptail, RED, CL-1, CL-2,
CL-3, CL-5, CL-9, CL-17, MAY

Figure 7 depicts 9 scenarios, one for each dropping scheme.
Each plot depicts the amount of throughput taken by each of
30 flows. The doted line represents the max-min fair share of
bandwidth while points represent measured share of bandwidth
for each of 30 flows in the network. We can see significant
unfairness in DropTail, RED and CC-1 cases. As we increase
index of CL scheme, we obtain share of bandwidth very close
to max-min share as expected (Theorem 2.2). Jain’s indices,
defined by (10) for each of these AQM’s are:

j(UDTail) = 0.345, j(URED) = 0.731, j(UCC−1) = 0.661

j(UCC−2) = 0.846, j(UCC−3) = 0.884, j(UCC−5) = 0.956

j(UCC−9) = 0.989, j(UCC−17) = 0.997, j(UMAY) = 0.985

V. SUMMARY

In this paper we developed two AQM schemes for enforc-
ing max-min fairness in TCP networks: MLC(l) and MAY.
MLC(l) is a stateless scheme and belongs to class of queue
management schemes that we call CHOKe-like. We showed
analytically that by increasing indexl, the resource allocation
among TCP users using network of MLC(l) queues converge
to max-min fair. To the best of our knowledge no stateless
AQM scheme for enforcing max-min fairness exists in the

literature. However, the price for being close to max-min
fairness must be payed by large number of comparisons.

Our second scheme, MAY, exploits paradigm in which the
drop decision is based solely on short history of previously
dropped packets. It turns out that this information is enough
to enforce fairness among various levels of aggressiveness
and responsiveness (modelled as AIMD). From practical point
of view, keeping information of only dropped packets can
significantly reduce the memory requirements for storing the
state.

REFERENCES

[1] S. Athuraliya, D. Lapsley, S. Low. “Enhanced Random Early Marking
algorithm for Internet flow control”. Proceedings of IEEE INFOCOM,
Tel Aviv, Israel, 2000.

[2] V. Jacobson. “Congestion avoidance and control”. Proceedings of SIG-
COMM, Vancouver, BC, Canada, 1988.

[3] S. Floyd, V. Jacobson. “Random early detection gateways for congestion
avoidance”. IEEE/ACM Transactions on Networking, vol. 1, pp. 397 -
413, Aug. 1993.

[4] W. Feng, K.G. Shin, D.D. Kandlur, D. Saha. “The BLUE active queue
management algorithms”.IEEE/ACM Transactions on Networking, vol.
10, no. 4, 513-528, August 2002.

[5] C. Hollot, V. Misra, D. Towsley, W.B. Gong. “Analysis and design of
controllers for AQM routers supporting TCP flows”.IEEE Transactions
on Automatic Control, pp. 945-959 June, 2002.

[6] S. Kunniyur, R. Srikant. “Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management”.IEEE/ACM
Transactions on Networking, vol. 12, no. 2, 286-299, April 2004.

[7] A. Demers, S. Keshav, S. Shenker. “Analysis and simulation of a fair
queueing algorithm”. Proceedings of ACM SIGCOMM, Austin, TX,
1989.

[8] M. Shreedhar, G. Varghese. “Efficient fair queueing using deficit round-
robin”. IEEE/ACM Transactions on Networking, vol. 4, no. 3, June 1996.

[9] D. Lin, R. Morris. “Dynamics of random early detection”. Proceedings
of ACM SIGCOMM, Cannes, France, 1997.

[10] I. Stoica, S. Shenker, H. Zhang. “Core-Stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks”.IEEE/ACM Transactions on Networking, vol.
11, no. 1, 33-46, February 2003.

[11] R. Pan, L. Breslau, B. Prabhakar, S. Shenker. “Approximate Fairness
through Differential Dropping”. ACM SIGCOMM Computer Commu-
nication Review Volume 33 , Issue 2, April 2003

[12] R. Mahajan, S. Floyd, D. Wetherall. “Controlling high-bandwidth flows
at the congested router”. Proceedings of IEEE ICNP, Riverside, CA,
USA, 2001.

[13] D. Katabi, M. Handley, C. Rohr. “Internet Congestion Control for Future
High Bandwidth-Delay Product Environments”. Proceedings of ACM
SIGCOMM, Pittsburgh, PA, USA, 2002.

[14] B. Wydrowski, M. Zukerman. “MaxNet: A congestion control architec-
ture for maxmin fairness”. IEEE Communications Letters, vol. 6, no.
11, Nov. 2002, pp.512-514.

[15] Y. Yang, S. Lam. “General AIMD Congestion Control”. Proceedings
ICNP 2000, Osaka, Japan, 2000.

[16] S. Floyd. “HighSpeed TCP for Large Congestion Windows”. RFC 3649,
Experimental, December 2003.

[17] T. Kelly. “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks”. ACM SIGCOMM Computer Communication Review
Volume 33, Issue 2, April 2003.

[18] S. Low, L. Andrew, B. Wydrowski. “Understanding XCP: Equilibrium
and Fairness”. Proceedings of IEEE Infocom, Miami, FL, March 2005.

[19] T. V. Lakshman, U. Madhow. “The performance of TCP/IP for networks
with high bandwidth-delay products and random loss”.IEEE/ACM
Transactions on Networking, vol. 5, no. 3, 336-350, June 1997.

[20] V. Dumas, F. Guillemin, P. Robert. “A Markovian analysis of additive-
increase multiplicative-decrease algorithms”. Adv. in Appl. Probab. 34
(2002), no. 1, 85111.

[21] L. Breiman. “Probability”. SIAM classics in Applied Math. 1992.
[22] M. Kodialam, T. V. Lakshman, Shantidev Mohanty. “Run based Traffic

Estimator (RATE): A Simple, Memory Efficient Scheme for Per-Flow
Rate Estimation”. Proceedings of IEEE INFOCOM, Hong Kong, March
2004.

10

[23] Mo. J, Walrand. J. “Fair end-to-end window-based congestion control”.
IEEE/ACM Transactions on Networking, Vol. 8, No. 5 October, 2000.

[24] C. Estan, G. Varghese. “New Directions in Traffic Measurement and
Accounting”. SIGCOMM, August 2002

[25] R. Srikant. “The Mathematics of Internet Congestion Control”.
Birkhauser, 2004.

[26] K. Fall, S. Floyd. “Router mechanisms to support end-to-end congestion
control”. [online] ftp://ftp.ee.lbl.gov/papers/collapse.ps.

[27] R. Pan, B. Prabhakar, K. Psounis. “CHOKe: A stateless AQM scheme
for approximating fair bandwidth allocation”. Proceedings of IEEE
INFOCOM, Tel Aviv, Israel, 2000.

[28] A. Abouzeid, S. Roy. “Analytic understanding of RED gateways with.
multiple competing TCP flows”. Proceedings of IEEE GLOBECOM,
2000.

[29] S. Floyd. “Connections with Multiple Congested Gateways in Packet-
Switched Networks Part 1: Oneway Traffic”. ACM Computer Commu-
nication Review, 30 - 47, Vol. 21 , Issue 5, October 1991.

[30] A. Das, D. Dutta, A. Goel, A. Helmy, J. Heidemann. “Low State
Fairness: Lower Bounds and Practical Enforcement”. Proceedings of
the IEEE INFOCOM, Miami, FL, USA, March 2005.

[31] T. J. Ott, T. V. Lakshman, L. H. Wong. “SRED: Stabilized RED”.
Proceedings IEEE INFOCOM, New York, March 1999.

[32] B. Suter, T.V. Lakshman, D. Stiliadis, A.K. Choudhury. “Buffer man-
agement schemes for supporting TCP in gigabit routers with per-flow
queueing”. IEEE Journal on Selected Areas of Communications 17 (6)
(1999) 1159-1170.

APPENDIX

A. Proof of Theorem 2.1

Let sk be the time ofk-th loss, ie:sk is thek-th smallestm
which satisfiesU (ρ)

m = 1
2U

(ρ)
m−1. DefineZ

(ρ)
0 = 0 andZ

(ρ)
k =

U
(ρ)
sk . It follows that Z

(ρ)
k is also a Markov chain and the

following theorem provides insight into the behavior ofZ
(ρ)
k

for small values ofρ.
Proposition 1.1:There exist a Markov chainV k, such that

for ρ > 0,

Z
(ρ)
k =

1

RTT
2

l+1 ρ
1

l+1
V k +

1

ρ
1

l+1
R

(ρ)
k ,

where the stochastic processR
(ρ)
k converge to zero in distri-

bution asρ → 0.
Preamble to Proof of Proposition 1.1
The Markov chain U

(ρ)
k can be written asU

(ρ)
k =

RTT 2W
(α)
k , whereα = ρ/RTT 2l and

W
(α)
k+1 = W

(α)
k + 1 with probability e−α(W

(α)
k)l

W
(α)
k+1 =

1
2
W

(α)
k with probability 1− e−α(W

(α)
k)l

.

Analogously, we can define another associated Markov
chain with states ofW (α)

k just after congestion:V (α)
k =

Z
(ρ)
k /RTT 2. Its transition is given by

V
(α)
k+1 =

1
2
(V (α)

k + G
(α)

V
(α)

k

).

HereG
(α)
n is random variable determined by distribution:

P (G(α)
x ≥ y) =

x+byc∏

k=x

e−αkl

.

Lemma 1.1:Let x ≥ 0. Then asα goes to 0, the random
variableα

1
l+1 G

(α)

x/α
1

l+1
converges in distribution to a random

variableGx such that fory ≥ 0

P (Gx ≥ y) = e−
1

l+1 ((x+y)l+1−xl+1). (11)
Proof: Let x, y ≥ 0 andα < 1. Then

P (α
1

l+1 G
(α)

x/α
1

l+1
> y) = P (G(α)

x/α
1

l+1
> y/α

1
l+1)

=
b(x+y)/α

1
l+1 c∏

k=x/α
1

l+1

e−αkl

.

Taking logarithms we conclude:

ln(P (α
1

l+1 G
(α)

x/α
1

l+1
> y)) = −α

b(x+y)/α
1

l+1 c∑

k=x/α
1

l+1

kl −→

−→ −α

∫ (x+y)/α
1

l+1

x/α
1

l+1
tldt =

1
l + 1

((x + y)l+1 − xl+1).

Definition 1.1: The sequenceV n denotes a Markov chain
given byV 0 = 0 and transitions:

V n+1 =
1
2
(V n + GV n

).

Here {Gx : x ≥ 0} is a family of random variables
independent ofV n such that the distribution ofGx is given
by (11).

Lemma 1.2:The Markov chainα1/(l+1)V
(α)
n converges in

distribution to the Markov chainV n.
Proof: The proof of this fact follows same lines as proof

of Corollary 1 in paper [20]. Namely, using uniform continuity
of the mappingt → tl, and techniques from the proof of
Proposition 1 from [20], it follows that for anyK > 1

lim
α→0

sup
α1/(l+1)<x,y<K

|P (Gx ≥ y)−P (α
1

l+1 G
(α)

x/α
1

l+1
> y)| = 0.

Then, using the previously established uniform convergence,
it follows that for any continuous functionf on R+ with
compact support:

lim
α→0

sup
x>α1/(l+1)

|E(f(Gx))− E(f(α
1

l+1 G
(α)

x/α
1

l+1
))| = 0.

Finally, again following the same lines as in proof of
Proposition 2 from [20] we can conclude desired convergence
in distribution.

The previous lemma allows us to approximate the Markov
chainV

(α)
k with V k with initial valueV 0 = α1/(l+1)V

(α)
0 = 0.

We are ready to give:
Proof of Proposition 1.1. Recall that Z

(ρ)
k represents

throughput just after packet loss and thatα = ρ/RTT 2l. Then
for small ρ we can write5

Z
(ρ)
k =

1
RTT 2

V
(α)
k =

1
RTT 2

(
1

α1/(l+1)
V k + o(

1

α
1

l+1
)) =

=
RTT 2l/(l+1)

RTT 2

1
ρ1/(l+1)

V k + o(
1

ρ
1

l+1
) =

5Here, o(1

α
1

l+1
) represent random variableR(α) such that

R(α)/α
1

l+1 → 0 asα → 0

11

=
1

RTT
2

l+1 ρ
1

l+1
V k + o(

1

ρ
1

l+1
)

¥
Thus the Markov chainZ(ρ)

k of throughput after conges-
tion events can be approximated with the Markov chain

1

RTT
2

l+1 ρ
1

l+1
V k for small values ofρ as was claimed.

At this point we are concentrating onV k and following
the basic ideas from [20]. We shall prove that(V k)l+1 is
autoregressive(AR) process with unique invariant distribution
that can be explicitly written.

Theorem 1.1:For the Markov chainV k, the processV
l+1

k

is autoregressive with following representation:

V
l+1

k+1 =
1

2l+1
(V

l+1

k − (l + 1)En)

where En is an IID sequence of exponentially distributed
random variables with parameter 1:P (En ≥ y) = e−y. More-
over the Markov chainV k has unique invariant distribution
represented by the random variableV∞ which satisfy:

V∞ = l+1

√√√√(l + 1)
∞∑

n=1

1
2n(l+1)

En, (12)

and the process defined with this invariant distribution as initial
distribution forV 0 is ergodic.

Proof: By definition we have

V n+1 =
1
2
(V n + GV n

).

Let En = 1
l+1 (2l+1V

l+1

n+1 − V
l+1

n). Then:

P (En ≥ y) = P (
1

l + 1
(2l+1V

l+1

n+1 − V
l+1

n) ≥ y) =

= P ((V n + GV n
)l+1 ≥ (l + 1)y + V

l+1

n)

= P (GV n
≥ ((l + 1)y + V

l+1

n)1/(l+1) − V n) =

= e−
1

l+1 ((l+1)y+V
l+1
n −V

l+1
n) = e−y

Thus, the first part of the Theorem is proved. To prove
the second part notice that random variable given by (12)
represents an invariant probability. To prove its uniqueness we
use Theorem 7.16 from [21]. It is enough to prove that there
are no two disjoint setsA1, A2 ⊂ R+ such that fori = 1, 2
and all x ∈ Ai, P (V 2 ∈ Ai| V 1 = x) = 1. Suppose that
there exist two such setsA1, A2. Let x1 ∈ A1. Then since
Gx1 has positive density we conclude that[x1

2 ,∞) \ A1 has
Lebesgue-measure 0. Similarly forx2 ∈ A2, [x2

2 ,∞)\A2 has
Lebesgue-measure 0 which means thatA1 andA2 cannot be
disjoint.

Now we are ready to prove that for small values of
ρ0, the steady state throughput can be approximated by

1

RTT
2

l+1 ρ
1

l+1
0

DCL, where DCL does not depend onρ0 nor

l.
Proof: (of the Theorem 2.1)If we writeU

(ρ)
i =

RTT 2W
(α)
k , whereα = ρ/RTT 2l, the Theorem is an im-

mediate consequence of the Theorem 1.1 and Proposition 9
from [20] for a multiplicative decrease factorδ = 1

2 .6

6Here constant3
4

= 1+δ
2δ(1−δ)

, for δ = 0.5.

