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ABSTRACT
In this paper we address the problem of real-time identi-
fication of rate-heavy-hitters on very high speed links, us-
ing small amounts of SRAM memory. Assuming a nonuni-
form distribution of flow rates, runs (where two randomly
selected bytes belong to the same flow) occur predominantly
in the heaviest flows. Based on this observation we present
RHE (Realtime Heavy-hitter Estimator), a measurement
tool which uses a small amount of memory for extracting
the heaviest flows. Using this tool a queue management
algorithm called HH (Heavy-hitter Hold) is presented that
approximates fair bandwidth allocations. RHE posses very
low memory requirements, scales with line speeds of several
tens of Gbps and covers a wide range of flow rate distri-
butions. Measurements over real Internet traces show the
high efficiency of RHE, achieving a high accuracy with a
very small amount of SRAM memory. Compared to Estan-
Varghese’s Multistage Filters and Lucent’s CATE estimator,
RHE achieves up to 10 times smaller errors in measuring
high-rate flows on a number of synthetic traces. Packet level
ns2 simulations in a synthetic heavy-tailed environment are
presented to illustrate efficacy of HH.

1. INTRODUCTION
Measurement of traffic on high speed links is essential for

appropriate network management. In order to optimize per-
formance, network operators need traffic measurements that
provide insights at both quantitative and qualitative level.
Long-term measurements can be used for traffic engineer-
ing in developing network architecture or rerouting traffic.
Short-time measurements that monitor traffic on a scale of
few seconds to few hours are needed for intrusion detection.
Real time measurements can be used for managing flow con-
trol and providing QoS. Also, practical knowledge of various
aspects of network traffic provides necessary feedback to re-
searchers that work on analysis of IP networks.
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Having its importance in mind, traffic measurement as
research area has attracted significant attention in last few
years. The basic problem behind this research lies in the
inability of large DRAM memory devices to process packets
quickly enough and fast SRAM memories to allow enough
space for full per-flow state. Namely, number of concur-
rent flows on high speed links (≥ 1Gbps) can be more than
a million. A naive approach, of keeping per flow state for
each flow cannot be implemented on large DRAM since it is
not possible to manage per-flow counters at speeds of cur-
rent backbone links; moreover one cannot expect in the near
future that the speeds of DRAMs (which increase approx-
imately 7% per year) will reach speeds of backbone links
(which roughly double every year)[7, 1]. On the other hand,
using fast SRAM is not feasible since the size of available
SRAM chips is significantly smaller than needed for keeping
per-flow state for all flows at very high speeds[1, 30, 35].

Based on the observation that on most internet links small
number of flows account for large amount of bandwidth the
authors of the seminal paper [7] have developed 2 efficient
algorithms for measuring of these heavy-hitters – flows that
account for most of bandwidth. However, the algorithms
are passive in sense that they measure size of flows rather
than their rates. Efficient, real-time, measurements of flow
rates rather than flow sizes would be essential in QoS per-
flow management and for enforcing fairness in networks in
which users use heterogenous congestion control algorithms,
or do not react on congestion signals at all. In environments
with flows that have a fixed sending rate, measuring the flow
size and the flow rate over an interval is equivalent. In envi-
ronments with TCP-like flows, where rate may increase and
decrease one should be much more careful when measuring
flow rates.

In this paper we develop a novel technique, called RHE,
for real-time measuring of rates of flows with the highest
rates on very high speed links. Then we apply this tech-
nique and describe an Active Queue Management(AQM)
scheme called HH that controls fairness using information
on measured rates.

For the purpose of measuring flows with highest rates we
introduce a data structure that is built of memory cells.
Each memory cell corresponds to certain set of flows that
are mapped to it. Assuming nonuniform distribution of flow
rates, information kept in a memory cell is enough to extract
(with high probability) the flow with the highest rate that
maps to that cell.

Measurements over synthetic streams show that RHE achieves
up to 10 times smaller errors in measuring heavy flows,
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compared to state of the art methods: Multistage Filters
(MSF)[7] and Coincidence bAsed Rate Estimator1 (CATE)[14].
On the other hand, number of measurements performed on
the real packet traces show high accuracy of RHE with ex-
tremely small amount of memory.

The paper is structured as follows. In Section 2 we de-
scribe previous work and define the problem of interest. Sec-
tion 3 will present the technique RHE for dynamic tracking
of flows with highest rates. Analysis of RHE will be given in
Section 4. In Section 5 we apply RHE to introduce an AQM
scheme HH that will control fairness2. We will experimen-
tally evaluate both RHE and HH in Section 6 and conclude
in Section 7.

2. PRELIMINARIES

2.1 Previous work
The most widely used tool for traffic measurements is

Cisco NetFlow[25]. NetFlow keeps per-flow state for each
user in a large DRAM memory. At very high speeds Net-
Flow deals with the following two issues: (a) packet inter-
arrival times can be significantly smaller than time needed
for processing of a packet; (b) the amount of traffic measure-
ment data can be enormous. To overcome these problems
NetFlow uses sampling, with a sampling rate as a parame-
ter that is set manually. However, it is clear that in order
to optimize memory usage and accuracy traffic conditions
must be considered when choosing the sampling rate. The
paper [9] deals with this problem by introducing self-tuning
NetFlow, where the sampling rate adapts to current traffic
measurements. See [15] or [5] for review of sampling meth-
ods in traffic measurements.

In order to move from slow3 DRAM to fast SRAM the
authors of [7] suggest a method called Multistage Filtering
(MSF) that attempts to monitor only flows with volume
greater than a certain threshold, T , in a certain measure-
ment interval and to neglect all smaller flows. In order to
meet this goal, MSF contains two components: hash fil-
ters and a flow container. On every packet arrival the flow
identifier is used as an index for computing hash in several
stages. Each stage uses an independent hash function and
each counter at every stage contains the aggregate amount
of traffic for all flows that map to that counter. The volume
of a flow is then estimated as the least value of all counters
that this flow maps to. If the estimated volume of a flow is
greater than the threshold T the flow is added to the flow
container. It is obvious that if a certain flow has volume
greater than T then the estimated volume will be at least
T and it will be added to the flow container, assuming that
there is space for it. In order to prevent flows with volume
smaller than T being wrongly identified as large, two en-
hancements are introduced: shielding and conservative up-
dates. Assuming that the sending rates do not vary over
the measurement intervals and that the objective is find-
ing the total volume over the measurement interval rather

1CATE is the final version of runs based estimators devel-
oped by Lucent group and its performance is strictly bet-
ter than the previous incarnations RATE[19] and ACCEL-
RATE[13].
2Throughout this paper we accept max-min definition of
fairness[32].
3Current access times are in range 50 − 100ns for DRAM,
and 2− 6ns for SRAM[35].

than the sending rate of a flow, MSF together with con-
servative updates and shielding achieve this goal with high
accuracy for heavy hitters in environments with heavy-tailed
flow size distributions. For flow control one needs rate rather
than volume of a flow over long measurement intervals and a
quick response to this information. The main contribution
of this paper is RHE which will meet these requirements
using only small and fast SRAM memory.

In [19] in order to save memory the authors propose a
mechanism, called RATE, for estimating elephant flows by
counting runs: events that correspond to the situation where
an arriving packet belongs to the same flow as some sam-
pled packet that has recently arrived at the link. However,
to give an accurate estimate of elephant flows on links with
large number of users RATE needs a long time. In order
to solve this scalability problem, the same authors propose
ACCEL-RATE[13] and CATE[14] which require more per
packet processing and memory. As it is shown in [14] these
algorithms “...tend to slightly over-estimate flow rates.” over
real IP traces. This problem is caused by two factors: (a)
the bursty nature of internet traffic and (b) the fact that
many flows do not have a constant rate but rather a vari-
able rate, or even more drastically on/off patterns. Factor
(a) can be resolved by introducing buffer for counting runs.
Factor (b) appears to be much harder to resolve and is the
main cause of inaccuracy of RATE-like algorithms that try
to use a run counter as the main source of measurements.
However, counting runs can give some important insights
on flow rates. We are going to exploit this idea, but in a
different way, as we will see in later sections.

Another interesting approach in traffic measurements is
the accurate estimation of the number of very small flows
as they would indicate potential DDoS or Internet worm at-
tacks. In [22] the authors use a Bayesian statistical method,
Expectation Maximization, together with the efficient im-
plementation of sequence of counters proposed in [30] to
give a very accurate estimation of the flow size distribu-
tion4. A potential weakness of this work is a vulnerability
in the number of counters. Namely it is shown in [22] that
accuracy of the proposed algorithm drops considerably when
number of flows is larger than 2*(number of available coun-
ters). See [?] for another memory efficient scheme that
utilizes a multiresolution-Bloom-filter technique to capture
the (heavy) flow rates.

For caching techniques used in heavy-hitter identification
see [?] and references therein.

Fair queueing has been an important research area in net-
working for the previous two decades, motivated by idea
that in heterogenous network conditions the service that a
user gets should not depend on the aggressiveness of its con-
gestion control algorithm. Various approaches include fair
scheduling [3, 31], keeping state information on overly ag-
gressive users [23, 24, 28] or change of IP infrastructure and
exploiting state information written in IP header for control-
ling fairness as in [33, 17]. The way information is extracted
on highly aggressive flows in [23, 24, 28] is by naive sam-
pling and requires relatively large amounts of memory on
very high speed links. HH goes further in this direction and
by exploiting efficacy of RHE we aim to control flow rates
even on very high speed links with low memory usage.

4Note that problem of estimation of flow size/rate distribu-
tion is different from the problem of heavy-hitter identifica-
tion since the first problem ignores identities of the flows.
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2.2 Problem definition
A flow can be defined as set of packets that satisfy a cer-

tain condition that is called the flow key. In most cases the
flow key is defined as some function of the following infor-
mation kept from a packet header: IP address of source and
destination, port numbers, protocol ID, etc.

Our goal is to do real-time accurate measurement of the
rates of flows with the highest rates with the finite amount
of SRAM memory. In order to do so, the most important
question is “What flows have the biggest rate?”. Thus the
problem of interest for us is following:

For a given positive integer M identify and monitor as
many as possible among the M flows with the highest sending
rate using approximately 10 ·M bytes of SRAM memory.

Important assumption that have to be taken in consider-
ation is that per-packet processing should be less than few
hundreds of ns, or equivalently less than the time of process-
ing an average-sized packet at given high-speed link. Thus,
although we are concerned with elephant flows, our objec-
tive is to monitor the M “biggest” flows rather than flows
with size greater than some threshold T .

The notion of flow rate is not strictly defined in networking
literature. However, there is consensus that for applications
related to flow control, flow rates should involve some kind
of weighted averaging in order to smooth out possible large
variations that can occurs as a consequence of bursty traffic
and on/off traffic patterns. For example, authors of [33]
define flow rate as a weighted average that depends on inter-
arrival time T between the previous and the current packet
of size l:

Anew = (1− e−T/K)
l

T
+ e−T/KAold

Where Anew and Aold denote estimated rates for the cur-
rent and previous packet respectively and K is a smooth-
ing parameter. Implementing a strategy like this would re-
quire keeping per-flow time-stamps as well as using a “CPU-
expensive” exponential function. Since our goal is the esti-
mation of rates with as small amount of memory usage as
possible that runs at line speed for high speed links, we will
try to avoid keeping the time-stamps and use functions with
lower computational cost in our definition of flow rate.

We define the sending rate of flow f in the following way:
we divide time from beginning of measurement into sub-
measurement intervals of length δ. Let vol(f)(a, b) be volume
of data in the interval (a, b) in bytes. At time t ∈ (sδ, (s +
1)δ], the rate of flow f in bytes per second is defined as:

rf (t) =
1

qδ + (1− q)(t− sδ)
(qδ ·rf (sδ)+(1−q)·vol(f)(sδ, t))

(1)
This can be seen as weighted averaging of rates over sub-
measurement intervals with weighting parameter q: packets
that arrive in the last sub-measurement interval have weight
1− q, packets that arrive in the previous sub-measurement
interval are accounted with weight q(1− q),..., packets that
arrive in the k-th previous sub-measurement interval are ac-
counted with weight qk(1 − q). Throughout this paper we
will calibrate parameters q and δ in such fashion that weights
of bytes decreases approximately exponentially with factor e
per second. Weight of a byte that arrived at time t = τ0− 1
is q−1/δ times5 smaller than weight of a byte arrived at time

5We assume that δ is measured in seconds; then 1/δ is the

t = τ0. Thus, our calibration rule is q1/δ ≈ e−1. For q close
to 1, we can approximate:

e−1 ≈ q1/δ =
(
(1− (1− q))

1
1−q

) 1−q
δ ≈ e−

1−q
δ .

Therefore, choosing q and δ to satisfy a simple rule δ = 1−q,
approximately implies exponential decrease of weights with
rate of e per second.

Remark. Weighted averaging (or low pass filtering) is
a technique widely used for the de-noising of noisy data.
While other more subtle signal-processing methods are pos-
sible (see for example [4]), in our case the weighted averag-
ing performs good in the de-noising flow rates and can be
effectively implemented.

We will now show how one can effectively compute rate
of a flow f defined by (1). Let co be a counter that is
incremented by the packet size of each arriving packet that
belongs to flow f . At the time ts = sδ, value of the counter
co is updated by co ← q · co. Now, at time t ∈ (sδ, (s + 1)δ]
the rate of flow f is given by

rf (t) = co · 1− q

qδ + (1− q)(t− sδ)

The RHE, measurement tool described in next section, is
motivated by applications in flow control and therefore is
designed for measuring flow rates. However, for the purpose
of measuring flow sizes one can take δ = 1 and discard the
scaling factor. With this minor change one can adapt RHE
for flow sizes measurement but throughout this paper we
assume that q < 1 and that RHE measures rates rather
than sizes.

2.3 How to check if an element of the set is
maximal?

Here we present the argument that can help to build the
intuition behind RHE.

Suppose that we have a set A of positive real numbers,
that sum up to 1:

∑
x∈A x = 1. How to check weather

one them, say x1 ∈ A is the maximal element of the set
A using small amount of memory? In some extreme cases
no additional memory is needed to answer this question6.
Suppose now that value of md =

∑
x∈A xd is available as

well, for some d > 1. Then:

lim
d→∞

md

xd
1

= lim
d→∞

∑
x∈A

(
x

x1

)d

= 1 if x1 = max(A)

and

lim
d→∞

md

xd
1

= lim
d→∞

∑
x∈A

(
x

x1

)d

= +∞ if x1 < max(A).

In practice for a finite d, one can chose a threshold M such
that x1 is declared as maximal if and only if md

xd
1

< Md.

By choosing the appropriate M , the confidence of the above
decision can be very high as we will see in next section.

In our context, of heavy-hitter identification, set A will
corresponds to the set of flow rates (typically few dozens of
flows) that map to a cell. By using the idea from RATE,
by counting runs, one can obtain an estimate of m2 with

number of sub-measurement intervals in one second.
6For example, if x1 > 0.5 then it is clearly the largest ele-
ment of A.
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Figure 1: Layout of a memory cell.

very small memory overhead and small computational com-
plexity. Using higher powers (d > 2) is possible as well but
it would increase memory overhead needed for calculating
md, and our initial experiments show no benefit by choos-
ing higher d so we concentrate on d = 2 in the rest of the
paper.

3. RHE
In this section we present tool for measuring flows with the

highest rates. The basic idea is as follows: at each packet ar-
rival a hash of a flow is computed and the packet is mapped
to a memory cell. Since many flows can map to same mem-
ory cell, our goal is to identify the one with highest sending
rate. In order to do it we introduce data structure sketched
on Figure 1.

A memory cell contains cRate, information on aggregate
rate of all flows that map to this cell and rateTyp, infor-
mation on rate of a flow that is a candidate for the highest
rate among flows that maps to this cell that is further iden-
tified by typPkt: another 16bit hash value of its flow key.
Counters cRate, rateTyp and eqPairs (which will be de-
scribed shortly) mimics the technique introduced in Section
2.2, for tracking the rate with one counter without time-
stamps. Thus whenever a packet from a flow that maps to
the memory cell arrives, its size is added to counter cRate; if
it belongs to flow with hash value equal to typPkt, counter
rateTyp is incremented by size of arriving packet. Finally
at the end of each sub-measurement interval of length δ we
set

(cRate, rateTyp, eqPairs) ← q(cRate, rateTyp, eqPairs),

with q ∈ (0, 1) as a weighted averaging parameter. By doing
this we follow the definition of the flow rate given by (1), so
the aggregate flow rate at time t ∈ (sδ, (s+1)δ] in bytes per
second is given by cRate · 1−q

qδ+(1−q)(t−sδ)
and similarly the

rate of “candidate” flow is given by rateTyp · 1−q
qδ+(1−q)(t−sδ)

.

The question is “How do we know if the candidate is the
one with highest sending rate?”. To answer this question
we exploit the heavy tailed nature of the Internet flow rate
distribution and introduce an idea that is at the core of our
method and applies the reasoning discussed in Section ??.

Each memory cell contains SampledB: a 16bit hash value
of flow ID for some uniformly sampled byte (rather than
packet) that arrived in this cell. On each arrival SampledB
is compared with the arriving packet’s 16bit hash value and
if they match then the size of arriving packet is added to
counter eqPairs 7. As we already said, at the end of each
sub-measurement interval of length δ, the counter eqPairs8

is set to q · eqPairs. We claim that once we have this

7The idea of the comparing the arriving packet’s flow ID
with the flow ID of some previously arrived packet has
been exploited in AQM design in Stabilized RED[27] and
CHOKe[29] as well as in recently proposed traffic estima-
tors [19, 14].
8Following the terminology of RATE[19], counter eqPairs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Perentage of flows

Pe
re

nt
ag

e 
of

 tr
ef

fic

k = 0.5
k = 1
k = 1.5
k = 2
k = 2.5
k = 3

Figure 2: CDF for Pareto distribution for k =
0.5, 1, 1.5, 2, 2.5, 3, m = 40.

information then we can say with high confidence if the
flow represented by typPkt has highest rate (or one of the
highest rates) among flows that map to this cell. To sup-
port this statement we will have to understand meaning of
the counter eqPairs. Let r1, r2 . . . , rn be the rates of all
flows that map into same cell and let R be the aggregate
rate: R = r1 + · · · + rn = cRate 1−q

qδ+(1−q)(t−sδ)
. Sampling

SampledB byte-wise and assuming no hash collision we have
that

SampledB = i with probability zi =
ri

R
.

Therefore expected value of eqPairs can be estimated by:

E(eqPairs) =
qδ + (1− q)(t− sδ)

1− q

n∑
i=1

riP (SampledB = i) =

=
qδ + (1− q)(t− sδ)

1− q
·

n∑
i=1

(R · zi) · zi = cRate

n∑
i=1

z2
i (2)

In the large number of packets-per-second regime variance
of eqPairs is small and

∑n
i z2

i can be accurately approxi-
mated with eqPairs/cRate. On the other hand, for the
Internet-like (heavy-tailed) flow rate distributions

∑n
i z2

i is
dominated by the maximal value of zi.

To see this we plot histograms of
√∑n

i z2
i / max (zi) for

six different cumulative distribution of zi given in Figure 3.
This six CDF, corresponds to Pareto distribution with k =
0.5, 1, 1.5, 2, 2.5, 3 and m = 40 (P (Xk > m + i) ∼ ( 1

m+i
)k).

Figure 3 contain histograms for n = 20; Figure 4 contain
histograms for n = 100.

As we can see from Figures 3 and 4, with very high con-
fidence one can declare that

√∑n
i z2

i / max (zi) is less than
2.5 (in the first case) or 3.5 (in the second case). We use
this to define a test for deciding if the candidate flow, rep-
resented by its hash value typPkt and with rate rateTyp is
the “high-rate” flow. We know that rateTyp = zi · cRate
for some i ∈ {1, . . . , n}. By using estimate (2), we conclude

that if

√
eqP airs

cRate
typRate

cRate

is large, than that implies that candidate

flow is not one with maximal rate and we should continue
with search for maximal one. Formally, at the end of each

can be seen as the total number of runs weighted by packet
sizes.
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sub-measurement interval of length δ, we do test described
in Figure 5. One can notice that we use the expensive

√·
function in defining the test. However one can ask equiva-
lently if eqPairs · cRate > (c0 · typRate)2. We emphasize
again that this test is done only once in sub-measurement
interval of length δ and therefore its expense is not essential.

. if
√

eqPairs
cRate

> c0
typRate
cRate

. replace typPkt with SampledB.

. end if

Figure 5: Testing of a candidate for high-rate flow.

Here c0 ∈ [1, 4] is a parameter that should be chosen to
reflect traffic condition. In the section 4.2 we will show how
to calibrate c0.

Thus we have described an algorithm that will eventually
give us the hash of the flow ID for the flow that satisfy√

eqPairs
cRate

< c0
typRate
cRate

. This flow might not be the largest

among flows that map to the same cell, but in that case,

(
typRate

cRate
)2 + max (

ri

cRate
)
2 ≤

n∑
i

z2
i < c2

0(
typRate

cRate
)2.

Which means that

typRate ≥
√

1

c2
0 − 1

max (ri).

Having some kind of heavy-tailed flow rate distribution, we
can chose c0 to be in the interval (2, 4) and therefore the
presented algorithm will give us a flow with a rate that is
either the flow with largest rate or a flow whose rate is within

. if 1−q
qδ+(1−q)(t−sδ)

cRate
√

eqPairs
cRate

− ( typRate
cRate

)2 > T

. LF ← 1

. else

. LF ← 0

. end if.

Figure 6: LF bit update rule

an order of magnitude of the largest rate among flows that
map to that cell.

Sometimes two or more heavy flows can map to same cell.
In order to identify as many large-rate flows as possible, we
divide the available memory of M memory cells into several
stages. The first stage with size bM(1−ρ)c, the second with
size bM(1 − ρ)ρc, the third with size bM(1 − ρ)ρ2c and so
on. Since we want to reduce per-packet processing we will
use small ρ, say ρ ≤ 1/2. At every packet arrival, if the
packet belongs to the flow represented by typPkt its rate is
estimated by rateTyp · 1−q

qδ+(1−q)(t−sδ)
. If the packet do not

belong to the flow represented by typPkt and if the bit LF
(bit LF is described in the next paragraph and indicates
existence of some Large Flow among non-typPkt flows that
map to the cell) is set to 1 the packet is hashed in one of
cells in the next stage. If arriving packet does not belong
to the flow represented by typPkt and LF bit is 0, the flow
the arriving packet belongs to is identified as small and its
rate is estimated by T/2, where T is threshold that will be
introduced in next paragraph.

In order to allow as few small flows to pass this stage as
possible, the bit LF bit is updated once or several times
(depending on abilities of hardware) per sub-measurement
interval in the way sketched on Figure 6.

By doing this we ensure that if there is a flow that sends
at a rate greater than threshold T , it will be allowed to go
to next stage. Indeed, suppose that LF is set to 0 then

T ≥ 1− q

qδ + (1− q)(t− sδ)
cRate

√
eqPairs

cRate
− (

typRate

cRate
)2

=
1− q

qδ + (1− q)(t− sδ)
cRate

√√√√
n∑

i=1

z2
i − (

typRate

cRate
)2 =

=
1− q

qδ + (1− q)(t− sδ)
cRate

√√√√
n∑

i6=typPkt

z2
i ≥

≥ 1− q

qδ + (1− q)(t− sδ)
cRate max (zi | i 6= typPkt) =

= max (ri | i 6= typPkt).

Thus, if there is at least one flow that maps to the cell that
is not represented by typPkt and with rate greater than T ,
then the LF bit will not be set to 0 and therefore it will
be allowed to pass to next stage (together with all other
non-typPkt flows). Note that although LF bit set to 1 does
not necessary mean that there is a flow with rate greater
than T among the flows that pass from the cell to the next
stage, it will indicate the existence of a flow with rate that
is within an order of magnitude of T in this set of flows,
assuming heavy-tailed flow rate distribution. In other words,
if there does not exist a flow whose rate is within an order
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. Input - packet: pkt, integer: s

. CELL ← fs(ID(pkt)) \∗ hash on flow ID of pkt

. cRate(CELL) ← cRate(CELL) + size(pkt)

. h ← f0(ID(pkt)) \∗ second hash

. if (h == typPkt(CELL))

. rateTyp(CELL) ← rateTyp(CELL) + size(pkt)

. end if

. if(h == SampledB(CELL))

. eqPairs(CELL) ← eqPairs(CELL) + size(pkt)

. end if

. with probability p = size(pkt)
MaxPktSize

do
. SampledB(CELL) ← h
. end do

Figure 7: Per-packet update of memory cell at stage
s.

of magnitude of T , then LF bit will be set to 0 and these
flows will not be processed in the next stage.

In Subsection 3.2 we will show how to adapt the value of
threshold T in order to ensure effective usage of memory.
Until then we will assume that T is a parameter that is
chosen manually.

3.1 Implementation issues
The data structure used in RHE is composed of M mem-

ory cells (with structure sketched at Figure 1) divided into
the number of stages whose sizes decrease roughly geomet-
rically with coefficient ρ. At the beginning of the mea-
surement all values of all memory cells are initialized to 0.
Whenever a packet arrives the hash function of its flow key
is computed. This maps the packet to one memory cell
and the counter cRate is incremented by the size of arriving
packet in bytes. Another hash function is computed on the
flow identifier of the arriving packet that maps each flow
to a 16bit integer h. If h is equal to value typPkt then
the counter rateTyp is incremented for the size of the ar-
riving packet in bytes. Also, if h is equal to SampledB
then the counter eqPairs is incremented by the size of the
arriving packet. Finally with probability p = PktSize

MaxPktSize
the SampledB field is updated with h. Here the parameter
MaxPktSize is maximal possible size of a packet that can
be seen at the link. Since more than 99.99% of all packets in
the Internet are 9000B or less we set MaxPktSize = 90009.

Pseudo code for the processing of a packet at stage s is
given in Figure 7. The complete sequence of actions for an
arriving packet is shown on Figure 8

In order to avoid random number generation that might
consume a lot of CPU time, we suggest the following: one
register should contain 16bit integer RN . Instead of call-
ing a random number generator to update SampledB we
add the packet size to RN : RN ← RN + size(pkt). If
RN ≥ MaxPktSize then update SampledB and set RN ←
((RN+1) mod MaxPktSize), otherwise do nothing. By do-
ing this, the value RN will mimic random integer uniformly
distributed on [0, MaxPktSize−1] and the probability that
SampledB is updated is proportional to the size of the ar-
riving packet. Histograms of RN using the first million ar-
rivals of MRA trace[26] shows uniform distribution of RN
on [0, MaxPktSize− 1].

9Once MTU increases for a significant amount of traffic,
then MaxPktSize can be increased to follow this change.

Figure 8: Flow chart

If we do not require 100% accuracy, we can reduce the
number of bits of a counter co for k using the following
argument. Whenever a new packet, with size S bytes arrives,
instead of adding S to the counter co we can add bS/2kc.
Also, we can use one register for storing RN1, a (k + 1)bit
number that would mimic a random number in same way
as RN . Namely on each packet arrival update RN1 with
the sum of the last k binary digits of S and RN1. If RN1

is greater than 2k, then add 1 to the counter co and set
RN1 ← RN1 mod 2k, otherwise do nothing. Assuming full
randomness and independence of RN1, the strong law of
large numbers ensures that the difference between a counter
measured in 2k bytes and the total amount of arrived traffic
is small. Taking k = 10 can significantly reduce memory
requirements, with small (relative) errors for heavy hitters,
see [?].

3.2 Self tuning of thresholdT

The threshold T is used by RHE for reducing amount of
traffic that passes from one stage of memory cells to another.
Using too high value of T might cause underutilization of
memory cell space in higher level stages and a loss of accu-
racy for flows with rate less than T , since RHE does not care
about accuracy of flows with sending rate less than T . On
the other hand, setting T too low results in a large amount
of traffic passing from one stage to another. This will imply
the following undesirable features. Firstly, since the num-
ber of cells per stage decreases geometrically, the number
of flows that will map to the same cell grows implying a
loss of confidence in our test (Figure 5) as well as increasing
the time to search for a flow with one of the highest rates.
Secondly, a large number of packets passing “threshold test”
would imply larger average per-packet processing times that
result in unacceptably high costs in the context of very high
speed links. Knowing the flow rate distribution, one can
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Figure 9: Histogram of RN using trace MRA(top)
and appropriate histogram of random numbers gen-
erated by MATLAB random generator.

manually set a threshold that would be close to optimal for
a given amount of memory cells10.

However we propose a simple adaptation algorithm that
will control amount of traffic that passes from one stage to
another. The basic idea is the following: if the number of
cells with the LF bit set to 1 is less then half of number of
cells at the first stage, then the filtering should be amplified
and so T should be increased, otherwise T should be de-
creased. Our algorithm uses simple MIMD11 strategy with
parameters α1 = 1.1, α2 = 0.9 that updates T once per
sub-measurement interval. Pseudo code is given on Figure
9.

Once per sub-measurement interval of length δ
. if ((

∑
LF on stage 1 )>0.5·(Size of stage 1 ))

. T ← T · 1.1

. else

. T ← T · 0.9

. end if

Figure 10: MIMD algorithm for adaptation of
threshold T .

4. CALIBRATION OF PARAMETERS

4.1 Effect ofρ

In this section we evaluate how the choice of ρ can af-
fect the number of identified top flows. Going back to the
question stated in Section 2.2, our goal was monitoring of
as much as possible of the largest M flows with the mem-
ory equivalent to the M memory cells. A perfect algorithm
would identify and monitor all M largest flows. However,
using RHE there might exist “bad” cells that no one of the
largest M flows map to. Since the total number of cells is
M , the number of the largest M flows that can be monitored
is at most (M - number of “bad” cells). By estimating the

10For example, with M memory cells one possible approach
is to chose a T value around M/2-th highest flow rate.

11Multiplicative-Increase, Multiplicative Decrease. Other
control strategies are possible as well, but in our case MIMD
is satisfactory.

number of “bad” cells we will give bounds on the number of
large flows that can be tracked by M memory cells. We will
see that these bounds are not far from simulation results
presented in Section 6.

Questions of interest are as follows:

(1) Estimate G - the number of cells that contain at least
one of the largest M flows. We denote the set of the largest
M flows by LM .

(2) Estimate V G - the number of cells that contain at
least one of the largest M/2 flows. We denote the set of the
largest M/2 flows by LM/2.

By following analysis we will estimate G and V G as func-
tion of ρ. Since we are interested in the upper bounds for G
and V G, we will assume, for simplicity, that the threshold
is such that all LM flows passes from one stage to another.
This will slightly decrease the accuracy of our bound, but
main objective of this section is to give some feeling on how
much we can expect from RHE.

Let ak be the average number of flows that map to one
cell at k-th stage. Denoting by Nk the total number of flows
at k-th stage, we have that

ak =
Nk

Mρk−1(1− ρ)
.

Probability that among a1 flows at first stage there is no one
from set LM is

P ((f1 6∈ LM ) ∧ · · · ∧ (fa1 6∈ LM )) = P (f1 6∈ LM )a1 =

=

(
1− M

N1

)a1

=

((
1− 1

a1(1− ρ)

)a1(1−ρ)
) 1

1−ρ

≈ e
− 1

1−ρ

Therefore at first stage, the number of “bad” cells one can
expect is roughly:

B1 = M(1− ρ)e
− 1

1−ρ .

Thus, at first stage one can expect roughly G1 = M(1−ρ)−
B1 “good” cells. In the perfect case (where each cell extract
the flow with the highest rate) at the second stage one can

expect approximately M −G1 = M(ρ +(1− ρ)(1− e
− 1

1−ρ ))
flows from LM . Therefore, the probability that a cell from
the second stage is “bad” is

P ((f
(2)
1 6∈ LM ) ∧ · · · ∧ (f (2)

a2 6∈ LM )) =
(
P (f

(2)
1 6∈ LM )

)a2
=

=

(
1− M −G1

N2

)a2

=

(
1− ρ + (1− ρ)e

− 1
1−ρ

a2ρ(1− ρ)

)a2

≈

e
− ρ+(1−ρ)e

− 1
1−ρ

ρ(1−ρ) .

Thus the number of “bad” cells on the second stage is roughly

B2 = Mρ(1− ρ)e
− ρ+(1−ρ)e

− 1
1−ρ

ρ(1−ρ) .

Similarly, at k-th stage the number of bed cells can be ap-
proximated with

Bk = Mρk−1(1− ρ)e
− ρk−1+(B1+···+Bk−1)/M

ρk−1(1−ρ) .
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Figure 11: f(ρ) - Bound on the proportion of iden-
tified flows from LM for ρ ∈ (0, 0.5).
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Figure 12: g(ρ) - Bound on the proportion of identi-
fied flows from LM/2 for ρ ∈ (0, 0.5).

Having this value the proportion of identified LM flows is
upper-bounded by

f(ρ) =
M −∑∞

k=1 Bk

M
. (3)

On Figure 10 we plot quantity f(ρ), for ρ ∈ (0, 0.5).
From Figure 10 we can see that by choosing the higher ρ

we can enforce the lower number of “bad” cells. The price
for this would be a larger number of stages and therefore a
larger per-packet processing time.

The bound given by (3) gives a rough approximation of
G - the number of “good” cells as function of ρ. Number of
identified LM flows is not larger than

G = f(ρ) ·M. (4)

Using similar arguments we obtained bound for V G:

V G = g(ρ)
M

2

where

g(ρ) =

∑∞
k=0 Ak

M
2

. (5)

And sequence Ak satisfies: A0 = 0 and

Ak = (1− ρ)ρk−1M(1− e
−

1
2−(A0+···+Ak−1)/M

ρk−1(1−ρ) ).

The plots in Figures 10 and 11 also contain simulation re-
sults on a proportion of identified LM and LM/2 flows with
RHE for various values of ρ. Two sets of simulations were

performed over 10000 flows with cumulative distribution of
flow rates given by Pareto distribution with k = 0.5, m = 40,
depicted in Figure 3: one with 1000 memory cells another
with 200 memory cells. Since the number of flows per mem-
ory cell in the second case is larger than in the first case,
the test for identifying the highest flow has lower confidence
in the second than in the first case. Therefore we see that
the proportion of identified LM and LM/2 flows with 200
memory cells is slightly lower than with 1000 memory cells
(although we see for ρ ≤ 0.1 the opposite effect; this effect
is consequence of threshold adaptation that is neglected in
our analysis).

4.2 Choosingc0

We saw in the Section 3 that if n numbers, z1, . . . , zn,
are drawn with some heavy tailed distribution D then the
distribution

√∑n
i z2

i / max (zi) is concentrated close to 1;
see Figures 3 and 4. Parameter c0, that defines test given
on Figure 5, should be chosen is such fashion that following
probability is minimized:

p0(D, n, c0) = Prob((z1, . . . , zn)|
√∑n

i z2
i

max (zi)
> c0)

Value p0 represents the probability that test will not even-
tually finish its search, once the heaviest flow is found12.
Note that even in that case (test does not finish), the maxi-
mal flow will be hashed to the next stage(s) (and will be
given chance for identifying there) as long as its rate is
greater than the threshold T .

Figure 12 depicts (empirically obtained) values of c0 for
which p0 = 0.02 when zi are drawn with Pareto distribution
for two different values of parameter k and m = 40. For-
mally it depicts graphs of c̄0(Pareto1, n) and c̄0(Pareto3, n)
for the distributions Pareto1 (k = 1, m = 40) and Pareto3

(k = 3, m = 40), where c̄0 is defined by:

c̄0(D, n) = x0 for which p0(D, n, x0) = 0.02

Throughout this paper we assume that for the distribution
of flow rates D holds following

Assumption 1.

c̄0(D, n) ≤ c̄0(Pareto3, n) (6)

Informally, it says that distribution D is “more” heavy-
tailed than Pareto3. We performed an analysis on a number
of real Internet traces and we have not found a single trace
that does not satisfy the Assumption 1. Assuming (6), for
choosing c0, we first estimate the number of flows of a single
memory cell using bitmap technique[8](b is the size of the
bitmap, we use b = 200; z is the number of zero bits):

n̂ = b ln(
b

z
).

Then we use

c0 = c̄0(Pareto3, n̂). (7)

12Recall that choosing too large c0 might cause the algorithm
to stop searching for the heaviest flow by finding a flow (with

rate typRate) that satisfies
√

eqPairs
cRate

≤ c0
typRate
cRate

.
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5. APPLICATION: HEAVY-HITTER HOLD
- HH

In this section we present a queue management scheme
called HH, that will be built on RHE. The main objective
of HH is enforcing max-min fair bandwidth allocation. The
reasons for employing “fair queueing” and its importance
can be found in [33], [28] and [10]. Particulary, a queue
scheme that enforce fair bandwidth allocation would protect
responsive and not too aggressive flows from non-responsive
and aggressive ones, and could be essential for providing
QoS requirements once the number of users that use some of
the high-speed [18, 12] or loss-insensitive transport protocols
becomes large (compared to the total number of users).

The pseoudocode of HH is given in Figure 13. We use
MIMD (Multiplicative Increase-Multiplicative Decrease) al-
gorithm for controlling the variable FAIR - that represents
the maximal allowable rate: whenever the estimated rate,
estc, of the flow the arriving packet belongs to, is greater
than FAIR, the packet should be dropped with probability
(estc−FAIR)/estc. We chose to update the variable FAIR
once in the interval of length δ, with same δ as in RHE, but
of course the frequency of updating FAIR and RHE pa-
rameters do not have to be same. Our performance goal is
to keep utilization of the link at the prescribed value util.
On each update of FAIR we ask whether the utilization
is less then util or not and update FAIR with the MIMD
parameters t1 > 1 and t2 > 1.

Having information on FAIR, RHE will use threshold
T = FAIR/2 rather than manually setting the threshold or
self-tuning of the threshold. Setting the threshold on value
T = FAIR/2 allows the monitoring of a long-lasting TCP
flow after it responds to packet loss by halving its congestion
window.

In the pseudocode given in Figure 13, RHEEstRate(pkt)
and EstCELL(pkt) represent the estimated rate of the flow
packet pkt belongs to and the memory cell that has given
this estimate.

In order to prevent multiple losses for TCP (or more gen-
erally loss-responsive) flows, we introduced a 2bit variable
marked attached to each cell. For memory cell CELL,
marked(CELL) is 0 if no packet that corresponds to CELL
has been dropped in both the current and previous up-
date interval; marked(CELL) is 1 if some packet that cor-
responds to CELL has been dropped in the current up-
date interval but no packet that corresponds to CELL is

On arrival of packet pkt
. [estc, CELL] = [RHEEstRate(pkt) EstCELL(pkt)]
. if (estc < FAIR)
. ShouldDrop ← 0;
. else
. rand = Random :: uniform(0, 1);
. if (rand < (estc− FAIR)/estc)
. ShouldDrop ← 1;
. end if
. end if
. if marked(CELL) == 1
. ShouldDrop ← 0;
. end if
. if ShouldDrop == 1
. Drop(pkt);
. if (marked(CELL) mod 2 == 0);
. marked(CELL) ← marked(CELL) + 1;
. end if
. end if
. if (now − LastUpdate > δ)
. if (CurrentThroughput/Capacity < util)
. FAIR = FAIR ∗ t1;
. else
. FAIR = FAIR/t2;
. end if
. LastUpdate = now;
. for CELL = 1 : memorysize
. if (marked(CELL) mod 2 == 1);
. marked(CELL) ← 2
. else if (marked(CELL) == 2)
. marked(CELL) ← 0
. end if
. end for
. end if

Figure 14: Pseudocode of HH

dropped in the previous update interval; marked(CELL)
is 2 if some packet that corresponds to CELL has been
dropped in the previous update interval but no packet that
corresponds to CELL is dropped in current update inter-
val and marked(CELL) is 3 if some packets that corre-
spond to CELL have been dropped in both the previous
and the current update interval. If marked(CELL) is equal
to 1 no packets with EstCELL(pkt) equal to CELL will be
dropped until the next FAIR update when marked(CELL)
is updated to reflect the definition we have already given.

6. EVALUATION
Following the analysis from section 4.1 we set ρ = 0.3

in all our experiments13. Setting ρ = 0.3 implies g(ρ) ≈
1, meaning that number of cells that contain at least one
of the largest M/2 flows is approximately equal to M/2,
allowing high probability of identifying this top-M/2 flows.
The parameter c0 is tuned by rule (7).

6.1 Comparison between Multistage Filters,
CATE and RHE

We will compare MSF[7], CATE[14], and RHE over 6 dif-
ferent synthetic streams where flow size distribution follows
Pareto distribution with parameter k = 0.5, 1, 1.5, 2, 2.5, 3,
and m = 40. Cumulative Distribution Functions (CDF) of
this six distributions are shown in Figure 3.

For each k, length of stream is L = 500000, and the to-
tal number of flows is NF = 10000, each member of the
stream has unit size and belongs to flow i ∈ {1, 2 . . . , NF}
with probability wi where wi are chosen with Pareto distri-

13Code used in this section can be found at
http://www.hamilton.ie/person/rade/RHE/.
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Figure 15: MSF vs CATE vs RHE. Average errors
ERR(L200), ERR(L500) and ERR(L1000) for different
values of Pareto parameter.

bution with parameter k whose CDF is depicted in Figure
3. The parameters for weighted averaging of flow rates are
δ = 0.5sec, q = 0.5. Length of measurement interval for
MSF is δ1 = 2sec. Number of arrivals per second is 50000,
giving total length of single test 10 seconds. Available mem-
ory for RHE is M = 1000 memory cells. We assume that
relative size of counters is 20% of a memory cell, and that
relative size of flow entry (flow identifier + counter + pointer
needed for hash table) is 40% of the size of a memory cell.
For given memory of 1000 memory cells, values for the num-
ber of stages (d), the number of counters per stage (b) and
the number of flow entries (FC) are derived from the rec-
ommendation given in Section 6.1 in [7]: d = 4, b = 615,
FC = 1270. For CATE, we use k = 50 comparisons per
packet14, as recommended in [14].

The metric of interest is average error between estimated
traffic share and real traffic share defined as in [7] by the
ratio between the sum of the absolute values of the differ-
ences between the estimated and real traffic share divided
by total sum of the real traffic share15. Thus, for a set of
flows indexed by set I, the error is defined as:

ERR(I) =

∑
i∈I |est(fi)− r(fi)|∑

i∈I r(fi)
(8)

14Using more comparisons would be computationally expen-
sive for high speed links(> 1Gbps).

15RHE measures flow rates while CATE and MSF measure
flow sizes so we use generic term “traffic share” to refer to
flow rates in RHE case and flow sizes in MSF and CATE
case.

We evaluated average errors for top 200, top 500 and top
1000 flows, indexed by sets L200, L500 and L1000. Our find-
ings are presented in Figure 14. We observe that ratio be-
tween average errors of MSF and RHE grows as k grows,
which shows much higher sensitivity of MSF on the “heavy-
tail assumption”. We also note low insensitivity of CATE on
the “heavy-tail assumption”: errors grow slowly with Pareto
parameter k. However, high variance of CATE implies rela-
tively large errors.

Comment 1. Note that the basic Multistage filtering al-
gorithm (without shielding and conservative updates) iden-
tifies a flow as being large based on the information on
mini(AggrV ol(Ci) | i = 1 : d). In the case of large number of
flows per counter(say > 10) the quantity AggrV ol(Ci) will
be (with high probability) within order of magnitude with
volume of the heaviest flow that maps to that counter Ci

only in the very heavy-tailed environments. Indeed, the ra-
tio AggrV ol(Ci) / max(V ol(f) | f ∈ Ci) = (

∑
f∈Ci

zf )/ maxf∈Ci(zf )
has a probability distribution that has a much larger mean

than
√

(
∑

f∈Ci
(zf )2)/ maxf∈Ci(zf ) and therefore the quan-

tity maxf∈Ci(V ol(f)) is not dominant in AggrV ol(Ci) if
either number of flows per counter is large or size distribu-
tion does not have very heavy tail. As we already noted in
Section 2.1, the authors of MSF introduced multiple stages,
shielding and conservative updates to improve confidence in
finding heavy-hitters, while RHE uses additional informa-
tion given in the memory cell to solve same problem.

Comment 2. Multiple stages in MSF are integral part
of MSF algorithm, and a packet have to pass all stages
twice (once for the counter increments and once for the
conservative-update correction). However, RHE attempts
to identify the heaviest flow at single stage and additional
stages (with sizes that decrease geometrically) are intro-
duced only because of possible collision when two heavy
flows mapping to same cell. The following table shows av-
erage number of stages (ANS) per packet for RHE, for six
different values of parameter k:

k 0.5 1 1.5 2 2.5 3
ANS 1.457 1.351 1.372 1.352 1.360 1.356

Comment 3. In [6] MSF is compared with a number of
sketch based approaches (see [2, 21] and references therein)
for identifying the heavy-hitters. It is claimed that MSF
needs less memory to achieve given task. To quote [6]:
“...the conclusion is that multistage filters as I use them
identify heavy hitters with less memory than sketches...”.

6.2 Measurements on real packet traces.
In this section we present experimental results over 3

NLANR unidirectional traces [26] that we refer to as MRA,
FRG and ALB. In all our experiments we use the definition
of flow at the granularity of TCP connections, ie. a flow is
defined by 5-tuple of source and destination IP address, and
port and protocol numbers. We choose to compare measured
and real rates at the moment t1 = 15sec from the start of
measurement t0 = 0sec. The number of flows, the number
of packets and the average (total) throughput of these three
traces in the interval [t0, t1] are given in the following table:

Trace # of flows # of packets Avg throughput
MRA 70826 905312 285.7 Mbps
FRG 27393 1030953 428.7 Mbps
ALB 181394 2501702 919.1 Mbps
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Parameters used are: δ = 0.1sec, q = 0.9, and the number
of memory cells in MRA and FRG measurements is M = 500
and for larger ALB we set M = 1000.

In Table 1 we present our results. The metrics of in-
terest are: proportion of identified LM/5(top M/5 flows),
LM/2 and LM flows(we denote proportion of identified Lk

flows by PropIden(k)), the average error for LM/5, LM/2

and LM flows and the average number of stages(ANS) per-
packet. We also provide the average errors for LM flows
obtained by CATE (with k = 50 comparisons) and MSF
with memory space equivalent to M memory cells(see pre-
vious subsection) on these three packet traces. Extremely
large errors with CATE are due to relatively small sample
(15 seconds of trace) and therefore high variance.

Metrics MRA FRG ALB
PropIden(M/5) 0.99 1.00 1.00
PropIden(M/2) 0.904 0.896 0.960
PropIden(M) 0.648 0.694 0.730
ERR(LM/5) 0.0073 0.0122 0.0094
ERR(LM/2) 0.0277 0.0312 0.0241
ERR(LM ) 0.0409 0.0408 0.0412

ANS 1.5593 1.4057 1.5909
ERR(LM )(MSF) 0.2837 0.1368 0.0625

ERR(LM )(CATE) 0.3850 0.4780 0.4967

Table 1: Proportion of identified LM/5, LM/2 and
LM flows; average error for flows from LM/5, LM/2

and LM ; average number of stages(ANS) per-packet;
MSF and CATE errors for LM flows.

The average number of flows per memory cell on first stage
is around 200 on MRA and ALB traces and around 80 on
FRG trace. In spite of these large number of flows per mem-
ory cell, RHE is able to extract almost all the top-M/5 flows
and about 90% of M/2 flows with highest rates. The differ-
ence between the number of identified LM/2 and LM flows
and the upper bounds given in Section 4 is mainly caused
by the fact that the threshold T often stabilizes around a
value that does not allow for some non-identified flows from
LM and LM/2 to pass from one stage to another. We should
also observe results for the average number of stages per
cell. On the most challenging trace ALB, with aggregate
throughput of more than 900Mbps, the average number of
packets per second is around 166000. With 1.5909 stages
per-packet, this gives more than 3µs per-packet update on
one stage, defined on Figure 7. Assuming fast SRAM with
access time of 4ns16, a packet update would take less than
100ns, which is roughly 30 times less than that needed on
trace ALB with aggregate throughput of about 919Mbps.

For the trace A, let k(A) be the largest integer such that
all top-k(A) flows are identified; we will denote by TT (A)
the proportion of traffic taken by top-k(A) flows. On all
three traces TT (MRA), TT (FRG), TT (ALB) are greater
than 60%. Thus RHE is able to fully identify top flows
responsible for more than 60% of traffic on the gigabit links
with only several kilobytes of SRAM memory. Figure 15
graphically illustrates the accuracy of RHE for all 3 traces.

6.3 Performance of HH.
In this subsection we will present ns2 packet level simu-

lation results that will illustrate the behavior of HH. To do
16Current SRAM access time varies between 2ns and 5ns[35].

this we initiated 1000 TCP flows divided in three groups17,
whose TCP parameters are described in the Table 2 that
share 40 Mbit/s link. We ran two experiments with these
1000 flows: one over the link with a Drop Tail queue and
another over a HH queue. The queue size in both cases is
300Kbytes which is 60ms of buffering on 40Mbit/s link.

Flow ID (u) maxcwnd RTT (ms) packetSize(B)
u ∈ 1..20 ∞ 20 + 20u 1500

u ∈ 21..120 30 8u 650− 5u
u ∈ 121..1000 3 8u + 40 60000/u

Table 2: Characteristics of 1000 TCP connections.

HH parameters are util = 0.98, t1 = 1.003, t2 = 1.003.
Weighting-average, parameters are the same as in the pre-
vious subsection δ = 0.1sec, q = 0.9 and the number of
memory cells is M = 40. Flows from the first group do
not have maximal congestion window limitation and they
account for 67.36% of bandwidth in the DropTail case. In
the HH case, the total share of bandwidth for flows from
the first group is reduced to 41.03%, while the total share
of bandwidth for other two groups increased significantly
as is sketched in Table 3 (here TOT (a..b) denotes share of
bandwidth taken by flows a, a +1, . . . , b). The utilization in
DropTail case is slightly higher than in the HH case which
is almost equal to desired util = 0.98.

In the networking literature, the standard metrics used
for evaluating the level of fairness for certain bandwidth al-
locations is Jain’s fairness index(JFI)[16]. For a set of k
numbers a1, . . . , ak, the JFI is the square of the ratio be-
tween arithmetic and quadratic mean of these k numbers:

JFI(a1, . . . , ak) =
(a1 + · · ·+ ak)2

k(a2
1 + · · ·+ ak

2)

The last row in Table 3 contains the JFI for share of band-
width for flows from the first group in both the DropTail
and HH case. Figure 16 graphically illustrates the share of
bandwidth for flows from the first group in both scenarios.

Metrics DropTail HH
TOT (1..20) 0.6736 0.4103

TOT (21..120) 0.2933 0.5539
TOT (121..1000) 0.0330 0.0356

Utilization 0.9916 0.9799
Average queueing delay(ms) 43.7 10.9

JFI(1..20) 0.5706 0.9984

1

Table 3: Experimental results for DropTail and HH
queue.

7. SUMMARY
In this paper we present a heuristic method named RHE

for realtime identification of flows that account for most of
the bandwidth. If positive numbers z1, . . . , zn are taken with
some heavy tailed probability distribution then

∑n
i=1 z2

i is
dominated by the maximum of zi. Assuming that zi are In-
ternet flow rates, efficient estimation of

∑n
i=1 z2

i allows us to
design an algorithm that with high confidence identifies the

17The first group mimics elephant flows, the second kanga-
roos and the third mice flows.
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Figure 16: Estimated vs Real rates on MRA (left), FRG (middle) and ALB (right) trace. The top figures
contains all flows, the middle figures zoom in on flows with rates ≤ 500KB/sec and the bottom zoom in on
flows with rates ≤ 100KB/sec
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Figure 17: Throughput for flows from the first group
under DropTail and HH.

highest rate flows. The presented method is highly scalable
in the following sense(s)

- Computationally. Per packet processing requires only 3
comparisons, one hashing and up to 4 additions per stage.
The design of RHE allows only a very few packets to higher
levels and therefore the average number of stages per packet
is just slightly above 1 (in all experiments presented here it
is in range [1.3,1.6]). As a result of this, RHE can scale with
line speeds of up to several tens of Gbps.

- Memory space. RHE needs a very small amount of mem-
ory. Experiments in Section 6.2 show high efficacy with just
several kilobytes of SRAM memory on Gbps-traces. Low
memory requirements of our scheme allow usage compar-
atively scarce on-chip SRAM which is highly desirable at
highly loaded network processors.

- Heavy-tail assumption. RHE covers a wide range of flow
rate distributions and is much more robust to heavy-tailed
assumption, compared to MSF.

- Number of active flows.
Our main motivation for developing RHE was flow con-

trol. The proposed queue management scheme HH exploits
the efficacy of RHE and controls fairness using a very small
amount of memory. An important, highly nontrivial and
open question that arises in the study of the “fair queueing”
algorithms is:

(*) What would the Internet flow rate distribution look like
if routers employed fair queueing?

In the context of a queueing scheme whose efficacy re-
lies on the assumption of heavy-tailed traffic18, the change
in the flow rate distribution caused by fair queueing is an
important metric that affects the performance of these algo-
rithms. Our algorithms depend on the flow rate distribution
only through the constant c0 that defines the test given in
Figure 5. Initial measurements indicate that Assumption 1
used for tuning c0 is satisfied for all tested traces. However,
analytical research is necessary to answer the question (*)
en route to an efficient, scalable and robust “fair queueing”
algorithm for the current and future Internet.
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