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ABSTRACT
Cost control for the Internet access providers (AP) influ-
ences not only the nominal speeds offered to the customers,
but also other, more controversial, policies related to traf-
fic shaping and discrimination. Given that the cost for the
AP is determined by the peak-hour traffic (eg. through the
95th-percentile), the individual contribution to the aggregate
cost depends on the behavioral demand pattern of all in-
volved customers. In this paper we propose a metric for
evaluating the contribution each individual user has on the
peak demand, that is based on Shapley value, a well known
game-theoretic concept. Given the computational complex-
ity of calculating the Shapley value, we use a Monte Carlo
method for approximating it with reasonable accuracy. We
employ our methodology to study a dataset that logs per-
subscriber temporal usage patterns over one month period
for 10K broadband subscribers of a European AP and report
observed results.

1. INTRODUCTION
A large number of Internet Access Provider (AP)

adopted flat-rate pricing as a de-facto standard for charg-
ing of broadband services as such pricing appears to be
preferred by the customers [18]. This creates many dif-
ficulties for the APs as it does not allow APs to trans-
parently control the uplinking (transit + infrastructure)
costs and forced many APs to create nontransparent
rules for traffic shaping and violate net-neutrality as a
means for control of their costs [9]. Using the terminol-
ogy of [21], uplinking costs are the single most expensive
component of the costs for broadband connectivity for a
majority of currently used technologies, including DSL,
cable and WiFi (mash and access point). An important
property of the uplinking costs (influenced by the tran-
sit costs and the cost of infrastructure) is that they are
determined by the peak demand (eg. through the 95th-
percentile) rather than average demand, which makes it
hard to assess per-customer contribution towards these
costs.

Flight tickets typically have different price on the
time of travel and hotel rooms in tourist resorts are less
expensive during off-season. Similarly, a byte down-

loaded in peak-hour costs more (for the provider) than
a byte of traffic in off-peak hours. In this paper we
study per-user contribution in the AP uplinking costs.
More precisely, we measure per-customer contribution
towards the 95th-percentile of the aggregate demand
series1. For the purpose of quantifying per-user con-
tribution to the 95th-percentile, we use Shapley value,
an intuitive concept from coalitional game theory that
characterizes fair cost sharing among involved players
(customers). Shapley value framework allows us to: (1)
accurately quantify the contribution of each customer
towards the peak-hour traffic, (2) analyze the relation-
ship between the aggregate usage (in bytes) and the
peak-hour contribution and (3) formally measure how
cost of bandwidth is related to the demand pattern. We
validate our methodology over a dataset that logs tem-
poral usage of 10K broadband customers of a European
AP.

Note that we talk about costs customers generate for
the AP rather than the price they pay; retail prices
are often strongly impacted by other market, compe-
tition and social factors [21]. For various mechanisms
for pricing the communication services in the context of
revenue (or social welfare) maximization, see [6].

1.1 Toy example
For measuring the peak demand we use the 95th-

percentile of the aggregate demand, the most standard
measure for billing of the transit traffic and an indicator
the network utilization, used for the dimensioning of the
infrastructure; see Appendix A for a brief description.
To understand the concept of Shapley value and how
it applies to the 95th-percentile billing let us consider
a synthetic example of an AP ISP providing service to
only two users that have demand patterns that are de-
picted in Figure 1. The user 1 generates a demand of
1Mbps during the whole day except for the four-hour
period [15-19h]. The user 2 is idle for 22 hours and gen-
erates 3Mbps traffic during two hours: [16-18h]. The

1We stress, however, that the framework is general enough
to accommodate any other metric that measures the peak
demand.
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95-th percentile of the aggregate user demand is the
peak-hour traffic v95th = 3Mbps and the price the ISP
would need to pay to its transit provider is v95th · A0

(where A0 is the price in USD per Mbps). The fol-
lowing question arises: What is the fair cost sharing
among the two involved users? The Shapley value con-
cept gives an answer to this question and the intuition
behind it is described bellow.

If there was only user 1 or only user 2 in the system,
the 95th percentile would have been:

v95th({1}) = 1Mbps and v95th({2}) = 3Mbps

respectively. As we already observed, the 95th per-
centile of the union of these two users is

v95th({1, 2}) = 3Mbps.

The Shapley value of user i, φi is now the average
marginal contribution that user i imposes to the coali-
tion cost. In other words:

φi =
1
2

(v95th({i}) + (v95th({i, i′})− v95th({i′}))) ,

where {i′} = {1, 2} \ {i}. In our example the per user
Shapley values are:

φ1 = 0.5Mbps and φ2 = 2.5Mbps.

Thus by entering the coalition, the fair cost sharing of
the 95th-percentile v95th({1, 2}) = 3Mbps would be the
one in which the user 1 is accounted for φ1 = 0.5Mbps
and the user 2 for φ2 = 2.5Mbps. The nature of the
95th-percentile pricing is such that even though the user
1 generates in total 3.3 times more traffic than user 2,
its contribution to the 95th-percentile is 5 times lower.

Comment 1. We can learn two lessons from the above
example: firstly, the user that sends/receives more data
does not necessarily have higher impact on the 95th-
percentile; and secondly, even if a user does not gen-
erate any traffic in the peak hours that does not imply
that its impact towards the 95th-percentile is zero. Shap-
ley value balances between these two extremes (aggregate
usage and peak-only usage) by evaluating the average
marginal contribution of each user (eq. 1).

1.2 Summary of contributions
Briefly, the main contributions of this paper are the

following:

• We develop a new methodology for studying heavy
users in an operational ISP. We use the standard
concept from cooperational game theory, known as
Shapley value, to quantify per-user cost contribu-
tion in the context of 95th-percentile pricing.

• Using the Shapley value methodology, we study
a month-long dataset that tracks temporal usage
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Figure 1: Toy example. Two users with different
demand pattern.

patterns from 10K broadband users of a European
ISP. We quantify several relevant metrics over this
dataset. In particular we find that for approxi-
mately 10% of users, the relative cost contribu-
tion (Shapley value) is less than half of the rela-
tive byte usage (off-peak users), and that for addi-
tional 10% of users the relative cost contribution is
more than twice of their relative byte usage (peak
users). Finally, we use the Shapley value frame-
work to formalize the intuitive wisdom “a byte
in the peak-hour has a higher value/cost than an
off-peak byte” by quantifying the hourly per-byte
bandwidth prices that approximate best the mea-
sured Shapley value.

2. APPROXIMATING SHAPLEY VALUE
In this section we will briefly introduce the Shapley

value (SV) concept for general cooperative games, relate
it to our framework in which the cost of a user coali-
tion is determined by the 95th-percentile of the traffic
they generate and propose a randomized method for
efficiently computing SV for large number of players.

2.1 Shapley value: definition
Consider a set N of N players2. For each subset

(coalition) S ⊂ N let v(S) be the cost of coalition S.
In other words if S is a coalition of players which agree
to cooperate, then v(S) determines the total cost from
this cooperation.

For given cost function v, the Shapley value is a
(uniquely determined) vector (φ1(v), . . . , φN (v)) defined
bellow that is “fair” in that it satisfies four intuitive
properties (see [20, 22]) for sharing the cost v(N ) that
exhibits the coalition of all players. It can be shown
that Shapley value of player i is determined by

φi(v) =
1
N !

∑
π∈SN

(v(S(π, i))− v(S(π, i) \ i)) (1)

2We interchangeably use terms player, user, customer and
subscriber.
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where π is a permutation or arrival order of set N and
S(π, i) is the set of players arrived in the system not
later than i. In other words, player i is responsible for
its marginal contribution v(S(π, i))−v(S(π, i)\ i) aver-
aged across all N ! arrival orders π. Note that the Shap-
ley value defined by (1) satisfies (so called efficiency)
property: ∑

i∈N
φi(v) = v(N ).

2.2 The 95th-percentile cost
The 95th-percentile billing is a method of measur-

ing bandwidth usage based on peak utilization, defined
in Appendix A. Informally it measures close-to-peak
demand but it also allows usage to exceed a specified
threshold for brief periods of time without the financial
penalty.

The setup over which we apply the Shapley value
framework is the following. We have the set N of N
users that generate traffic over a charging period, say
one month. The charging period is split into T sam-
pling intervals, and at time t ∈ [1, T ], user i generates
the traffic Zi(t) (measured in bytes). For a time series
D = (D(1), . . . , D(T )), the 95th-percentile P95th(D) is
defined as the d T20e-th largest number of the time se-
ries. For a coalition S of users the cost they generate
is determined by the 95th-percentile of the aggregate
demand pattern they generate:

v(S) = P95th(
∑
i∈S

Zi(1), . . . ,
∑
i∈S

Zi(T )).

Given the cost function v(·), the contribution of each
user to the 95th-percentile of the aggregate traffic v(N )
is defined by the Shapley value defined by (1). From
the definition, one can notice that the 95th-percentile
does not decrease by adding new users to the coalition,
therefore implying that the cost function v is monotone:

(∀S ⊂ N )(∀i ∈ N ) v(S ∪ i) ≥ v(S).

The monotonicity of the cost function v implies that
the Shapley value of each user is indeed nonnegative.

2.3 Approximating Shapley value
Brute force application of formula (1) is computation-

ally unfeasible once N becomes greater than 100. For
APs with thousands (or millions) of subscribers such
exact computation is not possible. In this Section we
describe a simple randomized method for approximat-
ing the Shapley, that can scale with datasets of tens of
thousands (if not millions) of subscribers.

The idea of the method is simple. The Shapley value
of user i defined by (1) can be seen as the marginal cost
increase by user i, averaged over all N ! arrival orders.
In the example from Section 1.1, N = 2 and there are 2
arrival orders: π1 = (1, 2) and π2 = (2, 1) and the user

1 and user 2 Shapley values are

φ1 =
1
2

((v({1})− v(∅)) + (v({1, 2})− v({2}))) =

=
1
2

((1− 0) + (3− 3))) = 0.5.

φ2 =
1
2

((v({1, 2})− v({1})) + (v({2})− v(∅))) =

=
1
2

((3− 1) + (3− 0))) = 2.5.

While computing the exact Shapley value through the
formula (1) is straightforward for small N , it becomes
unfeasible for N > 50, as the number of different per-
mutation orders grows with N !. However, the computa-
tional complexity can be significantly reduced by using
the Monte Carlo method.

Instead of calculating the exact Shapley value as the
average cost contribution across all N ! arrival orders,
we estimate the Shapley value as the average cost con-
tribution over a set Πk of k randomly sampled arrival
orders (permutations).

φ̂i(v) =
1
k

∑
π∈Πk

(v(S(π, i))− v(S(π, i) \ i)) (2)

The parameter k determines the error between the real
Shapley value and its estimate: the higher k the lower
the error. So basically, one can control the accuracy
of the estimators by increasing the number of sample
permutation orders.

Proposition 1. The estimator φ̂i(v) is an unbiased
estimator of the real Shapley value φi(v).

Proof. Indeed, given that each permutation has the
same probability of being sampled in Πk, the expected
value of φ̂i(v) is:

E[φ̂i(v)] = E[
1
k

∑
π∈Πk

(v(S(π, i))− v(S(π, i) \ i))] =

=
1
k

(kφi(v)) = φi(v).

Thus the Shapley value estimator (2) is unbiased.
However the variance of the estimator is hard to model
and in Section 3.2 we present empirical evidence that
for reasonably small sample size (say, k = 1000) the
estimator exhibits small variance, especially for the top
users.

Proposition 2. The estimated Shapley values sat-
isfy the efficiency property:∑

i∈N
φ̂i(v) = v(N ).
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Figure 2: Relative standard errors of the Shap-
ley value estimator (2). Top: all users (top);
bottom: users with estimated Shapley value
higher than the mean (approx top 15%).

Proof. The proof is straightforward:∑
i∈N

φ̂i(v) =
∑
i∈N

1
k

∑
π∈Πk

(v(S(π, i))− v(S(π, i) \ i)) =

=
1
k

∑
π∈Πk

∑
i∈N

(v(S(π, i))− v(S(π, i) \ i)) =

=
1
k

∑
π∈Πk

(v(N )− v(∅)) = v(N ).

3. EMPIRICAL RESULTS
In this section we will empirically analyze the dataset

of around 10K broadband users of a major European
ISP. In Section 3.1 we describe the dataset, then in
Section 3.2 we analyze the accuracy of the random-
ized method for calculating Shapley value. We proceed
by analyzing the correlation between per-user aggregate
usage and its Shapley value in Section 3.3. The consis-
tency of Shapley value is evaluated in Section 3.4 and
then in Section 3.5 we quantify the relative cost of band-
width in time that would best approximate the Shapley
value.

3.1 Dataset description
The dataset consists of around 10K randomly sam-

pled ADSL users of a major access provider in one Eu-
ropean country. For each customer, its downstream
and upstream consumption (in bytes) is captured dur-
ing each hour for 30 days (thus spanning 720 hours).
These users represent a random sample of ADSL users
of the ISP and have diverse uplink/downlink capacities
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Figure 3: Standard error as a function of number
of sample permutations (parameter k).

in the ranges of 256Kbps–10Mbps, and 1Mbps–20Mbps,
respectively. The downstream traffic dominates the up-
stream traffic in the ratio 4 : 1, which is consistent
with the recent findings from another European access
provider ISP [15]. Virtually all ADSL users from the
dataset pay flat-fee, without incentives to shift their
traffic to the off-peak hours[11]. We stress that the
empirical results derived from this dataset are mainly
qualitative, used for the purpose of validating the Shap-
ley value methodology and basic properties of Shapley
value, and results derived here should not be general-
ized for other types of environments such as campus,
backbone or enterprize networks.

For the computation of 95th-percentile we use 1-hour
bins, as this is the granularity of our dataset. Given
that we consider large traffic volumes and large number
of users, using different bin sizes (eg 5 minutes) would
have minor effects on the 95th-percentile [8].

As we said, the downstream traffic dominates the up-
stream and in the following analysis we will therefore
focus on the downstream traffic, as it is the direction
that determines the 95th-percentile (see Appendix A).
The dataset does not distinguish the per-user share of
transit/nontransit traffic, so for the evaluation purposes
we assume that all the traffic contributes to the 95th-
percentile.

3.2 Accuracy of the Shapley value estimator
Our first step is the evaluation of the accuracy of the

Shapley value estimator (2). Given that we do not have
the ground truth measurement, to evaluate the error
that the estimator exhibits, we use the standard statis-
tical method as follows. Recall that the Shapley value
estimator (2) of user i is a mean of k samples of marginal
cost contributions v(S(π, i))−v(S(π, i)\i). If we denote
by σ̂i the estimated standard deviation of the same k
marginal cost samples. Then the relative standard error
of the estimator (2) is σ̂i√

kφ̂i(v)
. In Figure 2 we plot the

histograms of these standard errors when the sample
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Figure 4: Normalized byte-counters vs. normal-
ized Shapley value.

size is k = 1000 permutations3 for all users as well as
the users with Shapley value estimate higher than the
mean Shapley value 1/N · v(N ). One can observe that
the relative standard errors are moderately small across
all users and are consistently under 10% for top users.
In Figure 3 we vary the number of sample permutation
orders (parameter k) and evaluate the relative standard
errors averaged across all the users and also the top 15%
users.

3.3 Aggregate usage vs. Shapley value
Now, that we established the accuracy of Shapley

value estimates, we will compare it with the time-oblivious
usage measure: bytes downloaded over the whole 30-day
period (byte-counters). In Figure 4 we plot the nor-
malized4 Shapley value (x-axis) against the normalized
byte-counters (y-axis) for each user from our dataset.
Users with relatively high off-peak usage correspond to
datapoints that are far above x − y = 0 line. Con-
versely, users with modest off-peak usage and heavy
“peak-hour” usage correspond to datapoints close to
x-axis. Finally, the more similar the usage activity of a
user is to the aggregate usage pattern, the closer its dat-
apoint is to the x−y = 0 line. To measure how different
the user’s Shapley value and byte-count are we intro-
duce the following metric that basically measures the
discrepancy between the user’s relative aggregate usage

3The computation took under 5 minutes on a PC running
Intel Core 2 Duo CPU, 2.33GHz and 2GB of RAM.
4Scaled down proportionally to have the sum equal to 1.
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Figure 5: Normalized byte-counters vs. normal-
ized Shapley value.

and its relative contribution to the 95th-percentile:

ρi =
normalized Shapley value of user i

normalized byte-count of user i
, i ∈ N .

As we said above, the users with high off-peak usage
(compared to their peak-usage) have low ρi and vice
versa. In Figure 5 we plot the histogram of ρi for all
users i with Shapley value greater than the mean (ap-
prox 15% of the users) as we have a high confidence in
the measured Shapley value for those users (see Figure
2). We see that there are approximately 10% of users
whose relative cost contribution is more than twice the
relative byte counters (ρi > 2) and another 10% of users
with relative cost contribution less than half of its rel-
ative byte count (ρi < 0.5). The proportion of users
with very large or very small ρi is even higher for low-
Shapley-value users (the remaining 85% of the dataset),
but we avoid reporting these numbers because of the ac-
curacy issues for the low-Shapley-value users (see Sec-
tion 3.2).

Another interesting statistics is that around 30% of
top-1% (and around 25% of top-10%) Shapley value
users are not in the corresponding top-1% (top-10%)
byte-count list.

3.4 Consistency of Shapley value
The next question we ask is: how consistent Shapley

value is among individual users from our dataset? In
other words, does temporal usage pattern remain simi-
lar for the users from our dataset. Our (somewhat sur-
prising) findings suggest an affirmative answer to this
question, at least for the top-users (economic heavy-
hitters). For that purpose we evaluated Shapley value
during 4 weeks for each individual user in our dataset.
Figure 6 depicts the observed weekly Shapley values
for the top 500 users (ranked using the monthly Shap-
ley value). One can notice that some users have large
week-to-week variations, but majority of users’ Shapley
value remain similar week after week.

3.5 Relative cost of bandwidth
As we already mentioned in the Introduction, the

consequence of the 95th-percentile pricing of the transit
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Figure 6: The weekly Shapley value for the top
500 users (based on monthly Shapley value).

traffic is that the bandwidth is “more expensive” in the
peak hours than in the off-peak hours. Here we use the
Shapley value framework to quantify how the value of
bandwidth changes in time. Namely we seek to find the
hourly per-byte prices c1, . . . , c24, such that if a user i
is charged ch monetary units for each byte downloaded
during hour h, then the monthly bill is (approximately)
equal to its Shapley value. More formally, if Zi(t) is
the usage of user i at time t = 1, ..., 720, we seek for
c1, . . . , c24 ≥ 0 such that

24∑
h=1

ch

30∑
d=1

Zi(h+ 24(d− 1)) ≈ φi, ∀i ∈ N .

Given that the above system of equations is overde-
termined (it has 24 variables and 10K equations), we
need to seek a fit that matches some optimization crite-
ria. A well know method for approximating solution of
the overdetermined linear systems is nonnegative least
square (nnls) method that seeks to minimize

N∑
i=1

(
24∑
h=1

ch

30∑
d=1

Zi(h+ 24(d− 1))− φi

)2

.

Very efficient solutions for nnls problem have been pro-
posed recently and we use [10] to solve our problem.
Running nnls over our dataset, we derive time series
c1, . . . , c24 depicted in Figure 7. One can observe that
(for the dataset analyzed here) in the 95th-percentile
setup, the bandwidth is “free” (has virtually zero im-
pact on the 95th-percentile) for some 18 hours per day
and has strictly positive cost during 6 hours per day.
Note that even though the monthly 95th-percentile is
crossed during only one or two hours per day, the cost
of bandwidth is still non-zero for 6 (near-peak) hours.

4. RELATED WORK
Per user analysis of broadband internet traffic was a

subject of several recent studies. Cho et al. analyzes
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Figure 7: Top: hourly per-byte cost (nonneg-
ative least squares). Bottom: average hourly
utilization.

broadband traffic from several Japanese ISPs in [4, 5].
They analyze the per-user traffic usage and they show
that it is highly skewed5 (can be modeled with a log-
normal distribution). With the duration of the dataset
they analyzed, they were able to track upload/download
traffic trends over multiple years and quantify the ef-
fects different applications have on the traffic aggre-
gates. In [15] Maier et al. perform a measurement study
of residential broadband users in one European ISP and
analyze several relevant metrics: per-application usage,
DSL session duration, and observable round trip-times.
Here we take a different look at the broadband traffic
by analyzing per-user temporal usage patterns and how
they impact the costs for the access provider.

One of the key reasons that influence traffic shaping
(also known as traffic discrimination) of Internet traffic
is the fact that by throttling some traffic, ISPs control
(reduce) their costs [16]. Dhamdhere and Dovrolis [7]
and Biczok et al [1] analyze several broadband pricing
models that aim to offer a solution that obey the net
neutrality rules by discriminating the price of the heavy-
hitters (based on the total bytes downloaded/uploaded).
In this work we empirically show that the heavy-hitters
are not necessarily expensive for the ISP and that tem-
poral usage effects should be taken into account when
designing pricing models in the context of net neutral-
ity.

Briscoe [2, 3] argues that fairness mechanisms in com-
puter networks should be judged on “how they share
out the ‘cost’ of each user’s action on others” and he of-
fers several heuristics (eg. he suggests that the number
of dropped packets over a billing circle is a good indi-
cator of a customer’s cost contribution) for evaluating
the ‘cost’. The Shapley value framework we introduced
here can be seen as a formal way to measure user’s cost
contribution.

5The fact that we also observe in our dataset
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Pricing of communication networks has been exten-
sively studied in the past; see [6] and references therein.
These efforts mainly focus on how to use pricing to
achieve some form of social welfare (or revenue) max-
imization. We stress that we do not aim to propose
a new pricing scheme in this paper, but rather set to
measure the diversity of the broadband usage behavior
patterns and their effect on the peak hour consumption.

Recently, several research efforts suggested using Shap-
ley value as a means for providing incentives for opti-
mal resource control. Ma et al. promote use of Shapley
value for ISP settlement by proposing revenue sharing
among ISPs based on the importance each ISP has on
the Internet ecosystem [13, 14]. In the context of peer-
to-peer systems, Misra et al. [17] propose using Shapley
value to incentivize cooperation in p2p systems.

The 95th-percentile pricing has been analyzed recently
by Dimitropoulos et al. [8]. They quantify the depen-
dence between the size of measurement slot and the ob-
served 95th-percentile and show that this dependence
becomes weak for large volumes of traffic. Laoutaris
et al. [12] use the 95th-percentile pricing to propose
ISP-friendly bulk transfers that explicitly avoid to use
bandwidth that could increase the 95th-percentile.

5. SUMMARY
Days in which the technological reasons were impact-

ing the performance of the residential Internet users are
coming to an end and in the near future, the perfor-
mance offered to the end users will be predominantly
shaped by the economic factors rather than physical

bottlenecks. In such environments it is crucial to de-
termine the cost contribution of each individual user to
the operation of ISP, as it would be a key metric for
evaluating the consumption and accounting in such an
ecosystem. Our study is a step towards the fairer usage
of the Internet in which economic aspects dominate the
per-user performance as it formally quantifies the indi-
vidual per-user cost contributions in the specific context
of burstable (95th-percentile) billing.

APPENDIX
A. THE 95TH-PERCENTILE PRICING

The 95th-percentile pricing is the most prevalent method
that transit ISPs use for charging their customers, ac-
cess providers. A billing cycle, typically one month, is
split in constant-size intervals (eg. 5-min or 1-hour) and
number of bytes transferred in each interval is recorded,
and the 95th-percentile of the distribution of recorded
samples is used for billing. Thus, in a billing cycle of 30
days, 36 hours (5% of time) of the heaviest traffic is fil-
tered out, and then the maximal traffic of the remaining
684 hours is used for billing. Usually, the downstream
and upstream 95th-percentile are computed indepen-
dently, and the lower value is neglected.

The 95th-percentile is also a good measure of how
utilized the network is, and is often used as an indi-
cator for dimensioning of infrastructure, whose cost is
determined by the peak hour demand.
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