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ABSTRACT
Understanding the relationship between queueing delays and
link utilization for general traffic conditions is an impor-
tant open problem in networking research. Difficulties in
understanding this relationship stem from the fact that it
depends on the complex nature of arriving traffic and the
problems associated with modelling such traffic. Existing
AQM schemes achieve a “low delay” and “high utilization”
by responding early to congestion without considering the
exact relationship between delay and utilization. However,
in the context of exploiting the delay/utilization tradeoff,
the optimal choice of a queueing scheme’s control parameter
depends on the cost associated with the relative importance
of queueing delay and utilization. The optimal choice of
control parameter is the one that maximizes a benefit that
can be defined as the difference between utilization and cost
associated with queuing delay. We present two practical
algorithms, Optimal Drop-Tail (ODT) and Optimal BLUE
(OB), that are designed with a common performance goal:
namely, maximizing this benefit. Their novelty lies in fact
that they maximize the benefit in an online manner, with-
out requiring knowledge of the traffic conditions, specific
delay-utilization models, nor do they require complex pa-
rameter estimation. Packet level ns2 simulations are given
to demonstrate the efficacy of the proposed algorithms and
the framework in which they are designed.
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1. INTRODUCTION
Measurements from a number of sources suggest that traf-

fic generated by TCP users accounts for 85-95% of the In-
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ternet traffic [5, 7]. Van Jacobson’s congestion control algo-
rithm [14] is one of the main reasons for the robustness of the
Internet and the prevention of the congestion collapse over
last two decades. Given the success of TCP and the stability
of the current internet it is unlikely that other, conceptually
different, transport protocols will replace TCP in the near
future.

Most Internet routers use FIFO Drop-Tail buffers. Cur-
rent router buffers are generally sized by the rule-of-thumb
given in the Villamizar&Song paper [29]: router buffers re-
quire approximately space for B = RTT ×C packets, where
RTT is the “average” round trip time for connections that
use the link and C is capacity of the link. Following this rule,
most router buffers are designed in such a fashion that they
result in up to 100ms to 250ms of queueing. This, together
with TCP’s mechanism of congestion avoidance, serves to
ensure a high link utilization. In the last few years several
studies related to buffer sizing for congested routers have ap-
peared. It is claimed in [1] that the amount of buffer space
required for high link utilization can in some circumstances
be far less than that suggested by the Bandwidth-Delay-
Product rule. However, it is also shown in this paper that
the required buffering highly depends on the number of ac-
tive flows using the link. In particular, briefly, assuming a
single congested link topology, and N homogenous, unsyn-
chronized, long TCP flows, with a “typical”1 round trip time
RTT , then the buffer space required for a link utilization of
u · C is given by:

BAKM (u) = A(u)
RTT × C√

N
. (1)

Here, A : (0, 1) 7→ (0,∞) is a real function for which
A(0.99) ≈ 1 and A(0.9999997) ≈ 2. One should note that,
although the bound (1) is derived in the context of drop-
tail queues, it is also applicable to other AQM schemes as
well. Namely, in order to ensure utilization of u · C, one
needs a physical buffer space for accommodating packets of
N unsynchronized TCP flows, given by (1).

Although the bound (1) yields important theoretical in-
sights into the relation between link utilization and the re-
quired buffering it is not immediately applicable to size
buffers in the real Internet routers for a number of reasons.
Firstly, the bound (1) depends on the number of active users
that are bottlenecked at the link, as well as their RTT dis-
tribution. These quantities vary, and are also usually hard
1It is suggested in [3] that in environments without synchro-
nization, one should use harmonic mean of the RTTs of the
active connections as ”typical” RTT.
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t t1 t2 t3 t4
aQd(t)(sec) 0.1 0.02 0.005 0.001

u(t) 1.00 0.98 0.90 0.60

Table 1: Synthetic example of aQd(t) and u(t) for 4
different possible choices of parameter t.

to estimate. Secondly, the mathematical assumptions used
in deriving (1) are not realistic and do not take into account
the various and variable traffic mixes possible, the level of
synchronization, the existence of non-TCP traffic, etc. Most
importantly, while it is useful to know that delay and uti-
lization are related in some manner, it is not immediately
clear how to utilize this relationship in a meaningful man-
ner. Specifically, an important practical question that arises
in the queue management design is:

(*) “What is more important: low queueing delays
or high utilization?”

To illustrate this question, say that for a given traffic mix,
the relation between average queueing delays (aQd) and uti-
lization (u) is given in Table 3:

In this table, t is some parameter that defines the queue
management scheme. For example, t can be interpreted as
available buffer space, or the per packet drop probability.
Now, the important practical question is, which t should a
network operator chose under this traffic mix? The answer
to this question depends on the relative importance of uti-
lization and queueing delays. To formalize this notion we
can define the benefit B(t) as the difference between utiliza-
tion and cost a network operator is willing to pay that is an
increasing function of queueing delays. Having defined this
cost function, which specifies formally the tradeoff between
utilization and delays, the problem then becomes that of
choosing the optimal queueing scheme parameter t. This is
a problem of maximizing the benefit B(t) and can be solved
in an optimization framework. In the Section 3 we will for-
malize the framework described above.

As we already noted, although there exist number of math-
ematical models [1, 2, 3, 4] that can give us some insight into
the delay-utilization relationship, it appears extremely hard
to evaluate this relationship for general traffic environments.
Moreover, even if one has reasonably accurate theoretical
predictions between delay and utilization for a given traf-
fic mix, these predictions would certainly be a function of
traffic parameters such as the number of active flows, the
number of active TCP flows, the proportion of TCP traffic,
per flow responsiveness, the distribution of round trip times,
the level of loss synchronization, the level of congestion on
other links in the network, etc. From a measurement point
of view, estimation of these quantities is very demanding
and requires significant amount of computational and phys-
ical resources [6, 16, 17, 28].

(**) “It is highly nontrivial to predict or estimate
in real-time, relation between queueing delays and uti-
lization, for congested high-speed Internet links.”

Having (**) as the starting point, we will try to max-
imize overall the benefit B(t) online rather than estimat-
ing the delay-utilization relationship. In this paper we pro-

pose two practical queue management schemes that have the
same common goal: namely, maximizing the benefit B(t),
by controlling the parameter t online. In the first scheme,
called Optimal Drop-Tail (ODT), t is the maximum avail-
able buffer space in the FIFO Drop-Tail queue, while in the
second scheme, called Optimal BLUE (OB), the parameter
t is the probability that an arriving packet is dropped.

The rest of the paper is organized as follows. Exist-
ing models of the delay-utilization relationship and AQM
schemes are disscused in the Section 2. In Section 3 we de-
fine the optimization problem to be addressed and provide
a theoretical analysis of the possible approaches to solving
it. The queue management schemes Optimal Drop-Tail and
Optimal BLUE are introduced in Sections 4 and 5 respec-
tively. In Section 6 we provide detailed packet level ns2
simulations to show behavior of both ODT and OB. Finally
we summarize our findings and discuss open issues in Section
7.

2. PREVIOUS WORK
Within this section we discuss existing models for the

delay-utilization relationship as well as Active Queue Man-
agement schemes that aim to reduce queueing delays.

Models. Over last few years, a number of models have
been proposed to estimate the relationship between queue-
ing delays and utilization. Most of these consider the prob-
lem of sizing FIFO Drop-Tail buffers for achieving a certain
level of link utilization under the assumption of a single bot-
tleneck link servicing N long TCP transfers. In [1] the au-
thors give a O( 1√

n
) bound (1). Another bound of this type

is given in [2]. It is showed there (under the assumption
of N unsynchronised homogenous TCP users with the same
round trip time RTT ) that to achieve 100% of utilization
one needs a buffer size of :

BAAP =
(RTT × C)2

2N(4N − 1)2
≈ (RTT × C)2

32N3
. (2)

The bound (2) is derived from a fluid model which assumes
full unsynchronization (ie. only one source loses packets per
congestion event). The authors [4] are even more optimistic
and claim that if TCP users have bounded the maximal con-
gestion window maxcwnd−, then the needed queue size for
achieving high throughput is of form of O(log(maxcwnd−)).
Such an approach assumes a low maximum cwnd−, or equiv-
alently a high loss rate, and does not allow high speed con-
nections[10, 19].

Another important problem that could result from extra
small buffers is the problem of extreme unfairness between
flows. To see this, consider a congested link, without per-
flow management, with a loss rate p and an average queueing
delay d0. From the square root formula [25], the sending
rate (in packets per second) of flow with base RTT given by
RTTb is equal to

r = θ
1√

p(RTTb + d0)
. (3)

Bearing in mind that a typical range of base RTT’s spans
from a few microseconds to several seconds, and assuming
that d0 is in range of few microseconds (as suggested in all-
optical framework in [30, 4]) then this would imply unfair-
ness between competing connections in the range 1 : 105. In
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such situations, long-RTT connections would suffer heavily,
and will not have any benefit in reducing queueing delays.
Allowing a few milliseconds of queueing delays would de-
crease unfairness level to range 1 : 100, which is several
order of magnitude more acceptable.

A very different approach has been presented in [3]. Namely,
they suggest that an important performance metric in di-
mensioning router buffers is loss rate. By exploiting the
window based nature of the TCP congestion control algo-
rithm, they provide bound for buffer sizes that ensure loss
rates lower than certain, prescribed, value.

As we already have noted, the insight obtained by the-
oretical analysis of proposed models is highly valuable for
understanding the problem of interest, but there is signifi-
cant gap between them and their application in real Internet
links.

AQMs. Active queue management generally stands for a
mechanism that has, as its ultimate objective, of keepeeng
utilization as high as possible without incurring “large queue-
ing delays”. In TCP environments, the main cause of low
utilization is synchronization. By breaking synchronization
and responding early (but not “too early”), AQM schemes
like RED, BLUE, PI and AVQ, aims to achieve high through-
put together with low delays. However, no existing AQM
takes in account the interaction between queueing delays
and utilization. Low queueing delays and high utilization
are mainly an ad hoc consequence of early response, rather
than a formal performance goal.

3. OPTIMIZATION FRAMEWORK
Lets go back to the example from the introduction illus-

trated in Table 1. For simplicity, assume for the moment
that the parameter t is the available buffer space on the con-
gested FIFO Drop-Tail queue; for buffer size equal to t1 the
average queue delay is 100ms and the utilization is 100%,
for buffer size equal to t2 the average queue delay is 20ms
and the utilization is 98%, and so on. Which choice of t is
optimal (among 4 possible in this example), depends on the
“importance” of low queueing delays. To formalize this, one
can identify the “importance” by the relative price between
utilization and queueing delays. Let P : [0,∞) 7→ [0,∞) be
a function that specifies relative price between utilization
and delays. In other words, a queueing delay of d seconds
has same price as utilization of P (d). Formally, a price func-
tion is any function that satisfies the following definition.

Definition 1. The function P : [0,∞) 7→ [0,∞) is a
price function if it is twice differentiable, increasing and con-
vex. In other words if:
(a) ∀d ∈ [0,∞) ∃P ′′(d)
(b) ∀d ∈ [0,∞) P ′(d) ≥ 0
(c) ∀d ∈ [0,∞) P ′′(d) ≥ 0

The following simple technical lemma will be useful in
later discussion.

Lemma 1. Let E ⊂ R be a segment (E = [a1, a2] for some
real a1 and a2). If f : E 7→ [0,∞) is a twice differentiable,
convex function and P an arbitrary price function, then P ◦
f : E → [0,∞) is convex as well.

Proof. The proof is straightforward. It is enough to
prove that (P (f(t))′′ ≥ 0 for all t ∈ E.

(P (f(t))′′ = (P ′(f(t)) · f ′(t))′ =

P ′′(f(t)) · (f ′(t)))2 + P ′(f(t)) · f ′′(t) ≥ 0.

Having defined a price function, the overall benefit, in the
case given by the parameter t, can be written in the form:

B(t) = u(t)− P (aQd(t)). (4)

The definition of benefit allows us to define a notion of
optimal choice, as the value of t that maximizes the benefit.
Formally:

Definition 2. For a given price function P and set T
of possible choices of t, an optimal Delay-Utilization(D-U)
choice is any t0 such that

B(t0) = max{B(t) | t ∈ T }, (5)

if the maximum on the right hand side exist.

Comment. In the rest of the paper we will consider
exclusively the following two cases: (1) the set T is finite;
then the maximum in (5) clearly exists; (2) the set T is
closed and bounded in metric space2 R, and B : T 7→ R is
continuous function - in this case the maximum in (5) exists
as well.

In the example given in Table 1, if we completely ignore
the importance of low queueing delays, by setting P (d) ≡ 0
for all d, then the optimal D-U choice is given by t1, as this
maximizes the benefit B(t) = u(t)−P (aQd(t)) = u(t) on the
set T = {t1, t2, t3, t4}. For the price function P (d) = 5·d, the
optimal D-U choice is t2, and for the price function P (d) =
100 · d, the optimal D-U choice is t4. Linear price functions
P (d) = γ · d, are a simple way of specifying the relative
price of queueing delays in sense that a% of utilization is
equivalent with a·0.01

γ
sec = 10·a

γ
msec of queueing delays.

Thus, a high γ gives high importance of low queueing delays,
while a low γ gives priority to high utilization.

Throughout this paper we assume:

Assumption 1. Under static traffic conditions the over-
all benefit given by (4) is a concave function of t.

In the previous discussion, we have referred to t as a pa-
rameter which defines a queueing scheme. In later sections
we will be concerned with the following two cases:

Case A. tS defines the available buffer space, and packets
are queued in Drop-Tail queue of size tS .

Case B. tp defines the drop probability, and each packet
is dropped on arrival with probability tp.

In the next two sections we present two queue manage-
ment algorithms: Optimal Drop-Tail (ODT) and Optimal
BLUE (OB). Both of these have a common performance
goal: to maximize the overall benefit given by (4). ODT
achieves this goal by adaptation of the available buffer space,
while OB tunes the drop probability tp in order to maximize
B(tp).

Comment. Other approaches might be possible as
well. For example, in the framework of Virtual Queue (VQ)

2With euclidian distance.
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Figure 1: tS : Drop - Tail queue size vs. u(tS) (top)
and aQd(tS) (bottom).

schemes [12], t can be seen as virtual queue capacity. Follow-
ing our optimization methodology, one can design an virtual
queue management algorithm by adapting the virtual queue
capacity subject to the performance goal that maximize the
benefit B(t) rather than keeping the utilization at certain
level γ as it has been done in the Kunniyur and Srikant’s
AVQ [23] algorithm.

In the rest of this section we discuss the validity of the As-
sumption 1, the existance/uniqueness of optimal D-U choice
and possible strategies for online solving optimization prob-
lem (5).

Assumption 1 is very hard to formally check. In a the-
oretical framework, this would require accurate models of
various traffic mixes, and as we already noted, modelling
such complex environments is highly nontrivial. Some re-
sults related to the convex relationship between utilization
and buffer size in non-elastic traffic environments are de-
veloped in [21, 22]. However, our empirical observations
suggest that for the traffic mix that is consisted from the
static number of TCP and UDP flows, Assumption 1 holds
in both Case A and Case B. To illustrate this we run two sets
of packet level ns2 simulations, and evaluate the utilization
and the average queueing delay.

Simulation A. In the first set of simulations, we consider
a FIFO Drop-Tail queue with a service rate of 10MBps and
size of tS packets. This queue is shared by 50 TCP connec-
tions with round trip times uniformly distributed in range
[20, 220]ms and with packet size of 1000 bytes. We varied
tS from 1 to 300 packets, and plotted u(tS) and aQd(tS) in
Figure 1. The convexity of aQd(tS), by Lemma 1, implies
the convexity of P (aQd(tS)), and this together with con-
cavity of u(tS) implies concavity of the benefit B(tS), for
arbitrary price function P .

Simulation B. In the second set of simulations, we consider
a queue with service rate of 10MBps, of size of 10000 packets
(so that no packet is dropped because of overflow), such that
every packet is dropped with probability tp on the arrival to
the queue. This queue is shared by the same set of 50 TCP
connections as in first simulation. We varied tp in the range
[10−3, 10−2], and plotted u(tp) and aQd(tp) in Figure 2. As
in the previous case, convexity of aQd(tp), together with
concavity of u(tp) implies concavity of the benefit B(tp), for
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Figure 2: tp : Drop probability vs. u(tp) (top) and
aQd(tp) (bottom).

arbitrary price function P .
Convex optimization has been widely employed in the net-

working community. For example, optimization methods are
essential in the analysis and design of distributed congestion
control algorithms [27, 18]. In our case, we need efficient al-
gorithms for solving (5). A standard control strategy for
solving (5) is given by

ṫ = g(t) ·B′(t), g(t) ≥ ε > 0, (6)

or its discrete version:

t(k+1) = t(k)

(
1 + g(k)

B(t(k))−B(t(k − 1))

t(k)− t(k − 1)

)
, g(k) ≥ ε > 0,

(7)
The problem with employing one of these strategies in

the present case is twofold. First, as we do not have ex-
plicit relationship between t and B(t), we can not instantly
compute the derivative B′(t). Second, the signal to noise3

ratio in measuring of both queueing delays and utilization
can be very large especially in the neighborhood of the solu-
tion of (5). This would potentially imply low confidence in
the estimation of B′(t) in the neighborhood of the solution
of (5). One approach to this problem is the use of larger
sampling times and low pass filter for smoothing out the re-
sults. To illustrate the level of noise one can expect in queue
measurements we ran the following ns2 simulation.

Simulation C. We consider the same setup of 50 TCP
flows competing over a link with service rate of 10MBps,
as in Simulation B. We drop each packet on arrival with
constant probability tp = 0.005. The quantities of interest
are the following: d∆(k) is the average queueing delay in
the k-th sampling period [(k − 1)∆, k∆], and the weighted
average d∆(k), with weighting factor qw, given by:

d∆(k) = (1− qw) · d∆(k − 1) + qw · d∆(k).

Figures 3 and 4, depict measured values of d∆(k) (left
top) and d∆(k) (left bottom) from the simulation, for ∆ =
3By definition B(t) is function of average utilization u(t) and
average queueing delay aQd(t). Instantaneous utilization
(queueing delay) can be seen as random variable that is sum
of u(t) (aQd(t)) and appropriate zero mean random variable,
that we refer to as noise.
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Figure 3: d∆(k) (top), and d∆(k) (bottom); ∆ = 2sec,
qw = 0.2.
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2sec and ∆ = 5sec. The right hand side plots show the
histograms of quantities depicted on left plots.

We observed a similar level of noise in measurements of
link utilization. We also ran the same simulation over Drop-
Tail instead of constant drop rate queues, and the level of
noise in queueing delay and utilization measurements are
approximately of the same order of magnitude as in Simu-
lation C.

In the next two sections we will present two novel queue
management algorithms for which the performance goal is
given by maximization of the benefit defined by (4). The
first one, Optimal Drop-Tail(ODT), achieves this goal, by
adaptation of tS - the available Drop-Tail queue space, while
the second one, Optimal BLUE(OB), adapts tp - the per
packet drop probability. Both ODT and OB use a form of
MIMD4 algorithm, where at the end of each sampling period
control variable t (that is tS or tp) is updated by the rule:

t(k + 1) = t(k) ·m(k). (8)

where m(k) is either α or 1/α, for some α greater 1, and
m(k) determines direction in which t should go. Algorithms
of this type cannot settle to constant value, but rather con-

4Multiplicative Increase Multiplicative Decrease.

tinuously search for the point on the grid Tα = {t(0)·αn, n ∈
Z}, that maximizes B(t), t ∈ Tα. However, choosing α to
be close to 1, the point on the grid Tα that maximizes B(t)
will be close to the global optimal value.

4. OPTIMAL DROP-TAIL
Drop-Tail queueing is the scheme that is employed by the

majority of the current Internet routers. Drop-Tail queues
have a single parameter S that determines the available size5

of the queue, and is usually manually configured by a net-
work operator. The following simple observation is the basis
for the spectrum of algorithms presented here. That, by con-
trolling the value tS - available queue size6, the objective of
achieving certain performance goals, given in terms of uti-
lization and queueing delays, can be met.

By controlling tS, one can control both utilization
and queueing delays.

For example, if the performance goal is given by keeping
the average utilization at a certain level λ, one can design a
strategy for achieving that goal by controlling tS . Similarly,
if the performance objective is keeping the average queue-
ing delay (at the times of congestion) at a prescribed level
d0, another control strategy can be designed for solving that
problem. At this point we should note that by controlling
tS one can control not only utilization and queueing delays,
but also other (important) performance metrics such as jit-
ter and loss rate. Embedding them into an optimization
framework could be done in straightforward manner, but is
out of scope of the present paper.

Following the delay-utilization optimization framework de-
veloped in the previous section, the performance goal of in-
terest will be the maximization of the benefit B(tS). We
proceed by presenting an ODT algorithm, a strategy with
that performance goal.

The ODT algorithm controls the variable tS that repre-
sent available queue size. In other words, on every packet
arrival, a packet is dropped, if by its enqueuing to the ex-
isting queue, the queue length would be greater than tS ,
otherwise the packet is enqueued. The value tS is updated
once per sample time period (∆) in the following manner:

tS(k + 1) = tS(k) ·m(k), (9)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
≥ 0,

m(k) =
1

α
, if

B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
< 0.

Here, α > 1 is a constant parameter, close to 1. The
choice of α determines the responsiveness of the algorithm.
Since tS is either multiplied with α or divided by α, in
each step k, tS(k) = tS(0) · αl(k), for some integer l(k).

By B̂(l(k)) we denote the estimated value of B(x) at the

5Size can be configured in either bytes or packets.
6We write tS instead S to distinguish cases between variable
queue size (for which we use tS) and constant queue size (for
which we use S).
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point x = tS(k) = tS(0) · αl(k). Algorithms of this type
can be seen as a version of (7) that do not allow arbitrarily
small steps. Strategies of the form of (7) are inappropriate
in the our problem for the following two reasons. First, any
algorithm of type (7) that allows very small changes in the
parameter tS would suffer from a high noise to signal ratio
around global maximum of B(tS), and would require long
time for accurate estimation of B in the neighborhood of
the global maximum. Second, it has been proved in [26], us-
ing information-theoretical techniques, that any algorithm
for finding an optimum using noisy observations of a bene-
fit function has slow expected convergence. Namely, O(ε−4)
queries have to be made before one can ensure ε-accuracy in
the estimation of the optimum x∗. Under dynamic, Internet-
like traffic conditions, frequent (small) changes of the traffic
patterns might not allow such algorithms to converge, and
can potentially cause undesirable large oscillations.

Algorithms of the form of (9) that do not converge to the
certain value, but rather continuously search for the optimal
value have been extensively used in the networking litera-
ture. Examples of such algorithms are AIMD7 cwnd− con-
trol in TCP [14], AIAD algorithm for controlling the drop
probability in BLUE[9] as well as MIMD algorithm for the
adaptation of RED parameters in Self-Configuring RED [8].

Now we proceed by describing the technique for estima-
tion of B̂(l(k)).

In every sampling interval, we have that tS(k) = t(0)αl(k)

for some integer l(k), and this integer is uniquely deter-
mined. In other words the mapping between the set of
all possible values of tS , Tα, and set of integers given by
t(0)αm 7→ m is bijective. This allows us to use the history
at each possible value of tS(k) independently for computing

the estimate B̂(l(k)). For each possible integer m we will
keep the value: n−(m) which is the number of sample in-
tervals within previous W0 sampling intervals for which l(k)
was equal to m. Thus at sampling interval k we have:

n−(m) = #{k1 : k1 ∈ (k −W0, k], l(k1) = m}.
Denote by ˜B(k) the instantaneous benefit in the k-th sam-

pling interval : [(k − 1)∆, k∆], i.e.:

˜B(k) = ũ(k)− P (d̃(k)),

where ũ(k) and d̃(k) are the instantaneous utilization and
queueing delay in the k-th sampling interval respectively, we
will estimate B̂(l(k)) using the following weighted average:

B̂(l(k)) = û(k)− P (d̂(k)), (10)

where:

û(l(k)) =
1

n−(l(k))
û(l(k)) + (1− 1

n−(l(k))
)ũ(k),

and

d̂(l(k)) =
1

n−(l(k))
d̂(l(k)) + (1− 1

n−(l(k))
)d̃(k).

The rationale for the estimation technique given by (10) is
the following. If some m has a large number of occupancies
in the recent history of l(k) then this indicates that the cor-
responding tS = tS(0)αm is close to the optimal value and a

7Additive Increase Multiplicative Decrease.

P (d) price function
∆ length of sampling period
α MIMD parameter

W0 history window

Table 2: Parameters of ODT, OB.

finer estimation of the benefit is required. If m has a small
number of appearances in the previous W0 sampling periods
we need less accuracy, but a faster response to changes in
the traffic conditions. If m had no appearances in the pre-
vious W0 sampling periods, all history will be forgotten in
the future estimation of B̂(tS(0)αm).

We use one additional correction step, that is rarely needed
under static conditions but is important for improving ac-
curacy for new values tS that have had very few visits in the
recent history. Namely, we do not allow non-monotonicity
in the estimation of û and d̂. Set i = l(k). Then:

if û(i) > û(i + 1) or û(i) < û(i− 1) then

û(i) =
n−(i− 1)û(i− 1) + n−(i)û(i) + n−(i + 1)û(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
,

(11)

if d̂(i) > d̂(i + 1) or d̂(i) < d̂(i− 1) then

d̂(i) =
n−(i− 1)d̂(i− 1) + n−(i)d̂(i) + n−(i + 1)d̂(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
.

(12)
Recall that n−(m) represents the number of sampling pe-

riods k, in the recent history (driven by sliding window of
size W0), in which l(k) was equal to m. We have a confi-

dence in the estimate of û and d̂ that is roughly proportional
to n−. This is exploited in (11) and (12).

Note that we need to store four sequences, aug (augment-

ing sequence of length W0 for computing n−), n−, û and d̂,
for implementing this estimator. The size of the sequence
aug is W0, while the size of sequences n−, d̂ and û depend
on the choice of α in a logarithmic fashion: if the physical
buffer space is S0 bytes, then the size of sequences d̂, û and
n− should be logα S0 to cover the range from 1 to S0 bytes.
For example, with α = 1.01, a sequence of size 2000 will
cover the range from 1 to S0 = 1.012000 ≈ 439286205 bytes
with a granularity of 1%.

From the computational point of view, ODT is a very light
scheme. Namely, for the computation of the instantaneous
utilization ũ(k), and the instantaneous queueing delay d̃(k),
we use three counters: NmbBytes (number of processed
bytes since last update), NmbArrivals (number of packet
arrivals since last update) and TotQDelay (sum of poten-
tial queueing delays for all NmbArrivals packets since last
update)8. All of these three counters are updated once per
packet and these updates are the only per packet operations
required.

The input parameters for ODT are given in the Table
2. While in general P (d) can be an arbitrary function that
satisfies Definition 1, throughout this paper we will mainly
use functions that are linear in d:

Pγ(d) = γd, γ > 0. (13)

8Having this information ũ(k) is computed as ratio

NmbBytes/∆, while d̃(k) = TotQDelay/NmbArrivals, at
the end of the k-th sampling period.
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If we restrict ourselves to price functions of this form then
the parameter Pγ(d) can be specified by a single scalar γ. A
higher value of γ assigns more importance to low delays and
vise versa. The sampling period time ∆ should be chosen
to cover several “typical” round trip times, in order to al-
low traffic to respond to change of tS . Choosing ∆ in range
[1sec, 5sec] usually satisfies this condition. The parameter
α determines the responsiveness of ODT, and should be se-
lected such that it allows doubling/halving of tS within sev-
eral seconds (up to one minute). The parameter W0, is the
one that determines importance of old measurements in the
current estimation, a large W0 is appropriate for static or
very slowly varying environments, while a small W0 is nec-
essary for more dynamic conditions. In our experiments we
use W0 such that ∆W0 is within an order of magnitude of
one minute.

At this point we discuss the notion of variability in the
traffic conditions. Measurements from [24] show that on
typical 150Mbps+ links, basic IP parameters such as the
number of active connections, the proportion of TCP traf-
fic, the aggregate IP traffic, etc., do not change dramatically.
Although we do not exclude the possibility that there can be
drastic changes in the traffic mixes, our basic presumption
in the design of ODT is that such events are rare enough
to be considered as exception rather than rule. Thus, ODT
is designed to search for an optimal solution in the “reg-
ular” intervals, during which traffic conditions vary slowly.
In the cases of dynamic traffic conditions, one can perform
self tuning of the parameters W0 and ∆ depending on the
level of changes in the traffic conditions. However, for the
reasons discussed above, present ODT algorithm does not
incorporate this adaptation of the parameters.

The following theorem shows that, assuming that estima-
tors B̂ preserves order of B on the grid Tα = {t(0) ·αn, n ∈
Z} the controller (9) runs system to the state that is close
to global optima.

Theorem 1. Let t∗ be the point where global maximum
of B is attained. Suppose that estimator B̂ preserves the
order on the grid Tα, ie. for all m1, m2 ∈ Z:

B̂(m1) ≥ B̂(m2) ⇔ B(t(0)αm1) ≥ B(t(0)αm2). (14)

Then there exist m0 such that for all positive integers r:

t(m0 + 2r) = t(m0 + 2r + 2) = t̄

t(m0 + 4r + 1) = t̄α, and t(m0 + 4r − 1) =
t̄

α
,

and the relative error between t̄ and t∗ satisfies:

t̄− t∗

t∗
≤ α− 1. (15)

Proof. Suppose without loss of generality that t(0) < t∗.
Then by Assumption 1 and (14) there exist positive integer
k0 such that for all k < k0:

t(k + 1) = αt(k) > t(k)

and

t(k0) > t∗.

Now, we can distinguish two cases:

1st Case: B(t(k0)) ≥ B(t(k0 − 1)). Then t(k0 + 1) =
αt(k0). By concavity B(t(k0 + 1)) < B(t(k0)) and therefore

t(k0 + 2) = t(k0+1)
α

= t(k0), and t(k0 + 3) = t(k0+1)
α

.
2nd Case: B(t(k0)) < B(t(k0 − 1)). Then t(k0 + 1) =

t(k0)
α

= t(k0 − 1) and t(k0 + 2) = t(k0−1)
α

. From concavity of
B we get t(k0 + 3) = t(k0 − 1) and t(k0 + 4) = αt(k0 − 1).

By taking t̄ = t(k0) and m0 = k0 in the first case, or
t̄ = t(k0−1) and m0 = k0−1 in the second case, we conclude
the first part of the Theorem. To obtain the inequality (15),

note that t̄ ∈ ( t∗
α

, t∗α) which is equivalent to

t̄− t∗

t∗
∈ (

1− α

α
, α− 1) ⊂ (−(α− 1), α− 1).

5. OPTIMAL BLUE
BLUE is an active queue management algorithm that main-

tains a single internal variable pm which is used for calculat-
ing the drop probability of arriving packets: each packet is
dropped with probability pm on arrival. Roughly speaking,
the performance goal of BLUE is to keep the loss proba-
bility as low as possible such that no buffer overflow oc-
curs. The variable pm is updated once per interval of length
freeze−time, in an Additive Increase - Additive Decrease
(AIAD) fashion with parameters δ1 and δ2: if during the
previous freeze−time interval no buffer-overflow losses has
occurred then pm is reduced by δ2, otherwise pm is increased
by δ1. By using a strategy of this type, BLUE searches for
the “correct” rate at which it should drop packets. As we
can see, there is no formal objective in terms of utilization
or delays. However, we use the idea of controlling the drop
probability tp (that is same as pm in the original BLUE) in
order to maximize overall benefit B(tp). The first step in
the design of such scheme is the following observation.

By controlling drop probability, one can control
both utilization and queueing delays.

Low drop probabilities keep both queueing delays and uti-
lization large, and high drop probabilities keep both queue-
ing delays and utilization low; see Simulation B in the Sec-
tion 3. By specifying a price function P (d) that defines
a relative price between delays and utilization, our perfor-
mance goal in the design of Optimal BLUE is maximization
of the benefit:

B(tp) = u(tp)− P (aQd(tp)).

The quantities of interest for the calculation of the benefit
are the average values of utilization and the queueing delays,
and can be seen as the expected values of appropriate ran-
dom variables. Because of large noise in the estimation of
these quantities, it is helpful to use filtering in conjunction
with an algorithm that continuously searches for the opti-
mum. OB will use same strategy for controlling of tp as
ODT uses for controlling the available queue size tS . We
update tp once per sample period of length ∆ in an MIMD
fashion:

tp(k + 1) = tp(k) ·m(k), (16)

where m(k) is defined by:
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m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
≥ 0

m(k) =
1

α
, if

B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
< 0.

Here l(k) denotes an integer such that tp(k) = tp(0) ·αl(k),

and B̂(l(k)) is the estimated value of the benefit B(x) at the

point x = tp(k) = tp(0) · αl(k). The method for estimating

B̂(l(k)) is same as in ODT and is given by (10). We also

exclude non-monotonic estimation of û and d̂. Recall that
u(tS) and aQd(tS) are increasing functions of the available
queue size tS , while u(tp) and aQd(tp) are decreasing func-
tions of tp(see Figures 1 and 2). Because of this (11) is
executed if û(i) < û(i + 1) or û(i) > û(i − 1), and (12) is

executed if d̂(i) < d̂(i + 1) or d̂(i) > d̂(i− 1); i = l(k).
We use an MIMD strategy for the control of the drop prob-

ability tp rather than the original BLUE-like AIAD, because
of scalability reasons. Namely, with an MIMD strategy, if
algorithm runs in a low drop probability regime, absolute
changes in tp per step are smaller than absolute changes in
tp per step in higher drop probability regimes. On the other
hand, in AIAD schemes, absolute changes per step are con-
stant and are given by AI and AD parameters.

The memory requirements of OB are same as ODT. Stor-
ing four sequences, aug, n−, û and d̂, requires just several
kilobytes. Since all these quantities are used just once per
∆, then they can be stored off-chip and their size is not im-
portant. From the computational point, OB requires one
more operation per packet: random drop. This, makes OB
roughly equivalent to RED from the level of the computa-
tional resources they require. The parameters of OB are the
same as in ODT and are given in the Table 2. Comments
related to the selection of the parameters of ODT applies to
the OB as well.

6. SIMULATIONS
Simulation D. Our first set of simulations illustrate the dy-

namics of tS and tp under static conditions of 50 TCP flows
with RTT’s uniformly distributed in range [20, 220]msec and
with packet sizes of 1000 bytes. We run ODT and OB with
parameters ∆ = 2sec, α = 1.05, W0 = 30. The price
function used in both cases is P10(d) = 10 · d. Initially:
tS(0) = 100Kbytes, tp = 0.002. The off-line (see Simulation
E) optimal values are approximately t∗S ≈ 130Kbytes and
t∗p ≈ 0.0048.

Simulation E. The second set of simulations shows how
close the average queueing delays and average utilization are
to the optimal values, in static conditions with a constant
number TCP flows, for both ODT and OB. We ran the
same set of 50 TCP flows, with RTT’s uniformly distributed
in range [20, 220]ms and packet sizes of 1000 bytes, as in
Simulations A and B (Section 3). By running a sequence
of long simulations in Section 3 we obtained plots given in
Figures 1 and 2, that represent the dependance between tS ,
(tp respectively), the average utilization, and the queueing
delays. Having these graphs, we can, in an off-line manner,
find the value of tS (tp) that maximizes benefit B(tS) (resp
B(tp)). The red stars on Figures 7 (ODT) and 8 (OB) show
these off-line optimal values for this optimization problem
(5) (defined by price functions Pγ(d) = γ ·d) for γ = 2, 10, 20.
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Figure 5: Simulation D. Queue occupancy, available
buffer space(tS), and utilization for ODT servicing
50 TCP flows.
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Figure 6: Simulation D. Queue occupancy, drop
probability(tp), and utilization for OB servicing 50
TCP flows.

Having Pγ(d) as a parameter of the scheme, we ran ODT and
OB. The other simulation parameters were: ∆ = 2sec, α =
1.05, W0 = 30. The blue crosses on Figures 7 and 8 represent
the long-run (5 minutes) averages of queueing delays and
utilization for γ = 2, 10, 20. The numerical results for this
simulation are shown in the Table 3.

It is important to notice here that in TCP environments,
OB outperforms ODT in terms of maximization the ben-
efit B. This is because a Drop-Tail queue that achieves
average queueing delay d0 achieves less throughput than a
queue with on-arrival random dropping, with the same av-
erage queueing delay d0. The reason for this lies in the
phenomenon of (partial) synchronization of losses that is a
feature of Drop-Tail queues. Figure 9 illustrates this differ-
ence for queues servicing 50 TCP flows, and is based on data
from the simulations A and B.

Remark. At this point we note an important practical
issue related to applicability of our algorithms in the ex-
isting Internet routers. The only two pieces of information
they require are the ”achieved utilization” and the ”average
queueing delay” experienced during one sampling period.
At the end of each sampling period we set new values of the
available buffer space (tS in ODT) or drop probability (tp in
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Figure 7: ODT: Off-line vs. online average queueing
delays and utilization. Price functions Pγ(d), for γ =
2, 10, 20.
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Figure 8: OB: Off-line vs. online average queueing
delays and utilization. Price functions Pγ(d), for γ =
2, 10, 20.

OB). While most routers allow configuration of the available
buffer space, we are not aware of option for configurability
of the drop probability.

Simulation F. In this simulation we present the behavior
of ODT and OB in the case of mixtures of TCP and UDP
traffic. In this simulation, the same set of 50 TCP flows
that were defined previously compete for a bandwidth on
10Mbyte/sec link, with 50 UDP flows that have exponen-
tially distributed on and off periods. The on-periods have a
mean of 1000ms, and the off-periods have mean of 3000ms.
The sending rate for the on-periods is 1000Kbit/sec. The
aggregate UDP arrival rate has a mean of 1.4867Mbyte/sec
which is approximately 14.9% of the link’s service rate. A
histogram, given in Figure 10, shows the distribution of the
aggregate UDP sending rate sampled on 100ms intervals.

The ODT and OB parameters are the same as in previous
simulations: ∆ = 2sec, α = 1.05, W0 = 30. The price
function used in both cases is P10(d) = 10 · d. Initially:
tS(0) = 100Kbytes and tp(0) = 0.002.

Figures 11 and 12 depict plots of utilization, queue oc-
cupancy and tS(tp resp.). We observed a slightly larger
fluctuation in tS and tp compared to Simulation D. This is
consequence of the stochastic nature of the non-responsive
traffic.

Simulation G. In the following simulation we show the
behavior of ODT and OB in the case of sudden changes
in the traffic conditions. Two sets of 50 TCP flows in this
simulation compete for bandwidth on a 10Mbyte/sec link.
The first set is active during whole simulation in the interval
[0, 900] seconds; connections from the second set are active
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Figure 9: Average queueing delays vs. average uti-
lization for drop tail and constant loss rate queues.
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Figure 10: Simulation F. Histogram of aggregate
UDP sending rate; sampling intervals 100ms.
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Figure 11: Simulation F. Queue occupancy, available
buffer space(tS), and utilization for ODT servicing
50 TCP flows and 50 on-off UDP flows.
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Figure 12: Simulation F. Queue occupancy, drop
probability(tp), and utilization for OB servicing 50
TCP flows and 50 on-off UDP flows.
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Figure 13: Simulation G. Number of active TCP
flows in time.

Scheme, γ aQd(sec) u Bγ

ODT, γ = 2, online 0.01075 0.9890 0.9675
DT, γ = 2, off-line 0.01058 0.9876 0.9664

ODT, γ = 10, online 0.00471 0.9544 0.9074
DT, γ = 10, off-line 0.00521 0.9589 0.9067
ODT, γ = 20, online 0.00283 0.9222 0.8655
DT, γ = 20, off-line 0.00293 0.9269 0.8683
OB, γ = 2, online 0.00975 0.9941 0.9730

CDP, γ = 2, off-line 0.00973 0.9945 0.9749
OB, γ = 10, online 0.00591 0.9745 0.9153

CDP, γ = 10, off-line 0.00531 0.9725 0.9193
OB, γ = 20, online 0.00385 0.9493 0.8723

CDP, γ = 20, off-line 0.00394 0.9562 0.8774

Table 3: Numerical results: off-line optima and on-
line ODT and OB averages. The last column rep-
resents Bγ(t) = u(t) − γ · aQd(t). (CDP - stands for
Constant Drop Probability queuing)
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Figure 14: Simulation G. Queue occupancy, avail-
able buffer space(tS), and utilization for ODT ser-
vicing a varying number of TCP flows.

only in the interval from [300, 600] seconds. Thus, at time
t1 = 300sec, the number of TCP connections is doubled
while at time t2 = 600sec, the number of connections is
halved, as is depicted in the Figure 13. The ODT and OB
parameters are the same as in previous simulations: ∆ =
2sec, α = 1.05, W0 = 30. The price function used in both
cases is P10(d) = 10 · d. Initially: tS(0) = 50Kbytes and
tp(0) = 0.002.

Figures 14 and 15 illustrate the behavior of ODT and OB
in this case. Although ODT and OB are not designed for
environments with sudden changes we see that they adjust
their parameters to the sudden traffic changes. However,
“convergence” to the optimal region takes 1-2 minutes in
the present simulation.

Simulation H. Here we demonstrate how other perfor-
mance metrics are impacted by changes in queueing delay.
We concentrate on fairness and loss rate. We use Jain’s Fair-
ness Index (JFI) [15] as a fairness indicator and is defined
as follows. For set of users u1, . . . , uk let r = (r1, . . . , rk) be
vector of their achieved average rates during the measure-
ment interval. Then
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Figure 15: Simulation G. Queue occupancy, drop
probability(tp), and utilization for OB servicing a
varying number of TCP flows.

JFI(r) =

(∑N
i=1 ri

)2

N
∑N

i=1 r2
i

. (17)

The simulation setup is same as in Simulations A and B
and consists of 50 TCP flows serviced by 10MBps link with
RTT’s uniformly distributed in [20, 200]ms. A basic obser-
vation is that the performance of TCP-like congestion con-
trol algorithms, whose dynamics depend on round-trip time,
is significantly affected by queueing delays. By increasing
the queueing delay, the aggressiveness of TCP senders is in-
creased, implying lower loss rates. From a fairness perspec-
tive, larger queueing delays decrease bias against long-RTT
connections. Indeed, for two TCP connections, with round
trip times RTT1, RTT2, RTT1 < RTT2, bottlenecked at a
single link with queueing delay d0, the ratio of their expected
rates9 is RTT1+d0

RTT2+d0
. Increasing, d0 leads this ratio to a value

closer to one. Figure 16 presents the dependance between
available space in FIFO Drop-Tail queue and loss rate and
JFI. Each ’+’ corresponds to a 5 minute average. We note
that for very small queue sizes (< 50 packets), loss rates are
large and TCP dynamics is dominated by timeouts. In this
regime the square root formula is not valid and fairness is
impacted mainly by timeout mechanism. Corresponding av-
erage queueing delays and utilization are depicted in Figure
1.

Figure 17 depicts the JFI for the same set of 50 flows, on
link where each packet is dropped on arrival with constant
probability tp. The corresponding average queueing delays
and utilization are depicted in Figure 2. Note that for tp

in range [0.005, 0.01], queueing delays are small (< 5ms)
compared to the RTT’s and that the loss rate is small enough
implying good accuracy of the square root formula. As result
of this, the JFI is roughly constant in this range.

7. SUMMARY
In this paper we have addressed the problem of utilizing

the tradeoff between queueing delays and link utilization.
By specifying the relative importance of queueing delays
and utilization, an optimal choice of a queue management

9This follows from the square root formula (3).
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Figure 16: Simulation H. Loss rates (top) and JFI
(bottom) for 50 TCP flows serviced by Drop-Tail
queues of different sizes.
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Figure 17: Simulation H. JFI for 50 TCP flows ser-
viced by queue with constant drop probability.

parameter is the one that maximizes the overall benefit de-
fined by (4). Another view on the same problem could be
minimization of the total cost where the total cost is de-
fined by the sum of the proportion of idle time, 1 − u, and
price of the queueing delays. There could be two possible
approaches for solving this problem. First, suppose that one
can, by accurate modelling and effective estimation, predict
the delay/utilization dependance from the control param-
eter. Then, by an off-line solving of the underlying opti-
mization problem we can set the parameter that controls
queue scheme to the optimal value. And second, where one
can adapt the control parameter such that on average the
overall benefit is maximized. We argue, that the first ap-
proach is not feasible because of both nonexistence of accu-
rate and tractable enough models for the delay/utilization
dependance, and the highly nontrivial estimation techniques
that such an approach would require. We thus follow the
second approach and design two schemes Optimal Drop-Tail
and Optimal BLUE which aim to solve the underlying op-
timization problem by online adaptation of available buffer
space (ODT) or drop probability (OB).

The optimization problem (5) assumes a linear depen-
dance between utilization and benefit, and completely ne-
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glected other important performance metrics such as jitter,
loss probability, and fairness. In fact, one can define the
general overall benefit of the queueing scheme controlled by
parameter t as:

BG(t) = V (u(t))−P1(aQd(t))−P2(j(t))−P3(L(t))−P4(f(t)),
(18)

where j(t) is jitter, L(t) is the loss rate, f(t) is a fairness
indicator, V (u(t)) is the value of the utilization u(t), and
Pi, i = 1, 2, 3, 4 are appropriate price functions. We again
emphasize the importance of fairness in TCP environments
where long-RTT connections could heavily suffer from low
queueing delays at the congested links. The embedding of
jitter and loss rate into current framework can be done in
straightforward manner. However, including fairness into
the optimization framework, would be much more challeng-
ing as we are not aware of any, computationally light, esti-
mation technique that would faithfully indicate level of fair-
ness. One possible approach to estimate level of the fairness
could be by counting runs10 as suggested in [20]. However, a
runs counter would give estimate of Jain’s fairness index [15]
only for flows that have experienced runs and Jain’s fairness
index is just one possible fairness indicator.

In this paper we implemented two strategies for settling
the underlying optimization problem: in one, the control
variable is the available queue space, while another controls
the drop probability. Queueing schemes that use different
control parameters are possible as well. For example, vir-
tual queue capacity could be powerful in the control of de-
lay/utilization, and therefore could be basis for ODT/OB-
like scheme.

From the theoretical point of view, an important open
issue is convexity (concavity) of the average utilization/Q-
delays/ loss-rates as function of control parameter t (avail-
able buffer space, random drop probability, virtual queue
capacity, etc). While some results exist for the nonelastic
traffic [21, 22], in the case of elastic traffic, arrival process
depends on the control parameter, which makes modelling
of the corresponding tradeoff curve much more challenging.

Other AQM schemes could be seen in the optimization
framework as well. For example an Adaptive Virtual Queue
algorithm described in [23], has the performance goal of
keeping utilization at some prescribed level λ, by control-
ling C̃ (the service rate of the virtual queue). This can be

translated in the problem of maximizing the benefit B(C̃) =

V (u(C̃)), for a concave “value” function V : [0, 1] 7→ R, that
achieves global maximum at the point xmax = λ. Similarly,
for a PI controller [13] that has the performance goal of
keeping queue occupancy at level qref , one can define the
optimization problem of minimization of the cost C(p) =
P1(q(p)), where q(p) represents average queue occupancy
for the parameter p, and a concave “cost” function P1 :
[0, qmax] 7→ R have global minimum at the point xmin =
qref .

The MIMD based ODT and OB algorithms introduced
here are just one possible approach for solving the optimiza-
tion problem (5). In Section 4 we discussed the rationale for
choosing MIMD algorithm that continuously searches for
optimal value instead of an algorithm that will search for an
exact optimal value under noisy measurements. It will be

10Run is event where arriving packet belongs to the same
flow as some, previously arrived packet.

interesting to investigate other control strategies with bet-
ter performance11 than ODT and OB as part of future work,
along the lines presented here.
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