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Tools for the analysis and design of communication
networks with Markovian dynamics

Arie Leizarowitz , Robert Shorten, Rade Stanojević

Abstract— In this paper we analyze the stochastic properties of
a class of communication networks whose dynamics are Marko-
vian. We characterize the asymptotic behavior of such network
in terms of the first and second moments of a stochastic process
that describes the network dynamics, and provide tools for their
calculation. Specifically, we provide computation techniques for
the calculation of these statistics and show that these algorithms
converge exponentially fast. Finally, we suggest how our results
may be used for the design of network routers to realize networks
with desired statistical properties.

I. INTRODUCTION

A. General remarks

The study of communication networks that carry TCP
(the transmission control protocol) traffic has been subject of
intense interest in the Computer Science, Network Engineer-
ing, and Applied Mathematics literature; see for example [5],
[8], [11], [12], [14], [15], [16], [17], [23].

The principal motivation for much of this work has been
to understand network behaviour, and to characterise important
network properties with a view to developing analytic tools
for the design of such networks. In particular, much of this
work has focussed on understanding the manner in which
the network allocates available bandwidth amongst competing
network flows (network fairness) and the speed at which
this bandwidth allocation takes place (network convergence
rate). Recently, a very accurate random matrix model of TCP
network dynamics was proposed in [21]. This model was
shown to be capable of capturing many essential features
of networks in which TCP-like network flows compete for
bandwidth via a bottleneck router. By making some sim-
plifying assumptions concerning stochastic behaviour of the
network, the authors demonstrate that this model may also
be used as a basis to design networks in which bandwidth
can be allocated in an arbitrary manner amongst competing
flows. This may be achieved by redesigning the manner in
which individual sources respond to network congestion, or
by redesigning the manner in which network routers respond
to network congestion (or both).

The objective of this paper is to pursue further this line of
research. However, rather than using the model as a basis for
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adjusting the behavior of the the individual flows to achieve
desired network behavior, we concentrate here on using this
model to redesign the manner in which the bottleneck router
drops packets when the network is congested; in particular, we
analyze the properties of such networks when the bottleneck
router drops packets according to some Markovian rules1.
Our principal contribution in this paper is to characterize the
stochastic behavior of these networks in terms of the first
and second moments of a stochastic process that describes
the network dynamics, and develop computational techniques
for the calculation of these statistics. We concentrate on these
statistics as they provide a characterization of the average long
term fairness properties of network, and some measure of the
instantaneous deviation (instantaneous unfairness) from this
measure. Finally, we suggest how our results may be used to
design new types of communication networks.

B. Brief description of AIMD congestion control algorithms

Most traffic in communication networks is carried using
the TCP protocol.2 The standard TCP protocol (introduced by
Jacobson paper [9]) is a special case of AIMD congestion
control. Here we give a very brief description of the AIMD
congestion control strategy; the interested reader is referred to
[10], [25] for detailed description of the protocol.

A communication network consists of a number of
sources and sinks connected together via links and routers.
In this paper we assume that these links can be modelled
as a constant propagation delay together with a queue, that
the queue is operating according to a drop-tail discipline, and
that all of the sources are operating a Additive-Increase Multi-
plicative Decrease (AIMD) -like congestion control algorithm.
AIMD congestion control operates a window based congestion
control strategy. Each source maintains an internal variable
cwndi (the window size) which tracks the number of sent
unacknowledged packets that can be in transit at any time, i.e.
the number of packets in flight.

On safe receipt of data packets the destination sends
acknowledgement (ACK) packets to inform the source. When
the window size is exhausted, the source must wait for an

1Redesigning the manner in which network routers operate to allocate
bandwidth is very important for a number of reasons related to network
quality of service issues. While the results in [21] are interesting from a
theoretical perspective, router redesign along the lines suggested by this work
would place an impossible computational burden on the network routers; on
the other hand, dropping packets according to some Markovian rule could
possibly by implemented using far less computational resources.

285% − 90% of all internet traffic is TCP-traffic [26].
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ACK before sending a new packet. Congestion control is
achieved by dynamically adapting the window size according
to an additive-increase multiplicative-decrease law. Roughly
speaking, the basic idea is for a source to probe the network
for spare capacity by increasing the rate at which packets are
inserted into the network, and to rapidly decrease the number
of packets transmitted through the network when congestion
is detected through the loss of data packets. In more detail, the
source increments cwndi(t) by a fixed amount αi upon receipt
of each ACK. On detecting packet loss, the variable cwndi(t)
is reduced in multiplicative fashion to βicwndi(t). We shall
see that the AIMD paradigm with drop-tail queuing gives rise
to networks whose dynamics can be accurately modelled as a
positive linear system.

C. AIMD model and problem description

Various types of models for AIMD networks have been
developed by several authors, see for example [22] or [13]
and the references therein for an overview of this work. We
base our discussion on a recently developed random matrix
model of AIMD dynamics that was first presented in [21].
This model uses a set of stochastic matrices to characterize
the behaviour of a network of AIMD flows that compete
for bandwidth via a single bottleneck router (as depicted in
figure 1). While other similar random matrix models have been
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Fig. 1: Network with single bottleneck router.

proposed in the literature [2], [3], the model proposed in [21]
has several attractive features. In particular, the authors use sets
of nonnegative column stochastic matrices to model the evolu-
tion of communication networks and results from Frobenius-
Perron theory to characterize the stochastic properties of such
networks. We begin our discussion by reviewing the essential
features of this model.

Suppose that the network under consideration has n
flows, all of them operating an Additive Increase Multiplica-
tive Decrease (AIMD) congestion control algorithm, compet-
ing for bandwidth over a bottleneck link which has drop-tail
queue. Then the current state of the network at times when
a packet is dropped at the bottleneck router (referred to as
the k’th congestion event) is given by the number of packets

in flight that belong to each network source at this time. We
describe the network state at the k-th congestion event by an
n-dimensional vector W (k) = {wi(k)}n

i=1 where wi(k) is
the i-th component of W (k), which is equal to the throughput
that belong to the i’th source when this source is informed
of network congestion. It has been shown in [21] that the
sequence {W (k)}∞k=0 satisfies:

W (k + 1) = A(k)W (k), (I.1)

where W (k) = [w1(k), · · · , wn(k)]T , and

A(k) =











β1(k) 0 · · · 0
0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)











+

1
∑n

j=1 αjγj









α1γ1

α2γ2

· · ·
αnγn









[

1 − β1(k), · · · , 1 − βn(k)
]

. (I.2)

For every j ∈ {1, 2, . . . , n}, the constant αj > 0 in
(I.2) is the Additive Increase parameter and γj > 0 is the
constant 1/RTT 2

j . Here RTTj is the round-trip time for
a packet from the j-th flow just before congestion, and
either βj(k) = 1, which holds if the j-th flow didn’t lose
any packet during the k-th congestion event, or βj(k) is
equal to the Multiplicative Decrease parameter β0

j ∈ (0, 1) if
the j-th flow did lose some packet in the k-th congestion event.

Comment: We exclude the possibility that
β1(k) = β2(k) = · · · = βn(k) = 1, since there is no
congestion event without losing at least one packet.

We denote by M the set of the possible values of the
matrices A(k), so that

M = {M1,M2, . . . ,Mm}

for some m ≤ 2n−1 and for all k. Then A(k) ∈ M for every
k ≥ 0, and we remark that strict inequality m < 2n − 1 may
hold; namely that in the models which we consider, certain
configurations of packets’ loss cannot practically occur.

Let I(k) = {j : βj(k) = β0
j } be the set of labels of

flows which have experienced a loss of a packet during the
k-th congestion event. Note that for each k the matrix A(k)
has a strictly positive j-th column if and only if j ∈ I(k), and
that for j 6∈ I(k), the j-th column of A(k) is equal to ej , the
j-th column of the identity n × n matrix In. We denote by
Σ the (n − 1)-dimensional simplex of all the n-dimensional
stochastic vectors. Recall that a vector v = (v1, . . . , vn) ∈ IRn

is stochastic if each one of its coordinates vi is nonnegative and
v1+· · ·+vn = 1. It turns out that the matrices Mi (1 ≤ i ≤ m)
which compose M, are nonnegative and column-stochastic
[4]. Therefore Mi(Σ) ⊂ Σ holds for every 1 ≤ i ≤ m. By
normalizing W (0) to belong to Σ we may therefore assume,
with no loss of generality, that W (k) ∈ Σ for every k ≥ 0.

For networks with routers employing a drop-tail
queueing discipline, it is often assumed in the networking
community that congestion events may in some circumstances
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be modelled as sequences of independent events [1], [2],
[19], [21]. In terms of the model described above, this means
that for networks with a single bottleneck link and with a
drop-tail queue the following holds:

Assumption (i) {A(k)}k∈N is a sequence of independent
and identically distributed (i.i.d) random variables A(k), and
for every j ∈ {1, 2, . . . , n} the probability that the j-th flow
detects a drop in each congestion event is positive.

As we have mentioned already, in designing rules which
determine how will the network react to congestion, one
can typically have two approaches. The first is the design
of flow-based congestion control algorithms and the second
is the design of queueing discipline. In the present paper
we concentrate on the latter and propose two new queueing
disciplines which we characterize by computing the stationary
statistics for the vector W (k) for each of these cases. We first
consider queuing discipline with the property that packets are
dropped from the queue in such a manner that the following
assumption is valid:

Assumption (ii) {A(k)}k∈N is a stationary Markov
chain on the finite set of matrices M with transition
matrix P ∈ IRm×m. Moreover we assume that for each
j ∈ {1, 2, . . . , n} there exists a matrix M ∈ M with positive
j-th column.

We note that as in the i.i.d. case, we must have the latter
assumption in order to ensure that each flow will see a drop
at some point. We also remark that stationarity is assumed to
avoid technical difficulties and it is not essential. An additional
assumption in Sections II and III (which is relaxed in IV)
is that the transition matrix P has strictly positive entries.
Theorems 2.9 and 3.6 give the asymptotic values of E(W (k))
and E[(W (k))(W (k))T ] in the limit where k tends to infinity,
which we denote V ∗ and D∗ respectively. Although we do not
have explicit formulas for V ∗ and D∗, Theorems 2.7 and 3.5
provide iterative algorithms for computing them in a geometric
convergence rate. In section IV we extend the results of the
previous two sections to the case where the matrix P is merely
primitive and its entries are not necessarily strictly positive.

The second queueing discipline we propose here is the
following: the probability that a certain set of flows will
detect a drop during the k-th congestion event depends only
on the vector W (k). Formally we assume that the router
drops packet from the queue when it is full in such fashion
that the following is true:

Assumption (iii) {W (k)}k∈N is a stochastic process
in the set of stochastic vectors Σ, which has the following
property:
For every i ∈ {1, 2, . . . ,m} and w ∈ Σ, the conditional
probability of A(k) given W (k) is expressed by

P [A(k) = Mi| W (k) = w] = pi(w)

for some positive continuous functions pi : Σ → IR+ which
satisfy

∑m

i=1 pi(w) = 1 for all w ∈ Σ. Again, for each

i ∈ {1, 2, . . . , n} we require the existence of a matrix
M ∈ M with positive i-th column.

In view of the relation W (k + 1) = A(k)W (k), As-
sumption (iii) implies that the distribution of W (k + 1) is
completely determined by the distribution of W (k). Section V
is devoted to studying the behavior of W (k) under Assumption
(iii). It turns out that the study of the model under Assumption
(iii) can be reduced to its study under Assumption (ii). This
enables to establish the analogous results concerning the
asymptotic behavior of E(W (k)) and V ar(W (k)) for this
case. In particular, the latter can be computed by iterative
methods producing schemes which converge in a geometric
rate.

II. THE ASYMPTOTIC EXPECTATION OF W (N)

In this section we compute the equilibrium expected value
of the window size variable W (N) under Assumption (ii), and
supposing that the transition probabilities Pij are positive:

Pij > 0 for every 1 ≤ i, j ≤ m. (II.1)

Denoting by ρ = (ρ1, ..., ρm) the unique equilibrium distribu-
tion corresponding to P , we associate with Pij the backward
transition probabilities matrix P̃ (see [18], Chapter 1.9) given
by

P̃ij =
ρi

ρj

Pij =

P [A(k − 1) = Mi]

P [A(k) = Mj ]
P [A(k) = Mj |A(k − 1) = Mi] =

= P [A(k − 1) = Mi|A(k) = Mj ]. (II.2)

We interpret P̃ij as the conditional probability that the system
occupied the state Mi at the previous instant of time given that
it is presently at state Mj , for the stationary Markov chain
{Ak}.

Let Φ : (IRn)m → (IRn)m be the linear mapping given
by:

Φ(V ) =

(

m
∑

i=1

P̃i1MiVi, . . . ,

m
∑

i=1

P̃imMiVi

)

(II.3)

where V = (V1, ..., Vm), Vi ∈ IRn and Mi ∈ M for every
1 ≤ i ≤ m. We have the following result:

Proposition 2.1: For an arbitrary W (0) = s ∈ Σ and all
i = 1, 2, . . . ,m, the following limits exist:

Vi = lim
k→∞

E[W (k)|A(k) = Mi], i = 1, 2, ...,m. (II.4)

Moreover, the vector V = (V1, ..., Vm) ∈ Σm whose
components are defined in (II.4) satisfies the fixed point
equation

V = Φ(V ). (II.5)
Proof. The proof will be given after establishing Theorem

2.7 �
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Let S be the subspace of IRn defined by:

S =

{

x ∈ IRn :

n
∑

i=1

xi = 0

}

.

It turns out that Φ has the following property:
Proposition 2.2: The mapping Φ is linear from Σm into

itself, and from Sm into itself.
Proof. Both claims follow from the facts that if M is a

column stochastic n × n matrix, then for every x ∈ IRn we
have

n
∑

i=1

(Mx)i =
n
∑

i=1

xi,

and that each Mi is a column stochastic matrix. �

We know that any matrix in M can be written in the
form

M = diag(β1, β2, ..., βn)+(δ1, . . . , δn)T ((1−β1), . . . , (1−βn))

where 0 < βk ≤ 1 for every 1 ≤ k ≤ n and not all of them are
equal to 1. We denote β = (β1, ..., βn)T , δ = (δ1, ..., δn)T ,
and δ is a stochastic vector with positive entries. If the first q
entries of β are equal to 1, namely β1 = β2 = · · · = βq = 1
for some q < n, and the last n − q = r > 0 entries are all
smaller than 1, then our matrix M has the following form:

M =

(

Iq M ′

0 M ′′

)

. (II.6)

The matrix Iq in (II.6) is the q × q identity matrix, all the
entries in the last r columns are positive, and the sum of the
entries in each of these columns is equal to 1.

The following result is the main technical tool that we
employ in studying properties of Φ. We denote by ‖ · ‖1 the
L1 norm of vectors in IRn. We will prove it as Corollary 3.3
after having established Lemma 3.2. A direct proof can be
found in [24].

Lemma 2.3: Let M ∈ M. Then for every x ∈ S we have

Mx 6= x ⇒ ‖Mx‖1 < ‖x‖1. (II.7)
Proof. See the proof of Corollary 3.3. �

Remark 2.4: The property which is established in
Lemma 2.3 is referred to in the literature as the paracontract-
ing property; see [7] chapter 8 or [6]. We have thus showed
that the matrices Mi are paracontractive in S in L1 norm. We
will again use the notion of paracontractivity in Section V.

Lemma 2.5: Suppose that M ∈ M is such that the
columns which contain zeros are indexed by i1, i2, . . . , iq , and
let x ∈ S be such that Mx = x. Then x belongs to the
subspace spanned by the basic vectors ei1 , ei2 , . . . , eiq

.
Proof. We suppose without loss of generality that the first

q columns of M contain zeros and the last r = n−q columns
are positive, i.e. that M has the form given by (II.6). We will
establish that the last r coordinates of x are equal to 0. If
r = 0 then there is nothing to prove. If r = n then M is a
stochastic matrix with strictly positive entries, and therefore it
is a contraction on S, implying that x = 0.

We now suppose that 0 < r < n, and let P be the r × r
submatrix of M which is defined by the last r rows and
last r columns. If we denote by x′ the r-dimensional vector

composed of the last r coordinates of x, then Px′ = x′.
But the sum of each column of P is smaller than 1 and x
is nonnegative, hence ‖Px′‖1 < ‖x′‖1 whenever x′ 6= 0,
implying that x′ must vanish. This concludes the proof of the
lemma. �

We define on (IRn)m the norm

‖V ‖ = ‖(V1, . . . , Vm)‖ = max
1≤i≤m

(‖Vi‖1),

and consider the subspace Sm and subset Σm of (IRn)m

endowed with this norm. The next result establishes that Φ2

is a contraction on the metric space Σm as well as on normed
space Sm.

Proposition 2.6: Let Φ be the mapping given by (II.3).
We assume that (II.1) holds, so that in view of (II.2), all
the backward probabilities P̃ij are positive as well. Then there
exists a constant θ < 1 such that

‖Φ2(U) − Φ2(V )‖ ≤ θ‖U − V ‖ (II.8)

holds for all U, V ∈ Σ.
Proof. We will establish that for every pair U 6= V in Σ,

the inequality ‖Φ2(U) − Φ2(V )‖ < ‖U − V ‖ holds. This
will imply the assertion of the proposition in view of the
compactness of Σm.

Thus let U = (U1, . . . , Um) and V = (V1, . . . , Vm) be
any two different elements belonging to Σm. We have

‖Φ(U) − Φ(V )‖ = max
j

‖

m
∑

i=1

P̃ijMi(Ui − Vi)‖1 (II.9)

≤ max
j

m
∑

i=1

P̃ij‖Mi(Ui − Vi)‖1 (II.10)

≤ max
j

m
∑

i=1

P̃ij‖Ui − Vi‖1 (II.11)

≤ max
j

m
∑

i=1

P̃ij‖(U − V ‖ = ‖U − V ‖. (II.12)

We will next check under which conditions equality
‖Φ2(U)−Φ2(V )‖ = ‖U −V ‖ can hold. We thus assume that
U 6= V are such that ‖Φ(Φ(U)) − Φ(Φ(V ))‖ = ‖U − V ‖. It
follows from

‖U−V ‖ = ‖Φ(Φ(U))−Φ(Φ(V ))‖ ≤ ‖Φ(U)−Φ(V )‖ ≤ ‖U−V ‖

that ‖Φ(U) − Φ(V )‖ = ‖U − V ‖. Thus in this situation all
the inequalities in (II.9)-(II.12) are actually equalities.

We now denote W = U − V ∈ Sm and we note that in
view of (II.12), for some j,

m
∑

i=1

P̃ij‖Wi‖1 = max
i

(‖Wi‖1) = ‖W‖. (II.13)

Since we suppose that all P̃ij are positive, (II.13) implies

‖Wi‖1 = ‖W‖ for every 1 ≤ i ≤ m. (II.14)

It then follows from (II.11) that

max
j

m
∑

i=1

P̃ij‖Mi(Wi)‖1 = max
j

m
∑

i=1

P̃ij‖Wi‖1 = ‖W‖,



5

which in view of ‖Mi(Wi)‖1 ≤ ‖Wi‖1 and the positivity of
all the Pij , implies

‖Mi(Wi)‖1 = ‖W‖ (II.15)

for all i. It follows from (II.14), (II.15) and Lemma 2.3 that

Mi(Wi) = Wi (II.16)

for all i. We thus conclude from (II.10), (II.15) and (II.16)
that there exist some j such that

‖

m
∑

i=1

P̃ij(Wi)‖1 =

m
∑

i=1

P̃ij‖Wi‖1 = ‖W‖.

However, this can happen if and only if for every r ∈
{1, 2, . . . , n}, there does not exist 1 ≤ i, j ≤ m such that
the r-th coordinates (Wi)r and (Wj)r are of opposite signs.

By employing the above argument, and also the conclu-
sion (II.16) to the equality ‖Φ(Φ(W ))‖ = ‖Φ(W )‖ rather than
to ‖Φ(W )‖ = ‖W‖, we have that for all k ∈ {1, 2, . . . ,m}

Mk

(

m
∑

i=1

P̃ikWi

)

=

m
∑

i=1

P̃ikWi. (II.17)

Assumption (ii) of our model is such that for every r ∈
{1, 2, ..., n} there exists a matrix Mk ∈ M with positive r-th
column. It follows from Lemmas (2.5) and (II.17) that the r-th
coordinate of

∑m

i=1 P̃ikWi must vanish. But we have that there
are no two indices i1 and i2 such that the r-th coordinates of
Wi1 and Wi2 have opposite signs. This fact implies that the
r-th coordinate of the vector Wi must vanish, and this is true
for every 1 ≤ i ≤ m. Since r is arbitrary, we conclude that
Wi = 0 for all i. We have thus established that if U, V ∈ Σm

are distinct then

‖Φ2(U) − Φ2(V )‖ < ‖U − V ‖.

The proof of the proposition is thus complete. �

Theorem 2.7: The spectral radius of the restriction of Φ
to Sm is smaller than 1. In particular there exists a unique
solution V ? for equation (II.5), and the iteration scheme

V (k+1) = Φ(V (k)), k = 0, 1, 2, ...

with any starting point V (0) = V0 in Σ satisfies

lim
k→∞

V (k) = V ?. (II.18)
Proof. We will first establish that the spectral radius of

the restriction of Φ to Sm is smaller than 1. But we know that
the iterations of Φ2 in Sm converge to zero for every starting
point. It follows that every eigenvalue of the restriction of Φ
to Sm, say λ, satisfies |λ| ≤ 1. If, however, there exists an
eigenvalue which is equal to eiθ for some real θ, then there
exists a subspace Π of Sm, which is invariant under Φ, and
is either one- or two-dimensional. The restriction of Φ to Π
is then a rotation, contradicting the fact that the iterations of
Φ should tend to zero.

The uniqueness of solutions of (II.5) follows from the
contractive property of Φ2. Then for every initial V0 ∈ Σ we
have limk→∞ V (2k) = V ?. Hence

V (2k+1) = Φ(V (2k)) → Φ(V ?) = V ? as k → ∞,

and (II.18) follows. �

Proof of Proposition 2.1. Let Vi(k) = E[W (k)|A(k) =
Mi]. The sequence of vectors V (k) = (V1(k), . . . , Vm(k)) ∈
Σm satisfies

V (k + 1) = Φ(V (k)). (II.19)

From Theorem (2.7), {V (k)}∞k=0 converge and the existence
of the limits in (II.4) follows. In view of (II.19) these limits
satisfy the fixed point equation (II.5). �

We have the following result which is actually Theorem
3.1 from [21]:

Corollary 2.8: Let Assumption (i) hold, so that the prob-
ability that A(k) = Mi is equal to ρi for every k ≥ 0 and
1 ≤ i ≤ m. Then the asymptotic expected value of W (k)
is the unique stochastic eigenvector of

∑m

i=1 ρiMi which
corresponds to the eigenvalue 1.

Proof. The sequence {A(k)} of i.i.d. random matrices can
be seen as a Markov chain on the set M = {Mi : ρi > 0}
with the m×m transition matrix P given by Pij = ρj . Since
Pij is positive for every i and j we have that P̃ij = ρiPij/ρj =
ρi > 0. We look for a solution of equation (2.1) for which all
the components Vi are the same, say equal to V̄ . This yields
the equation

V̄ =

(

m
∑

i=1

ρiMi

)

V̄ ,

which implies the assertion of the corollary. �

Theorem 2.9: Under Assumption (ii), and assuming that
the transition matrix P has strictly positive entries, then the
asymptotic behavior of the expectation of the random variable
W (N) is given by:

lim
N→∞

E(W (N)) =

m
∑

i=1

ρiV
?
i , (II.20)

where V ? = (V ?
1 , . . . , V ?

m) ∈ Σm is the unique solution of
(II.5), and ρ = (ρ1, . . . , ρm) is the Perron eigenvector of the
transition probability matrix (Pij).

Proof. The proof is immediate:

lim
N→∞

E(W (N)) =

lim
N→∞

m
∑

i=1

E[W (N) | A(N) = Mi]P [A(N) = Mi] =
m
∑

i=1

ρiV
?
i .

�

III. THE ASYMPTOTIC VARIANCE OF W (N)

The goal of this section is to compute the asymptotic
value of the second order3 moment of W (N) under Assump-
tion (ii) and assuming a positive transition matrix P .

3What we call variance, or second order moment is actually co-
variance matrix for the vector W (N): E[(W (N))i((W (N))j)] −

E[(W (N))i]E[(W (N))j ].
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Define the linear mapping Ψ : (IRn×n)m → (IRn×n)m

by:

Ψ(D1, . . . , Dm) =

(

m
∑

i=1

P̃i1MiDiM
T
i , . . . ,

m
∑

i=1

P̃imMiDiM
T
i

)

(III.1)
Suppose for a moment that for W (0) = s ∈ Σ the

following limits exist:

Di = lim
k→∞

E[W (k)W (k)T |A(k) = Mi].

Comment : Note that each Di must be a symmetric
nonnegative definite matrix, that it has nonnegative entries
and it satisfies

Diu = lim
k→∞

E[W (k)W (k)T u | A(k) = Mi] =

lim
k→∞

E[W (k) | A(k) = Mi] = Vi, (III.2)

where u is the n-dimensional vector which satisfies ui = 1
for every 1 ≤ i ≤ n.

In view of (III.2) let D be the set:

D = {(D1, . . . , Dm) | Di ∈ IRn×n, Di = DT
i , Diu = Vi}.(III.3)

It turns out that Ψ maps D into itself. Indeed, (Ψ(D))j is
symmetric whenever all Di are such. Moreover, using (II.5)
we obtain

m
∑

i=1

P̃ijMiDiM
T
i u =

m
∑

i=1

P̃ijMiDiu =

m
∑

i=1

P̃ijMiVi = Vj ,

implying that Ψ(D) ∈ D for every D ∈ D. We have the
following result:

Proposition 3.1: For arbitrary W (0) = s ∈ Σ and all
i ∈ {1, 2, . . . ,m} the following limits exist:

Di = lim
k→∞

E[W (k)W (k)T |A(k) = Mi]. (III.4)

The m-tupple D = (D1, ..., Dm) ∈ D defined by (III.4)
satisfies the fixed point equation

D = Ψ(D). (III.5)
Proof. The proof will be given after having established

Theorem (3.5) �

Let

B = {C | C ∈ IRn×n, C = CT , Cu = 0}. (III.6)

Thus B is the vector space of all n × n symmetric matrices
C such that all the columns of B belong to S. A computation
similar to the one preceding Proposition 3.1 implies that
Ψ(Bm) ⊂ Bm. Since the difference between any two elements
from D belongs to Bm, then fixing any norm on (IRn×n)m, it
follows that the linear mapping Ψ is a contraction on the metric
space D if it is a contraction on the vector space Bm. We wish
to establish the existence and uniqueness of solutions D ∈ D
of equation (III.5). To this end it is enough to find a norm in
which the mapping Ψ2 is a contraction on the complete metric
space D.

Let ‖ · ‖ be the norm on IRn×n defined by :

‖A‖ =

n
∑

i,j=1

|Aij | for A ∈ IRn×n.

The next result establishes a crucial connection between this
norm and the mapping C 7→ MCMT for C ∈ B and M ∈ M.
It is close in spirit to Lemma 2.3.

Lemma 3.2: Let M ∈ M. Then the following relation

MC 6= C ⇒ ‖MCMT ‖ < ‖C‖ (III.7)

holds for every C ∈ B.
Proof. As in the proof of Lemma 2.5, we consider a

matrix M which has the form (II.6) for some 0 ≤ q < n,
and where the last r = n − q columns are positive. We then
have

‖MCMT ‖ =
∑

i,j

|
∑

k,l

mikcklmjl| ≤
∑

i,j

∑

k,l

mikmjl|ckl| =

=
∑

k,l

|ckl|
∑

i

mik

∑

j

mjl =
∑

k,l

|ckl| = ‖C‖ (III.8)

since M is column stochastic. We have thus established

‖MCMT ‖ ≤ ‖C‖ (III.9)

for any column stochastic matrix M and any matrix C. We
will next prove that equality holds in (III.9) only if MC = C.
We remark that if MC = C, then in view of C = CT , we
have

MCMT = CMT = (MC)T = CT = C,

implying that equality holds in (III.9) if MC = C.
We now suppose that M and C are such that

‖MCMT ‖ = ‖C‖. This is possible if and only if for each
pair 1 ≤ i, j ≤ n, the only inequality which appears in (III.8)
is actually an equality. This, however, holds if and only if for
every 1 ≤ i, j ≤ n the following holds:

Property S. There are no two pairs of indices (k, l) and
(k′, l′) such that mikmjl and mik′mjl′ are both positive while
ckl and ck′l′ have opposite signs.

For 1 ≤ i ≤ q let Λi = {cil | q < l ≤ n} = {cli | q < l ≤
n}, and denote Λ0 = {ckl | q < k ≤ n, q < l ≤ n}. Using
Property S for a pair i, j ∈ {1, 2, . . . , q}, and noting that for all
k, l ∈ {q+1, q+2, . . . , n}, we have mikmjj > 0, miimjl > 0
and mikmjl > 0, and further we conclude that there are no two
elements in set Λij = Λi ∪Λj ∪Λ0 with opposite sign. Since
for each pair of indices (k, l) and (k′, l′) with max{k, l} > q
and max{k′, l′} > q there is pair i, j ∈ {1, 2, . . . , q} such that
both ckl and ck′l′ are contained in Λij , we conclude that either

ckl ≥ 0 whenever max{k, l} > q, (III.10)

or
ckl ≤ 0 whenever max{k, l} > q. (III.11)

For any integer q < l ≤ n the sum of the entries in the l-
th column (or row) have the same sign as the constant sign
of its elements, namely nonnegative (non-positive) if (III.10)
((III.11)) holds. Since this sum is zero, we conclude that all
the entries ckl that are such that at least one of k > q and
l > q holds must vanish. Thus C must have the form:

C =

(

C ′ 0
0 0

)
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where C ′ ∈ IRq×q , and since M =

(

Iq M ′

0 M ′′

)

, it follows

that MC = C, concluding the proof of the lemma. �

Now we are able to present the following short proof of
Lemma 2.3.

Corollary 3.3: Let M ∈ M. Then for every x ∈ S we
have

Mx 6= x ⇒ ‖Mx‖1 < ‖x‖1. (III.12)
Proof. Note that for x ∈ S, C = xxT ∈ B we can

conclude that

‖MCMT ‖ = ‖MxxT MT ‖ = ‖Mx‖2
1 ≤ ‖C‖ = ‖x‖2

1

with equality if and only if MC = C. Moreover from the
proof of the previous lemma we conclude that for all j such
that the j-th column of M is positive, the j-th column of C
must be zero, which also means that xj = 0. Thus ‖Mx‖1 =
‖x‖1 implies that Mx = x. �

We wish to employ the Banach fixed point theorem to
the mapping Ψ on the set D, with the metric which is induced
on D by the following norm

‖B‖ = ‖(B1, . . . , Bm)‖ = max
1≤i≤m

‖Bi‖ (III.13)

on (IRn×n)m. Given this, we are now ready to establish that
Ψ2 is a contraction on the metric space D.

Proposition 3.4: Let Ψ be the mapping given by (III.1)
and we assume that the transition matrix P is positive. Then
there exists a constant η < 1 such that

‖Ψ2(D) − Ψ2(E)‖ ≤ η‖D − E‖ (III.14)

holds for all D,E ∈ D.
Proof. We will establish that for every nonzero B ∈ Bm

we have ‖Ψ2(B)‖ < ‖B‖, which implies that there exists a
0 < η < 1 such that

‖Ψ2(B)‖ ≤ η‖B‖, (III.15)

since B is a normed linear space. Clearly (III.14) follows
from (III.15) since D − E ∈ D. We thus consider any
B = (B1, . . . , Bm) 6= 0 such that Bi ∈ B and compute

‖Ψ(B)‖ = max
j

‖

m
∑

i=1

P̃ijMiBiM
T
i ‖ (III.16)

≤ max
j

m
∑

i=1

P̃ij‖MiBiM
T
i ‖ (III.17)

≤ max
j

m
∑

i=1

P̃ij‖Bi‖ (III.18)

≤ max
j

m
∑

i=1

P̃ij‖B‖ = ‖B‖. (III.19)

We will next check under which conditions the equality
‖Ψ2(B)‖ = ‖B‖ can hold. We thus assume that B 6= 0 is
such that ‖Ψ(Ψ(B))‖ = ‖B‖. It follows from

‖B‖ = ‖Ψ(Φ(B))‖ ≤ ‖Ψ(B)‖ ≤ ‖B‖

that ‖Ψ(B)‖ = ‖B‖. Thus it follows in this situation that all
the inequalities in (III.16)-(III.19) are actually equalities.

In view of (III.18) and (III.19), for some j

m
∑

i=1

P̃ij‖Bi‖ = max
i

(‖Bi‖) = ‖B‖. (III.20)

Since we assume that all the P̃ij are positive, (III.20) implies

‖Bi‖ = ‖B‖ for every 1 ≤ i ≤ m. (III.21)

It then follows from (III.17) that

max
j

m
∑

i=1

P̃ij‖MiBiM
T
i ‖ = max

j

m
∑

i=1

P̃ij‖Bi‖ = ‖B‖,

which together with the positivity of all the P̃ij imply that

‖MiBiM
T
i ‖ = ‖B‖ (III.22)

for all i. In view of Lemma 3.2 it therefore follows from
(III.21) and (III.22) that

MiBiM
T
i = BiM

T
i = (MiB

T
i )T = (MiBi)

T = Bi,

namely the equalities

MiBi = Bi and MiBiM
T
i = Bi (III.23)

hold for all i. It follows from (III.16), (III.22) and (III.23) that
there exist some j such that

‖
m
∑

i=1

PijBi‖ =
m
∑

i=1

Pij‖Bi‖ = ‖B‖.

However, this can happen if and only if the following property
holds:

A sign condition. For every r, s ∈ {1, 2, . . . , n}, there don’t
exist 1 ≤ i, j ≤ m such that the (rs)-th coordinates (Bi)rs

and (Bj)rs have opposite signs.

Employing the above argument, and the conclusion
(III.23), to the equality ‖Ψ(Ψ(B))‖ = ‖Ψ(B)‖ it follows that
for all k ∈ {1, 2, . . . ,m}

Mk

(

m
∑

i=1

PikBi

)

=

m
∑

i=1

PikBi. (III.24)

Now let l ∈ {1, 2, . . . , n} be arbitrary. Then by Assump-
tion (ii) of our model, there exists some matrix Mk ∈ M
with positive l-th column. From (III.24) we can conclude that
the columns of

∑m

i=1 PikBi are eigenvectors of the matrix
Mk, which correspond to the eigenvalue 1. Moreover, they
are convex combination of vectors from S, hence they also
belong to S. Using Lemma 2.5, we can therefore conclude
that the l-th column of the matrix

∑m

i=1 PikBi must vanish,
and by employing the above sign condition, it follows that
corresponding entries of the various l-th columns of the
matrices Mi don’t have opposite signs. This implies that all
the entries in the l-th columns of the matrices B1, . . . , Bm

must vanish. Since l is arbitrary, we conclude that

B1 = B2 = · · · = Bm = 0.

This contradiction concludes the proof of the lemma. �
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Theorem 3.5: The spectral radius of the restriction of the
mapping Ψ to Bm is smaller than 1. In particular there exists
a unique solution D? for equation (III.5), and the iteration
scheme

D(k+1) = Ψ(D(k)), k = 0, 1, 2, ...

with the starting point D(0) = D0, satisfies

lim
k→∞

D(k) = D?

for every D0 ∈ D.
Proof. The proof of this theorem follows the same lines

and uses the same arguments as those employed in the proof
of Theorem 2.7. �

Proof of Proposition 3.1. Similarly to the proof of
Proposition 2.1, let Di(k) = E[W (k)W (k)T |A(k) = Mi] and
D(k) = (D1(k), . . . , Dm(k) ∈ (IRn×n)m. Then Di(k)u =
E[W (k)W (k)T u|A(k) = Mi] = E[W (k)|A(k) = Mi] =
Vi(k) → Vi as k → ∞ which means that

lim
k→∞

dist(D(k),D) = 0.

Let ε > 0 and let k0 ∈ N be such that ‖D(k0) − D̃‖ < ε for
some D̃ ∈ D. Since the mapping Ψ is nonexpansive in the
norm given by (III.13) on all (IRn×n)m we have:

‖D(k0+r)−Ψr(D̃)‖ = ‖Ψr(D(k0)−D̃)‖ ≤ ‖D(k0)−D̃‖ ≤ ε.

On the other hand since D̃ is in D,

lim
r→∞

Ψr(D̃) = D′

exists by the previous theorem. This means that there is k1

such that for all r > k1,

‖Ψr(D̃) − D′‖ ≤ ε.

Now we conclude that for all r > k0 + k1:

‖D(r)−D′‖ ≤ ‖D(r)−Ψr−k0(D̃)‖+‖Ψr−k0(D̃)−D′‖ ≤ 2ε.

The last relation means that the sequence {D(r)} is a Couchy,
and therefore limr→∞ D(r) exists and (III.4) follows. Having
this, (III.5) follows from the continuity of the linear mapping
Ψ. �

Theorem 3.6: Under Assumption (ii) and the positivity
of the transition matrix P , the asymptotic behavior of the
variance

V ar(W (N)) = E[W (N)W (N)T ] − E[W (N)]E[W (N)]T

is given by:

lim
N→∞

V ar(W (N)) =

=
m
∑

i=1

ρiD
?
i −

(

m
∑

i=1

ρiV
?
i

)(

m
∑

i=1

ρiV
?
i

)T

(III.25)

where D? = (D?
1 , . . . , D?

m) ∈ D is the unique solution of
(III.5), and ρ = (ρ1, . . . , ρm) is the Perron eigenvector of
the transition matrix (Pij).

Proof. We have the following equalities:

lim
N→∞

V ar(W (N)) =

lim
N→∞

E[W (N)W (N)T ] − lim
N→∞

E[W (N)]E[W (N)]T =

= lim
N→∞

m
∑

i=1

E[W (N)W (N)T | A(N) = Mi]P [A(N) = Mi]

− lim
N→∞

E[W (N)]E[W (N)]T =

=
m
∑

i=1

ρiD
?
i −

(

m
∑

i=1

ρiV
?
i

)(

m
∑

i=1

ρiV
?
i

)T

.

�

Corollary 3.7: Let Assumption (i) hold, so that the prob-
ability that A(k) = Mi is equal to ρi for every k ≥ 0 and
1 ≤ i ≤ m. Then the asymptotic behavior of V ar(W (k)) is
given by

lim
N→∞

V ar(W (N)) = D̄ − V̄ V̄ T , (III.26)

where V̄ is the unique stochastic eigenvector of the matrix
∑m

i=1 ρiMi, and D̄ is the unique solution of the matrix
equation

m
∑

i=1

ρiMiDMT
i = D,

which satisfies Du = V̄ . Moreover, D̄ is the unique eigenvec-
tor corresponding to eigenvalue 1 and satisfying Du = V̄ of
the linear mapping

D 7→

m
∑

i=1

ρiMiDMT
i (III.27)

defined on IRn×n.
Proof. The sequence {A(k)} of i.i.d. random matrices can

be seen as Markov chain on the set M = {Mi : ρi > 0} with
the m×m transition matrix P given by Pij = ρj . Since P is
positive for every i and j, it follows that P̃ij = ρiPij/ρj =
ρi > 0. We look for a solution of equation (III.5) for which all
the components Di are the same, say equal to D̄. This yields
the equation

D̄ =

m
∑

i=1

ρiMiD̄MT
i , (III.28)

which implies the first assertion of the corollary.
For the second assertion we represent the linear mapping

in (III.27) by an n2×n2 matrix with nonnegative entries, call it
T , and apply Perron Frobenius Theorem to T . By Theorem 3.5
the spectral radius of the restriction of T to B is smaller than 1,
but by (III.28) we have that D̄ is an eigenvector corresponding
to the eigenvalue 1. Since the iterations of the mapping (III.27)
converge to D̄, it follows that 1 is the unique eigenvector
satsfying D̄u = V̄ . The second assertion follows. �

Example 3.8: In this example we illustrate how the pre-
vious results can be applied. We consider a network where the
bottleneck router operates according to Assumption(ii). In par-
ticular, consider a network of 5 flows with additive increase pa-
rameters α = [5, 4, 3, 2, 1], multiplicative decrease parameters
given by β = [1/3, 2/4, 3/5, 4/6, 5/7], and with correspond-
ing vector γ given by γ = [1/60, 1/70, 1/80, 1/90, 1/100].
We assume that at congestion events the router drops packets
from only one flow. Thus the set M has 5 elements:
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M1 =













0.5054 0 0 0 0
0.1475 1.0000 0 0 0
0.1291 0 1.0000 0 0
0.1147 0 0 1.0000 0
0.1033 0 0 0 1.0000













M2 =













1.0000 0.1291 0 0 0
0 0.6106 0 0 0
0 0.0968 1.0000 0 0
0 0.0860 0 1.0000 0
0 0.0774 0 0 1.0000













M3 =













1.0000 0 0.1033 0 0
0 1.0000 0.0885 0 0
0 0 0.6774 0 0
0 0 0.0688 1.0000 0
0 0 0.0620 0 1.0000













M4 =













1.0000 0 0 0.0860 0
0 1.0000 0 0.0738 0
0 0 1.0000 0.0645 0
0 0 0 0.7240 0
0 0 0 0.0516 1.0000













M5 =













1.0000 0 0 0 0.0738
0 1.0000 0 0 0.0632
0 0 1.0000 0 0.0553
0 0 0 1.0000 0.0492
0 0 0 0 0.7585













Let the transition matrix P to be given by:

P =













0.2667 0.2467 0.2133 0.1667 0.1067
0.2606 0.2424 0.2121 0.1697 0.1152
0.2526 0.2368 0.2105 0.1737 0.1263
0.2444 0.2311 0.2089 0.1778 0.1378
0.2370 0.2259 0.2074 0.1815 0.1481













Then

limk→∞E(W (k)) = V ? =













0.2359
0.2295
0.2124
0.1852
0.1370













The meaning of this results is that the first flow should expect
to get 23.59% of bandwidth, while the fifth flow should
expect to get 13.70% of the bandwidth over the bottleneck
link, provided that they will last long enough. The asymptotic
behavior of variance of W (k) in this example is given by:

limk→∞Var(W (k)) =












0.0144 −0.0061 −0.0042 −0.0027 −0.0013
−0.0061 0.0118 −0.0029 −0.0019 −0.0009
−0.0042 −0.0029 0.0089 −0.0012 −0.0005
−0.0027 −0.0019 −0.0012 0.0060 −0.0002
−0.0013 −0.0009 −0.0005 −0.0002 0.0030













.

The rate at which of V (k) and D(k) converge to their
equilibrium values is depicted graphically in Figures 2 and 3
respectively.

0 10 20 30 40 50 60 70 80 90 100
0

0.05
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0.15
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0.25
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| Vk− V* |
1

Fig. 2: Evolution of ‖V (k) − V ?‖1.
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0.08
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| Dk from D*|
1
 

Fig. 3: Evolution of ‖D(k) − D?‖.

IV. A USEFUL EXTENSION

In this section we will extend the results of the previous
sections in the following sense. We will consider a transition
probability matrix P which does not necessarily have positive
entries, but is rather primitive; namely P s > 0, for some
integer 1s ≥ 1. We note here that if P is primitive then P̃ is
primitive too since they have same zero-nonzero pattern.

Lemma 4.1: If P is a primitive matrix such that P s > 0
for some positive integer s, then Φ2s is a contraction on Σm.

Proof. We first note that for all k, j, l ∈ {1, 2, . . . ,m},
there is sequence (i) = (i1, i2, . . . , i2s−1) of indices which
contains l, such that

P̃ki2s−1
P̃i2s−1i2s−2

· · · P̃i2i1 P̃i1j > 0.
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Indeed, since P s > 0 there must exist sequences (i′) =
(i′1, . . . , i

′
s−1) and (i′′) = (i′′1 , . . . , i′′s−1) such that

P̃ki′
s−1

P̃i′
s−1

i′
s−2

· · · P̃i′
2
i′
1
P̃i′

1
l > 0

and
P̃li′′

s−1
P̃i′′

s−1
i′′
s−2

· · · P̃i′′
2

i′′
1
P̃i′′

1
j > 0,

implying the existence of a sequence (i) with the desired
property.

As we noted in section II, proving that Φ2s is a contrac-
tion on the metric space Σm is equivalent to proving that it is
a contraction on the vector space Sm, and here we establish
the latter. Thus for an arbitrary W ∈ Sm the j component of
Φ2s(W ) has the form

(Φ2s(W ))j =

=
∑

(i)2s

P̃i2si2s−1
P̃i2s−1i2s−2

· · · P̃i1jMi1Mi2 · · ·Mi2s
Wi2s

,

where we denote by (i)2s a sequence of indices which has
length 2s, and the summation is over all possible sequences
(i)2s. The sum in the last equality can be rewritten as follows:

(Φ2s(W ))j =
m
∑

k=1

∑

(i)

P̃ki2s−1
˜· · ·P̃i1jMi1 · · ·Mi2s−1

MkWk.

(IV.1)
The inner sum in (IV.1) is over all the sequences of

indices (i) which have the length 2s− 1. Having this in mind
we write:

‖Φ2s(W )‖ =

= max
j

‖

m
∑

k=1

∑

(i)

P̃ki2s−1
· · · P̃i1jMi1 · · ·Mi2s−1

MkWk‖1(IV.2)

≤ max
j

m
∑

k=1

∑

(i)

P̃ki2s−1
˜· · ·P̃i1j‖Mi1 · · ·Mi2s−1

MkWk‖1(IV.3)

≤ max
j

m
∑

k=1

∑

(i)

P̃ki2s−1
P̃i2s−1i2s−2

· · · P̃i1j‖Wk‖1(IV.4)

≤ max
j

m
∑

k=1

∑

(i)

P̃ki2s−1
P̃i2s−1i2s−2

· · · P̃i1j‖W‖ = ‖W‖.(IV.5)

We will next establish that ‖Φ2s(W )‖ = ‖W‖ implies that
W = 0, which will conclude the proof of the lemma. If
W ∈ Sm satisfies ‖Φ2s(W )‖ = ‖W‖ then all the previous
inequalities (IV.2), (IV.3) and (IV.4) are actually equalities.
This means that there exists some j ∈ {1, 2, . . . ,m} for
which all the above maxima are attained at this j. For a
k ∈ {1, 2, . . . ,m} and a sequence (i) of indices we denote

Qkj((i)) = P̃ki2s−1
P̃i2s−1i2s−2

· · · P̃i1j .

It follows from P 2s = (P s)2 > 0 that for each k ∈
{1, 2, . . . ,m} we have

∑

(i) Qkj((i)) > 0. From this property
together with

m
∑

k=1

‖Wk‖1





∑

(i)

Qkj((i))



 = max
k

‖Wk‖1 = ‖W‖

and
m
∑

k=1

∑

(i)

Qkj((i)) = 1

we can conclude that for every k ∈ {1, 2, . . . ,m}

‖Wk‖1 = ‖W‖.

It follows from the equality
m
∑

k=1

∑

(i)

Qkj((i))‖Mi1Mi2 · · ·Mi2s−1
MkWk‖1 =

=
m
∑

k=1

∑

(i)

Qkj((i))‖Wk‖1,

that for every sequence (i) such that Qkj((i)) > 0 the
following holds:

‖Mi1Mi2 · · ·Mi2s−1
MkWk‖1 = ‖Wk‖1,

which in turn implies

‖Mi1 · · ·Mi2s−1
MkWk‖1 = ‖Mi2 · · ·Mi2s−1

MkWk‖1 (IV.6)
· · · = ‖Mi2s−1

MkWk‖1 = ‖MkWk‖1 = ‖Wk‖. (IV.7)

Employing Lemma 2.3, we conclude that for all sequences (i)
with Qkj((i)) > 0:

Wk = MkWk = Mi2s−1
Wk = · · · = Mi1Wk. (IV.8)

Recall now that for arbitrary k and l there exists a sequence
(i) which contains l such that Qkj((i)) > 0. Using (IV.8) we
conclude that

MlWk = Wk, ∀k, l ∈ {1, 2, . . . ,m}, (IV.9)

and the relations (IV.9) imply

W1 = · · · = Wm = 0. (IV.10)

Indeed, for each h ∈ {1, 2, . . . ,m} there exists a matrix
Ml ∈ M with positive h column(by Assumption (ii)) . Thus,
Lemma 2.5 implies that the h coordinate of each Wk vanishes,
and since h is arbitrary, (IV.10) follows. The proof of the
lemma is complete. �

The following result may be established by using the
same arguments as those employed in proving the previous
lemma, and we will not repeat it here.

Lemma 4.2: If P is a primitive matrix, such that P s > 0
for some positive integer s, then Ψ2s is a contraction on D.

Inspecting the proof of Theorem 2.7, we realize that
we didn’t use any special properties of the second power in
deriving the proof while using the contractive property of Φ2.
Namely for any positive integer q, if Φq is contractive on
Σm, then Theorem 2.7 follows. Similarly, if Ψq is contractive
on D for some positive integer q then Theorem 3.5 follows.
As a consequence of the previous two Lemmas, we have the
following results.

Theorem 4.3: Let Assumption (ii) hold and suppose that
the transition matrix P is primitive, so that there exists an
integer s ≥ 1 such that P s has positive entries. Then the
spectral radius of the restriction of Φ to Sm is smaller than
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1. In particular there exists a unique solution V ? for equation
(II.5), and the iteration scheme

V (k+1) = Φ(V (k)), k = 0, 1, 2, ...

with any starting point V (0) = V0 in Σ

lim
k→∞

V (k) = V ?. (IV.11)

Moreover, the asymptotic behavior of the expectation of the
random variable W (N) is given by:

lim
N→∞

E(W (N)) =
m
∑

i=1

ρiV
?
i , (IV.12)

where V ? = (V ?
1 , . . . , V ?

m) ∈ Σm is the unique solution of
(II.5), and ρ = (ρ1, . . . , ρm) is the Perron eigenvector of the
transition probability matrix (Pij).

Theorem 4.4: Let Assumption (ii) hold, and assume that
the transition probability matrix P is primitive. Then the
spectral radius of the restriction of the mapping Ψ to Bm is
smaller than 1. In particular there exists a unique solution D?

for equation (III.5), and the iteration scheme

D(k+1) = Ψ(D(k)), k = 0, 1, 2, ...

with the starting point D(0) = D0 satisfies

lim
k→∞

D(k) = D?

for every D0 ∈ D. Moreover, the asymptotic behavior of the
variance

V ar(W (N)) = E[W (N)W (N)T ] − E[W (N)]E[W (N)]T

is given by:

lim
N→∞

V ar(W (N)) =

=

m
∑

i=1

ρiD
?
i −

(

m
∑

i=1

ρiV
?
i

)(

m
∑

i=1

ρiV
?
i

)T

(IV.13)

where D? = (D?
1 , . . . , D?

m) ∈ D is the unique solution of
(III.5), and ρ = (ρ1, . . . , ρm) is the Perron eigenvector of
the transition matrix (Pij).

V. R-MODEL

In the previous sections we considered the process
{(A(k),W (k))}∞k=0 under the assumption that {A(k)}∞k=0 is a
Markov process, and the distribution of W (k+1) is determined
by the value of A(k) and the distribution of W (k). In this
model, the emphasis is put on the process {A(k)}∞k=0, and
{W (k)}∞k=0 may be considered as a ‘shadow’ of it since the
properties of {W (k)}∞k=0 are derived from the distribution of
{A(k)}∞k=0.

However, one can construct a router such that the proba-
bility that a packet will be dropped at the k-th congestion event
depends on the information provided by the vector W (k),
whose j-th coordinate is equal to the throughput of the j-
th flow at the k-th congestion. We thus assume throughout
this section that Assumption (iii) holds, and we will describe
it again below.

When we consider the model under Assumption (iii),
which we call the R-model, we assume that the value of W (k)
at the k-th congestion event, say W (k) = w, determines the
distribution of A(k). Namely, there exist continuous functions
w 7→ pi(w) ∈ IR+ on Σ such that

P [A(k) = Mi|W (k) = w] = pi(w)(∀1 ≤ i ≤ m)(∀w ∈ Σ)
(V.1)

and
m
∑

i=1

pi(w) = 1 for every w ∈ Σ.

In order to ensure that each flow have nonzero probability to
detect a drop we assume that for each flow i there exist matrix
in M with positive i-th column.

We begin this Section by proving that for any initial
distribution of W (0) almost all products {A(k) · · ·A(0)}k∈N

are weakly ergodic. Recall that a sequence {Qk}k∈N of
column-stochastic matrices is called weakly ergodic if

lim
k→∞

dist(Qk,R) = 0,

where we denote by R set of rank-1 column stochastic
matrices. For any column stochastic matrix Q, we know that
Q(S) ⊂ S (see the proof of Proposition 2.2). Thus the
restriction of Q to S is a mapping to itself, and we denote this
map by Q̃. It follows from the definition of weak ergodicity
given above that the sequence {Qk}k∈N is weakly ergodic if
and only if

lim
k→∞

Q̃k = 0, (see [7]).

Recall also that a linear operator on a vector space V
is called paracontractive with respect to norm ‖ · ‖ if for all
x ∈ V

V x 6= x ⇒ ‖V x‖ < ‖x‖.

The main tool in establishing almost sure weak ergodicity
will be the following result which is given in [6]:

Theorem 5.1: Let ‖ · ‖ be a norm on IRm and let
F ⊂ IRm×m be a finite set of linear operators which
are paracontractive with respect to ‖ · ‖. Then for any se-
quence {Ak}k∈N ⊂ FN , the sequence of left products
{AkAk−1 . . . A1}k∈N converges.

Proposition 5.2: Let the random variable W (0) have
arbitrary distribution on Σ. Under Assumption (iii), the se-
quence of products {A(k)A(k − 1) · · ·A(0)}k∈N is weakly
ergodic with probability 1, i.e.

lim
k→∞

Ã(k)Ã(k − 1) · · · Ã(0) = 0 almost surely. (V.2)
Proof. From the assumption of positivity and the con-

tinuity of the mappings pi on the compact set Σ it follows
that

η = inf{pi(s)| s ∈ Σ, i ∈ {1, . . . ,m}} > 0.

This means that p(A(k) 6= Mi) ≤ 1 − η < 1 for every
1 ≤ i ≤ m. For every such i let Ti be a matrix with
positive i-th column. Then with probability 1 the matrix Ti

appears infinitely often in {Ak}
∞
k=0. We will next establish
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that this implies that weak ergodicity holds for left products
{Ak . . . A1A0}k∈N .

By Lemma (2.3), for all M ∈ M, M̃ is paracontracting
on S with respect to the L1 norm. By Theorem 5.1 it follows
that the sequence {ÃkÃk−1 · · · Ã0}k∈N is convergent, and we
claim that the limit is zero. To show this let s ∈ S. Then there
exist a y ∈ S such that y = limk→∞ ÃkÃk−1 · · · Ã0s. For
any fixed i let {Ank

}k∈N be a subsequence of {Ak}k∈N with
Ank

= Ti. Then

y = lim
k→∞

Ãnk
Ãnk−1 · · · Ã0s = Ti lim

k→∞
Ãnk−1 · · · Ã0s = Tiy,

hence Tiy = y. But by Lemma 2.5 i-th coordinate of y must
be zero. Since i is arbitrary, it follows that y = 0. We have
thus established that limk→∞ Ã(k)Ã(k − 1) · · · Ã(0) = 0,
which implies the assertion of the proposition. �

Comment : The previous proposition is also established
in [24], under Assumption (i), i.e. when all the functions pi

are constant.

Note that in a sense, under Assumption (iii), the roles
of {A(k)}∞k=0 and {W (k)}∞k=0 are interchanged compared to
their roles in the model under Assumption (ii): the emphasis
is put on {W (k)}∞k=0, and {A(k)}∞k=0 is considered as its
shadow process.

We will henceforth restrict attention to stationary pro-
cesses. The process {(A(k),W (k))}∞k=0 is Markovian in the
compact state space {1, 2, ..,m}×Σ, and we will next establish
that it has a unique equilibrium distribution

{ρ1, ..., ρm} × (λ1(dw), ..., λm(dw)).

Namely the probability that A(k) = Mi and W (k) ∈ U is
equal, in the limit where k → ∞, to ρiλi(U). The equilibrium
measure is defined on the set of limit points of {W (k)}∞k=0,
and for a prescribed W0 = s we denote by F (s) the set of all
limit points of sequences {W (k)}∞k=0 with W (0) = s. We use
the following terminology and say that weak ergodicity holds
for {M1, ...,Mm} = M if every product

AkAk−1 · · ·A0, Ak ∈ M for every k ≥ 0

in which each that each Mi appears infinitely often is weakly
ergodic.

Proposition 5.3: Suppose that pi(w) > 0 for every 1 ≤
i ≤ m and w ∈ Σ, and assume that weak ergodicity holds for
{M1, ..,Mm}. Then

F (s1) = F (s2) =: F for every s1, s2 ∈ Σ. (V.3)

Thus F is the smallest closed subset of Σ which is invariant
under each Mi ∈ M, so that it satisfies

F =
m
⋃

i=1

Mi(F ),

and it is the support of the unique equilibrium invariant
measure
(λ1(dw), ..., λm(dw)).

Proof: For a prescribed starting point W0 = s we define the
sequence of subsets Fk(s) ⊂ Σ as follows:

F0(s) = {s}, Fk+1(s) =
m
⋃

i=1

Mi(Fk(s)), k = 0, 1, 2, ...

(V.4)
Then F (s) may be expressed in the form

F (s) =

∞
⋂

p=1



 cl
∞
⋃

k=p

Fk(s)



 . (V.5)

Denote by h(·, ·) the Hausdorff metric in Σ. It then follows
from the weak ergodicity of M that

h(Fk(s1), Fk(s2)) → 0 as k → ∞. (V.6)

This follows from the fact that each point in Fk(s) is of the
form

Mik
Mik−1

...Mi1s

for some matrices Mij
∈ M, 1 ≤ j ≤ k, and that

Mik
Mik−1

...Mi1s1 − Mik
Mik−1

...Mi1s2 → 0 as k → ∞

by weak ergodicity. It follows from (V.6) that the Hausdorff
distance between

⋃∞

k=p Fk(s1) and
⋃∞

k=p Fk(s2) is arbitrarily
small provided p is sufficiently large. In view of (V.5) it
follows that F (s1) = F (s2) for every s1, s2 ∈ Σ, establishing
(V.3) and concluding the proof the Proposition. �

The dynamics of {(A(k),W (k)}∞k=0 can be described as
follows. For a vector W (k) = w at the instant of time k,
choose a matrix A(k) from M according to the distribution
{pi(w)}m

i=1, and set W (k + 1) = A(k)w. We then follow the
steps

W (0) → A(0) → W (1) = A(0)W (0) → A(1) → · · ·

→ W (k) → A(k) → W (k + 1) = A(k)W (k) → · · · (V.7)

We restrict attention only to the terms W (k) in the chain of
variables (V.7), and if W (0) ∼ (λ1, ..., λm) then {W (k)}∞k=0

turns out to be a stationary Markov process.
We now view the dynamics in a different manner, and this

time we focus on the terms A(k) in the above chain (V.7). If in
the outset we restrict attention to stationary processes, then the
distribution of each variable W (k) is (λ1(dw), ..., λm(dw)).
Assuming this we restrict attention only to the variables A(k)
in (V.7), which turns out to be a stationary Markov chain in
M provided that we take the initial distribution A(0) ∼ ρ. We
thus suppose that W (k) ∼ (λ1, ..., λm), and that A(k) = Mi

for some 1 ≤ i ≤ m. This determines the distribution
of W (k + 1) = MiW (k), as well as the distribution of
A(k + 1). More explicitly we define Pij = Epj(MiW (k))
where E denotes the expectation operation with respect to the
distribution λ(dw), namely

Pij =

∫

pj(Miw)λi(dw). (V.8)

Although we defined Pij = Epj(MiW (k)), actually Pij in
(V.8) doesn’t depend on k since all the variables W (k) have
the same distribution λ. However, we have to verify that
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our construction does yield this distribution to all W (k). But
indeed, since ρ × (λ1, ..., λm) is an equilibrium distribution
for the Markov process {(A(k),W (k))}∞k=0, it follows that
if we have A(k) ∼ ρ, then the distribution of W (k + 1) is
(λ1, ..., λm), and that of A(k + 1) is ρ. We summarize the
above discussion as follows:

Theorem 5.4: The matrix P is a transition probability
matrix of a stationary Markov chain {A(k)}∞k=0 in M with
stationary distribution A(k) ∼ ρ. This Markov chain consist
of the A(k) terms in the process {(A(k),W (k))}∞k=0 which
describes the R-model of the process.

We are interested in the asymptotic behavior of W (N)
where N → ∞, which in view of W (k + 1) = A(k)W (k)
reduces to the study of the asymptotic distribution of the
products

(

N
∏

k=0

A(k)

)

W (0) (V.9)

when N → ∞. Since weak ergodicity holds for the matrix
products ΠN

k=0A(k) it follows that the asymptotic behavior
of the expressions in (V.9) doesn’t depend on W (0) there,
and we consider these expressions with an arbitrary choice of
W (0) ∈ Σ. Although {A(k)}∞k=0 is a stationary process, the
process {A(N) · · ·A(0)W} is not stationary, and we define

V N
i = E [A(N − 1)A(N − 2) · · ·A(0)W (0)|A(N) = Mi] ,

(V.10)
where the expectation is with respect to the measure in which
{A(k)}∞k=0 is a stationary Markov chain with the transition
probability matrix P in (V.8). Associated with this P is
the matrix P̃ of backward probabilities, so that P̃ij is the
probability of having A(k) = Mi given that A(k + 1) = Mj .
Thus assuming A(N + 1) = Mj , it follows from (V.10) that

V N+1
j = E [A(N)A(N − 1) · · ·A(0)W (0)|A(N + 1) = Mj ]

=

m
∑

i=1

P̃ijE [MiA(N − 1) · · ·A(0)W (0)|A(N) = Mi, A(N + 1) = Mj ]

=
m
∑

i=1

P̃ijMiE [A(N − 1) · · ·A(0)W (0)|A(N) = Mi, ] ,

where in the last equality we have used the Markov property.
Equating the first and last terms and using (V.10) we obtain
the relations

V N+1
j =

m
∑

i=1

P̃ijMiV
N
i , N ≥ 0. (V.11)

But we observe now that (V.11) is an iterations scheme for
the fixed point equation (II.5). Thus the results of the previous
sections imply that the following limits exist

lim
N→∞

V N
i = V ?

i for every 1 ≤ i ≤ m, (V.12)

where V ? = (V ?
1 , ..., V ?

m) is the unique solution of (II.5). As
a consequence of this discussion we have the following:

Theorem 5.5: The conclusions of Theorems 4.3 and 4.4
hold true when we replace Assumption (ii) there by Assump-
tion (iii).

VI. CONCLUSIONS

In this paper we consider the dynamics of AIMD-
networks that evolve according to Markovian dynamics. We
have shown that such networks have well defined stochastic
equilibria and provided tools that can be used to characterise
these equilibria. In particular, for routers that operate according
to Assumption (ii), we have developed tools for computing
limk→∞ E(W (k)) and limk→∞ V ar(W (k)). We then ex-
tended these results to the R-model given by Assumption (iii).

While developing these tools represent an important first
step in studying such networks, much work remains to be
done. The results derived in this paper provide tools to address
the problem of designing routers that achieve, in the long run,
certain goals. By controlling the distribution of the random
variable A(0) in the i.i.d. case (i), or the transition matrix P
in the Markov cases (ii) and (iii), one can guarantee that in
the long run, the asymptotic expected value of W (k) is close
to a certain prescribed vector V ?. A major objective of future
work will be to investigate how this might in fact be achieved.

Another interesting designing problem that is of great
practical interest, and which may be addressed in the setting
provided by either Assumption (ii) or Assumption (iii), is
the following. For a prescribed vector V ?, consider all the
transition matrices P for which

lim
k→∞

E(W (k)) = V ?, (VI.1)

and among them pick one for which

lim
k→∞

Var(W (k)) = T ? (VI.2)

is the smallest possible in a certain sense. Minimizing the vari-
ance makes it more likely that the desired long-run behavior
expressed by limk→∞ E(W (k)) = V ? will be realized faith-
fully (although the cost of this choice may be a slow network
convergence or some other undesirable network behaviour).
This goal defines a constrained optimization problem which
may be addressed either numerically or theoretically. We note
that the minimization may be approached in various ways:
either minimizing a certain functional, e.g. the trace of T ?, or
looking for a T ?

0 such that

T ?
0 ≤ T ?

in the positive definite sense, where T ?
0 and T ? correspond to

certain matrices P0 and P such that (VI.1) and (VI.2) hold.
Finally, we note that one of the principal tools for analysing
AIMD networks is the network simulator NS-2. For networks
of low dimension, this tool is effective for examining the be-
haviour of AIMD networks. However, for networks with large
number of sources this tool becomes increasingly difficult to
use due to excessive simulation times. In this context, efficient
methods to compute important network properties are likely of
great value to network designers. The tools presented in this
paper represent a first step toward the development of such
tools.
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