
1

Drop counters are enough
Rade Stanojević and Robert Shorten

Abstract— Small Flow Completion Time (FCT) of short-lived
flows, and fair bandwidth allocation of long-lived flows have been
two major, usually concurrent, goals in the design of resource
allocation algorithms. In this paper we present a framework that
naturally unifies these two principles under a single umbrella,
by proposing resource allocation algorithm Markov Active Yield
(MAY). By exploiting a probabilistic strategy: “drop proportional
to the amount of past drops”, MAY achieves very small FCT
among short-lived flows as well as max-min fair bandwidth
allocation among long-lived flows (both elastic, TCP, and inelastic,
CBR), using only the information of short history of already
dropped packets. It turns out that extremely small amount of
on-chip SRAM (roughly 1 bit per flow in Pareto-like flow size
distributions) is enough for storing this drop history. Analytical
models are presented and analyzed and accuracy of results is
verified experimentally using packet level ns2 simulations.

Index Terms— Congestion control, max-min fairness, Markov
chains, TCP.

I. INTRODUCTION

Resource allocation in communication networks has been a
major topic of interest for some time. Many current proposals
have as their performance objective a bandwidth allocation that
is max-min fair [24], [4], [19], [10], [1], [25]. However, from
the user point of view, a major (arguably the most important)
performance metric is Flow Completion Time (FCT) [5]. A
number of schemes that minimizes FCT exist in the literature
[18], [2], [5], [9] and either require state for every arriving flow
or cooperation from end-to-end users. Note that max-min fair
proposals can harm FCT of short-lived flows as their sending
rate is limited by the fair share.

Our goal is the design of a queue management algorithm
that will integrate the design principles stated above: (1) max-
min fairness of long-lived TCP flows and (2) small FCT short-
lived flows without use of explicit per-flow state and without
change of the existing TCP/IP infrastructure.

Our design is based on the following idea: Drop propor-
tional to the amount of past drops. We propose an implemen-
tation called Markov Active Yield (MAY) that satisfies both
of our design principles yet is simple to implement uses first
come first served queue, scales for speeds of over 40Gbps
and requires roughly one bit per flow of on-chip SRAM in
internet-like flow size distributions.

A. Paper contributions

Why is reaching the goal stated above hard? First, recall
that in the max-min fair regime, a TCP flow f experiences
drops at one and only one link lf at its path (we say that f is
bottlenecked at lf), and therefore must be protected at other
links (that can be congested) by receiving lossless service.
Second, if two or more flows are bottlenecked at the same
link they must receive nonuniform loss rates that are function

of their aggressiveness (round-trip times, queuing delays, etc).
Assuming that the router has access to the individual flow
rates, or the existence of multiple queues that are appropriately
scheduled, a number of solutions to these two problems exist,
and are described in previous works [24], [10], [16], [4], [19].
However, in our case it is highly nontrivial to make the drop
(mark) decision without any explicit information. On the other
hand, existing router-based algorithms for minimizing of FCT,
require either cooperation from the TCP sender [2], or full
state information [18], [9] for every arriving flow, making them
not scalable at very high speeds.

The main contributions of this paper are the following:

• A novel queue management scheme Markov Active Yield
(MAY) that unifies two major design principles: small FCT
of short-lived flows and max-min fair bandwidth sharing of
long-lived flows. The only state information that is kept by
MAY is a short history of already dropped packets.

• An analysis of the randomized algorithm MAY that
shows that the bandwidth allocation of the long-lived flows
in the network of MAY queues is max-min fair. On the other
hand, we show that nonelastic CBR flow receives (virtually)
lossless service if its sending rate is less than max-min fair
share, and asymptotic denial of service otherwise. Packet level
simulations are presented to verify our analytical findings.

• Analysis and evaluation of effects of MAY on FCT
of short flows. MAY can reduce the FCT of TCP flows
significantly compared to oblivious schemes (like RED) and
instantaneously-fair packet schedulers (like DRR) and is just
slightly higher than those of LAS, a stateful scheme.

While the MAY algorithm is not completely stateless the
only state that is kept is a short history of dropped packets.
This can significantly reduce the memory requirements, in
heavy-tailed flow-size/rate environments, which are typical
at Internet links. Namely, MAY memory requirements are
roughly one bit (of on-chip SRAM1) per flow in Pareto-like
flow size distributions (see Section III-D). Since computational
complexity of the scheme is extremely low, MAY scales well
at speeds greater than 40Gbps and several dozens of millions
concurrent flows, with currently available hardware devices
and state-of-the-art implementations of hash tables [20] and
statistics counters [22].

B. Related work

Both of the problems we study in this paper have been
studied extensively in the past. Here we classify the existing

1Static RAM. Current implementations have access times of 2-6ns.

2

proposals in two categories: (1) end-to-end transport protocols
require change to cooperate with the routers; (2) end-to-end
transport protocols do not require any change (routers are fully
responsible for the resource allocation).

(1A) Bandwidth allocation of long-lived end-to-end users
that cooperate with intermediate routers attracted a large
attention in the last decade [21]. Examples include XCP [10],
REM [1], MaxNet [25], etc.

(1B) Short FCT of short-lived flow has been subject of
interest of several recent studies. In [5] authors propose an
end-to-end protocol for reducing FCT of short-lived flows.
On the other hand RuN2C [2] propose a two-queues strategy,
that cleverly exploit the 32-bit TCP-sequence-number space to
reduce the FCT, by requiring a slight change in the TCP stack
(Initial TCP-sequence-number must be set to an appropriate
value in order to be prioritized by RuN2C).

(2A) Similarly to (1A), enforcing fairness “in the middle”
without cooperation of end-to-end users has been a very active
research area. Various stateful algorithms exists: DRR [19], FQ
[4], FRED [12], CSFQ [24], AFD [16], PD-RED [13] etc.

(2B) Size-aware scheduling policies like Shortest Job First
(SJF), Shortest Remaining Processing Time (SRPT) or Least
Attained Service (LAS) [11] have been used extensively in
the area of operating systems to favor short jobs. However, in
the Internet links, strategies that require knowledge of flow
(job) sizes (such as SJF or SRPT) are not suitable, since
that information is generally unavailable. On the other hand,
stateful approaches have been shown to significantly improve
FCT of short lived flows [18], [9].

II. MARKOV ACTIVE YIELD (MAY)

In order to enforce fairness among long-lived users with
different levels of aggressiveness, and responsiveness, it is
clear that more aggressive and less responsive users must be
punished more than others. The question is “by how much”
and how this strategy should be implemented in an efficient
manner. On the other hand, we would like to have some kind
of protection for “short-lived” flows. Before we proceed we
need to define the notion of short-lived flow:

Definition 2.1: A flow is called short-lived if it contain not
more than S0 packets.

Ideally, for a given S0, all short-lived flows should be
protected at a congested link, by receiving a lossless service.
On the other hand, flows with more than S0 packets should
receive nonuniform loss rates that will result in fair bandwidth
share. However, this idealized goal is hardly feasible at high
speeds (≥ 10Gbps) since it would require keeping packet
counters for each flow, strictly. The base for our discussion
is the following powerful paradigm that can reduce state
information needed for more than two orders of magnitude,
with minor performance degradation (in terms of FCT and
max-min fairness):

(*) Drop proportionally to the amount of past drops
A queue management scheme that follows (*) is a pos-

itive feedback system: the more drops a flow experiences
the higher will be the drop probability of that flow in the
future. Sometimes, positive feedback systems can diverge, but

u0 desired utilization
∆ length of update period
qw weighted average parameter
κ controller gain
T0 Timeout value

TABLE I
PARAMETERS OF MAY.

self-regulatory nature of TCP makes systems based on (*)
inevitable stable (in terms of drop probabilities), see Section
III.

We will call flow f new if it has not experienced any loss
until time t; otherwise we will say that f is old. Natural
question that arises is what happens with new flows under
strategy (*). As we said, ideally we would like that all flows
with size smaller than S0, receive lossless service and that
all flows with size greater than S0 join the “battle” for fair
bandwidth share. Since we want to avoid use of per-every-
flow counters, and we use a probabilistic argument to allow
a few losses among short-lived flows and enforce flows with
length greater than S0 packets to receive most of the losses in
congested environments.

To end this, we keep track of all old flows, and drop new-
flow’s packets with probability q0 = 1

S0
. This will be the input

of the positive feedback system defined by (*). As we will see
in the next sections, stateless strategy for dropping new-flow’s
packets, enforces very few losses among flows with size less
than S0. On the other hand, easily implementable strategy (*)
makes bandwidth allocations among arbitrary set of long-lived
AIMD flows asymptotically independent of additive increase
or multiplicative decrease parameters.

Now we proceed with detailed description of MAY. As we
said basic idea is to keep information of recently dropped
packets and to use that statistics to regulate the drop probabil-
ity for each of the flows. The complete pseudo-code is given
in Figure 1.

The data structure used is a hash table H that stores quadru-
ples (FlowID, δ(FlowID), TS(FlowID), ND(FlowID))
for flows that have experienced some drops. Here δ(FlowID)
is the drop frequency of the flow given by the identifier
FlowID, TS(FlowID) is the time stamp that tracks the time
of last update of the given hash table entry and ND(FlowID)
is the number of dropped packets from the flow FlowID
during the current update interval of length ∆. On each packet
arrival its FlowID is calculated. If there exists an entry in H
that corresponds to FlowID, the arriving packet is dropped
with probability proportional to the frequency of past drops:
νδ(FlowID). The frequency of losses is calculated using
weighted averaging (see line 24) with weight qw. Finally the
control variable ν determines the size of drop probabilities
and therefore the utilization: if current utilization is less than
desired (u0) ν should be decreased to allow lower drop prob-
abilities and increase utilization, while if current utilization is
greater than u0, then ν should be increased to allow higher
drop probabilities and decrease utilization.

3

1 OnPacketArrival(pkt, F lowID)
2 if FlowID ∈ H
3 with probability ν · δ(FlowID) do
4 drop(pkt);
5 ND(FlowID) + +;
6 TS(FlowID) = now;
7 enddo
8 else with probability q0 do
9 create(FlowID, H)
10 δ(FlowID) = 1;
11 ND(FlowID) = 1;
12 TS(FlowID) = now;
13 if CurrentUtilization > u0;
14 drop(pkt);
15 endif
16 enddo

17 Update(H)
18 if now − LastUpdate > ∆
19 ν = ν + κ(CurrentUtilization − u0);
20 for all FID in H
21 if now − TS(FID) > T0

22 remove(FID, H)
23 else
24 δ(FID) = (1 − qw)δ(FID) + qwND(FID);
25 ND(FID) = 0;
26 endelse
27 endfor
28 LastUpdate = now;
29 endif

Fig. 1. Pseudocode of MAY.

A. Implementation issues

State-of-the-art algorithms for high-speed hash table im-
plementations presented in [20] allow implementations that
run on line speeds greater than 40Gbps, assuming that hash
table is stored in on-chip SRAM. In order to keep the whole
hash table size small, we use the implementation of statistics
counters architecture proposed in [22]. The size of MAY hash
table entry can be made to be 10 bytes: 10 bits per counters
δ(FlowID), TS(FlowID) and ND(FlowID)); 30 bits for
FlowID fingerprint, and 20 bits for hash-table pointer. This
would allow 16K hash-table entries on 1Mbit on-chip SRAM
and 128K hash-table entries on 8Mbit SRAM. Probability of
a hash collision is then 2−30K−1 where K is the number of
hash-table entries.

III. ANALYSIS OF MAY

A. Bandwidth allocation of long-lived elastic AIMD flows

We now prove that in steady-state an arbitrary set of AIMD
flows [26] (flows with arbitrary linear increase parameter and
arbitrary multiplicative decrease parameter), asymptotically
obtain equal amount of throughput in a single bottleneck
scenario. Formally, throughout this subsection we assume the
following.

Assumption 3.1: There are N long-lived flows f1, . . . , fN

that use a congested link and all of them employ AIMD
congestion control algorithms with an additive increase pa-
rameter γi > 0 and a multiplicative decrease βi ∈ (0, 1),
i = 1, 2, . . . , N .

Under the previous assumption we can prove that MAY
stabilizes ν and δi = δ(fi) (frequency of drops of flow fi) in
the model presented below.

Let U
(i)
k be the throughput of flow fi measured after k

units of time ∆0 (say a millisecond; We assume that ∆0 �

∆). Denote the loss probability for a packet from flow (i)
in time step k, between t-th and t + 1-st hash-table update
(k∆0 ∈ (t∆, (t + 1)∆)), by µi(k) = δi(t)ν(t). Having this,
we can consider U

(i)
k as a Markov chain on R+ given by the

transition:

U
(i)
k+1 = U

(i)
k + γi with probability e−δi(t)ν(t)U

(i)
k

U
(i)
k+1 = βiU

(i)
k with probability 1 − e−δi(t)ν(t)U

(i)
k .

From [6] we have that expected number of sent packets of
flow i in time interval (t∆, (t + 1)∆) is

Ū (i)(t) =
βi

1 − βi

√
γi

√

δi(t)ν(t)
· A (1)

for a constant A, that does not depend on i (note that (1) is
a generalized version of square root formula). Denote by δ̄i(t)
the number of dropped packets of flow fi during time interval
(t∆, (t+1)∆). Each of Ū (i)(t) packets is dropped with same
probability δi(t)ν(t), and use the mean field approximation to
estimate δ̄i(t):

δ̄i(t) = Ū (i)(t)δi(t)ν(t) =
βi

1 − βi

√
γi

√

δi(t)ν(t)
· Aδi(t)ν(t) =

βi

1 − βi

√
γiA

√

δi(t)ν(t) = ai

√

δi(t)ν(t), (2)

where we denoted by ai = βi

1−βi

√
γiA. On the other hand,

we know that ν(t) is regulated to achieve utilization u0C,
where C is the link capacity. Thus we have:

N
∑

i=1

Ū (i)(t) =
1

√

ν(t)

N
∑

i=i

ai

1
√

δi(t)
= u0C. (3)

From (2) and (3), we obtain

δ̄i(t) = ai

√

δi(t)

N
∑

i=1

ai

1
√

δi(t)

1

u0C
.

Since at the t+1-th update we use the weighted averaging:
δ(t + 1) = (1 − qw)δ(t) + qw δ̄i(t), we conclude that the
evolution of δ(t) is given by:

δi(t+1) = (1−qw)δi(t)+qwai

√

δi(t)

N
∑

j=1

aj
√

δj(t)

1

u0C
(4)

Theorem 3.1: Suppose initially that δi(1) > 0 for all i =
1, . . . , N . Then in the mean field model, presented above, the
system (3)-(4) is stable.

Before we proceed, note that by setting zi(t) = δi(t)
u0C
a2

i

system (4) becomes equivalent to

zi(t + 1) = (1 − qw)zi(t) + qw

√

zi(t)

N
∑

j=1

1
√

zj(t)
(5)

4

Without loss of generality, we can order zi at time t = 1:
z1(1) ≤ z2(1) ≤ . . . ≤ zN (1). Directly from (5) we get that
for all t ≥ 1

z1(t) ≤ z2(t) ≤ . . . ≤ zN (t).

Denote by r(t) = z1(t)
zN (t) , the ratio between the smallest and the

largest component of vector z(t), and by s(t) =
∑N

j=1
1√
zj(t)

.

Our first technical lemma shows that r(t) is not decreasing
function of t.

Lemma 3.1: Ratio r(t) = z1(t)
zN (t) is nondecreasing function

of t.
Proof: Since the order of zi is preserved we have that

r(t + 1) =
z1(t + 1)

zN (t + 1)
=

(1 − qw)z1(t) + qw

√

z1(t)s(t)

(1 − qw)zN (t) + qw

√

zN (t)s(t)

=
z1(t)

zN (t)

(1 − qw) + qw
1√

z1(t)
s(t)

(1 − qw) + qw
1√

zN (t)
s(t)

 ≥ z1(t)

zN (t)
= r(t)

Lemma 3.2: The sequence zN (t) is bounded from above:

zN (t) ≤ zN (1) +
N

√

r(1)
=: D.

Proof: First, note that
√

zN (t)
∑N

j=1
1√
zj(t)

<
√

zN (t) N√
z1(t)

= N√
r(t)

< N√
r(1)

. Now we prove the lemma

by mathematical induction. For t = 1, statement is clearly
true. Suppose that it is valid for t = m, then for t = m + 1:

zN (m+1) = (1− qw)zN (m+1)+
√

zN (m)

N
∑

j=1

1
√

zj(m)
≤

(1−qw)(zN (1)+
N

√

r(1)
)+qw

N
√

r(1)
< zN (1)+

N
√

r(1)
= D.

Having that r(t) ≤ 1 and that r(t) is monotone, nonde-
creasing, we know that r(t) converges to r∗ ≤ 1. Next lemma
shows that r∗ is indeed 1.

Lemma 3.3: The sequence r(t) converges to 1.
Proof: Suppose it is not true. Then there exist δ > 0,

such that for all t, r(t) < 1 − δ. From the definition of r(t),
we have:

r(t + 1)

r(t)
=

1 + qw

(1√
z1(t)

− 1√
zN (t)

)s(t)

1 − qw + qw
1√

zN (t)
s(t)

 =

1 +
qw(1√

r(t)
− 1)

(1−qw)
√

zN (t)

s(t) + qw

> 1 +
qw(1√

r(t)
− 1)

(1 − qw)zN (t) + qw

>

> 1 +
qw(1√

1−δ
− 1)

(1 − qw)D + qw

= E > 1.

Thus, assuming that r(t) < 1 − δ, for all t, implies r(t) >
r(1)Et−1 → ∞, which is in turn a contradiction with r(t) ≤
1.

Proof: (Theorem 3.1) Since z1(t)/zN (t) converges to
1, we have that for every i,

√

zi(t)s(t) converges to N ,

and therefore, from (5) zi(t) converges to N . Now, from the
definition of zi(t) we obtain that

lim
t→∞

δi(t) = N
a2

i

u0C
= δ∗i .

From (3), we conclude that

lim
t→∞

ν(t) = lim
t→∞

(

1

u0C

N
∑

i=i

ai

1
√

δi(t)

)2

=
N

u0C
= ν∗.

Corollary 3.1: In steady state, expected throughput of flow
fi does not depend on AIMD parameters, βi and γi.

Proof: From (1),

Ū (i)(t) =
βi

1 − βi

γi
√

δ∗i ν∗
· A =

ai
√

N
a2

i

u0C
N

u0C

=
u0C

N

B. Bandwidth allocation of non-responsive CBR flows

In the previous subsection we have seen that set of N long-
lived elastic AIMD flows bottlenecked at link with throughput
u0C with MAY queue receive asymptotically same throughput
u0C/N . In this subsection we are going to explore the effects
of MAY on the throughput of long-lived non-responsive CBR
flows. Suppose that a link is shared by N elastic AIMD flows
with AIMD parameters γi > 0 and βi ∈ (0, 1) and M non-
responsive CBR flows with constant sending rate of xj packets
per δ.

Theorem 3.2: In steady-state, the throughput of all AIMD
flows is

U∗
i =

1

ν∗ . (6)

For the throughput of CBR flow T ∗
j we have:

T ∗
j = xj if xj ≤ 1

ν∗ , (7)

T ∗
j = 0 if xj >

1

ν∗ . (8)

Here ν∗ is the steady-state value of ν.
Proof: From the proof of the Theorem 3.1 we have

(6). On the other hand denote by δj(t) weighted average of
frequencies of drops from CBR flow cj , and by δ̄j(t) the
amount of drops from the same flow during the time step
t. Then if δj(t0)ν

∗ ≥ 1 for some t0, all packets starting after
period t0 will be dropped and T ∗

j = 0. If δj(t)ν
∗ < 1

δj(t + 1) = (1 − qw)δj(t) + qw δ̄j(t) =

= (1 − qw)δj(t) + qwxjδj(t)ν
∗ = δj(t)((1 − qw) + qwxjν

∗)

Thus, for xj > 1
ν∗

, we have that ((1 − qw) + qwxjν
∗) > 1

and δj(t + 1) is exponentially increasing until it becomes
greater than 1

ν∗
, and after that all packets from that flow

are dropped. If xj < 1
ν∗

, δj(t + 1) → 0 as t → ∞, and
therefore CBR flow gj receives asymptotically lossless service,
and T ∗

j = xj .

5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pareto shape − k

M
em

or
y

re
qu

ire
m

en
ts

 (b
its

/fl
ow

)
S0 = 500
S0 = 1000
S0 = 2000

Fig. 2. Expected memory consumption (in bits per flow). Pareto shape
k ∈ [1, 2], mean µ = 10, 500 ≤ S0 ≤ 2000

C. Max-min fairness of the elastic AIMD flows

The next theorem proves that in steady-state bandwidth
allocations of elastic AIMD users is max-min fair.

Theorem 3.3: Let G be a network topology, with queues
employing MAY and end users employing AIMD congestion
control. For every flow r with steady-state rate x∗

r there exist
a link on its path, such that the steady-state rates of all flows
which traverse through that link are less then or equal to x∗

r .
Proof: Let L be the number of links in the network and

N the number of flows. We label flows by i = 1, 2, . . . , N
and links by s = 1, 2, . . . , L. By R we denote the routing
matrix: Ris = 1 if flow i uses link s otherwise Ris = 0. By
δ
(s)∗
i denote the frequency of drops of flow i at link s, and by

ν∗
s steady-state value of ν at link s. Then for arbitrary flow

r there must exist link l for which δ
(l)∗
r > 0. On the other

hand, from the definition of δ
(s)∗
r we have that it satisfies the

following equation.

δ(s)∗
r = (1−qw)δ(s)∗

r +qwx∗
rν

∗
s δ(s)∗

r = δ(s)∗
r (1−qw+qwx∗

rν
∗
s).
(9)

Since we picked l such that δ
(l)∗
r > 0, from (9) we conclude

that 1 − qw + qwx∗
rν

∗
l = 1, which implies x∗

r = 1
ν∗

l

. Now, for

any other flow r1 that uses link l, δ
(s)∗
r1 > 0 implies x∗

r1
=

1
ν∗

l

= x∗
r while δ

(s)∗
r1 = 0 implies x∗

r1
< 1

ν∗

l

(see proof of
Theorem 3.2).

D. Memory consumption

Let the sizes of flows be distributed according to the
distribution G(x):

P [|f | ≥ x] = G(x) =

∫ ∞

x

g(y)dy.

Then the number of hash-table entries needed for a popu-
lation of n flows: (fi)1≤i≤k is given by the random variable

Z(n) =

n
∑

i=1

z(fi),

where:
z(fi) = 1 if flow fi has been hashed (experienced at least
one loss)
z(fi) = 0 if flow fi has not been hashed (had no losses)

Denote by li the length of flow fi. The probability that
z(fi) = 0 is:

P [z(fi) = 0] = (1 − q0)
li = (1 − 1

S0
)li ≈ e−

li
S0 .

The expected memory consumption is then given by

E(Z(n)) = nE(z(f)) = n

∫ ∞

0

g(y)(1 − e−
y

S0)dy,

and the variance of Z(k) is:

V ar(Z(n)) = nV ar(z(f)) = n

∫ ∞

0

g(y)(1− e−
y

S0)e−
y

S0 dy.

The expected memory consumption (EMC) in bits per flow
is given by M(G) = 80E(Z(n))/n (we assume that each
hash-table entry have 10bytes = 80bits). Figure 2 contains
EMC for Pareto distributions, with Pareto shape in [1, 2] and
mean 10 packets.

E. FCT of short-lived TCP flows

A major factor that determines FCT of a flow f is the
congestion control algorithm (and its implementation) used by
f . For example, in standard TCP, the parameters that directly
determines FCT are: the slow start threshold (sstresh−),
the advertised window, the maximum congestion window
(maxcwnd−), the delayed acknowledgements option, etc. In
the simplest case (without sstresh− and maxcwnd− lim-
itations) most short flows will complete quickly (in slow
start phase), if they do not experience loss. In Pareto flow
size environments, the proportion of short-lived flows that
experience loss is very small. Namely, in population of k flows
with Pareto distributed sizes, with shape k ∈ [1, 2], and mean
size µ proportion of short-lived flows that do not experience
drops is

L(k, µ, S0) = Prob[z(f) = 0|f < S0].

For µ = 10 and k ∈ [1, 2] (standard values in the
Internet) the value of L(k, µ, S0) > 0.98 for S0 > 500 and
L(k, µ, S0) > 0.99 for S0 > 1000. See Technical report [23]
for more details.

To see how the FCT of TCP flows is affected by MAY one
can consider a simple model of TCP with delayed acknowl-
edgements (one ack per two packets) and without (upper)
limitation in cwnd− where each packet is dropped with
probability p. Figure 3 depicts the mean FCT (numerically
obtained by averaging 100 runs) of short-lived TCP flows
(S0 = 1000) in three cases LAS(p = 0), MAY(p = 1

S0
) and

FIFO with drop rate p = p0 = 0.01. Both ssthresh− =
2 and ssthresh− = ∞ are included. We can observe a
slight increase in FCT between MAY and LAS, which is the
consequence of the (stateless) probabilistic nature of MAY

6

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Flow size (pkts)

M
ea

n
FC

T
(R

TT
s)

FCFS
LAS
MAY

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

Flow size (pkts)

M
ea

n
FC

T
(R

TT
s)

Fig. 3. Flow sizes versus FCT (measured in RTTs) in FIFO (with drop rate
p0 = 0.01), MAY (S0 = 1000) and LAS cases. Top plot has no slow start
limitations, while the bottom plot corresponds to sstrhesh

−
= 2.

and price that must be payed for not keeping per-flow packet
counters as in LAS.

IV. EXPERIMENTAL RESULTS

In this section we briefly describe results of packet level
ns2 simulations that demonstrate the behavior of MAY. We
look at two issues:
• fairness of long-lived flows
• flow completion times of short-lived flows
To compare how far bandwidth allocations U =

(U1, . . . , UN) deviate from max-min fair bandwidth alloca-
tions, Umm = (U1,mm, . . . , UN,mm), we use Jain’s index the
given by:

j(U) =

(

∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(

Ui

Ui,mm

)2 . (10)

Clearly, j(U) has a global maximum 1 that is attained at
U = Umm and since it is continuous, by measuring how far
the index is from 1, one can get some intuition as to how far
the vector U is from Umm. The MAY parameters used in the
experiments are: ∆ = 1s, u0 = 0.98, κ = 0.1, qw = 0.05,
T0 = 64sec. The DRR parameters are No−buckets− =
100, blimit− = 100Kbytes, quantum− = 1000bytes. The
self configuring Adaptive RED [8] is used to determine the
RED parameters. TCP version is the standard TCP-SACK,
with a packet size 1000B and delayed acknowledgements
switched on. The aggressiveness of each flow is, thus, mainly
determined by its RTT.

A. Fairness - Single bottleneck

The first set of simulations are designed to demonstrate the
fairness properties of the proposed AQM schemes in single
bottleneck scenario. Specifically, we present results for a single
link with service rate of 80Mbps that services 100 long-
lived TCP users with round trip times uniformly distributed in
range 40−440ms. To provide baseline results, we include the
performance of RED and DDR for the same scenario. Share

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Flow ID

%
 o

f t
ot

al
 b

an
dw

id
th

RED
Scaled 1/RTT
DRR
MAY

Fig. 4. Scaled throughput for 100 long-lived TCP flows over congested link
employing RED, DRR and MAY.

n1

n2

n3

n4

n5

m1 m2 m3 m4 m5

 p1 p3p2 p4 p5

q1

q2

q3

q4

q5

c1 c2

c3

c4

Fig. 5. Network topology

of the total throughput taken by each of 100 flows in these 3
schemes is depicted in Figure 4 during 2-minute simulations.

Jain’s fairness indices for these three schemes are:

j(URED) = 0.606, j(UDRR) = 0.997, j(UMAY) = 0.993

It can be seen from Figure 4 that the fairness of RED is
approximately proportional to the inverse of RTT. This is in
accordance with square root formula [15].

B. Fairness - Multiple bottleneck topology

Our second set of simulations demonstrate the fairness
properties of MAY in network with multiple bottlenecks. The
network topology that we considered is given in Figure 5.
Here, we consider a network of 24 nodes: n1 − n5,m1 −
m5, p1−p5, q1−q5, and c1, c2, c3, c4 and 30 flows traversing
the network as follows: n(i) → p(i);n(i) → q(i),m(i) →
p(i);m(i) → q(i);n(i) → m(i); p(i) → q(i) where i =
1, 2, 3, 4, 5.

The delays on each of the links in ms are defined as follows:

ni → c1 : 40 · i + 1; pi → c3 : 40 · i + 1

mi → c2 : 40 · i + 1; qi → c4 : 40 · i + 1

and the delays c1−c2, c2−c3, c3−c4 are 10ms. The capacities
of all links are 10Mbps. With this topology, the max-min fair
shares are 0.5Mbps for 20 flows that uses link c2 − c3, and
1Mbps for other 10 flows (n(i) → m(i) and p(i) → q(i)).

The bandwidth allocations are evaluated with each link
c1 − c2, c2 − c3 and c3 − c4 using: RED, DRR and MAY,
respectively, with a queue size of 100 packets.

7

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500
Th

ro
ug

hp
ut

(K
bp

s)

FlowID

RED
DRR
MAY
max−min fair share

Fig. 6. Bandwidth obtained by each of 30 flows in multiple bottleneck
topology. Congested links use RED, DRR, MAY.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

UDP sending rate (Mbps)

UD
P t

hro
ug

hp
ut

(M
bp

s)

Fig. 7. Sending rate versus Throughput of the nonelastic CBR flow.

Figure 6 depicts 3 scenarios, one for each dropping scheme
used. We plot the amount of throughput taken by each of 30
flows during 2-minute simulations. The doted line represents
the max-min fair share of bandwidth. We can see significant
unfairness in oblivious (RED) scheme and close-to-max-min-
fair resource allocation in DRR and MAY case. Jain’s indices,
defined by (10) are:

j(URED) = 0.731, j(UDRR) = 0.987, j(UMAY) = 0.985

C. Throughput of a nonelastic flow
In this subsection we present the simulations that support

analytical findings from the Theorem 3.2. The basic setup
is the following: N = 19 TCP flows with RTTs uniformly
distributed in [20ms, 220ms] share MAY link with capacity
40Mbps with a single CBR flow with sending rate x1. We
varied x1 in the interval [0.5Mbps, 8Mbps] and evaluate
the throughput in each case. The results are presented in
Figure 7. Each simulation lasted for 5 minutes, with first
minute neglected. In this context, fair share is simply xf =
40/20Mbps = 2Mbps. From Figure 7, we can see that for x1

less than xf = 2Mbps throughout is identical to the sending
rate, while for x1 > xf CBR flow is shut down, by receiving
(almost) zero throughput.

D. Flow sizes versus FCT of short-lived flows
In this subsection we present the results that show how the

FCT of short-lived flows (here we use S0 = 1000) is impacted

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Flow size (in packets)

FC
T

(in
 s

ec
on

ds
)

MAY
RED
DRR
LAS

Fig. 8. Flow sizes versus FCT (measured in seconds) in RED, DRR, MAY
and LAS cases.

by the queue management algorithm used at a congested link.
The basic setup is the following: 250 short-lived TCP flows
share a 40Mbps bottleneck link with 50 long-lived TCP flows.
Each connection has no ssthresh− nor cwnd− limitations,
delayed acknowledgements are switched on and packet sizes
are 1000bytes. RTT’s of short-lived flows are 100ms (we use
the same value in order to compare the FCTs of different flows,
which are RTT-dependent), and RTT’s of long-lived flows are
uniformly distributed in [20ms, 200ms]. The sizes of short-
lived flows are picked randomly with uniform distribution in
the interval [1,1000] packets and are initiated at rate of one
per second (∼ 10% of total load corresponds to short-lived
flows). We evaluated the FCT of short lived flows obtained
by four different queue management algorithms used by the
bottleneck link: RED, DRR, LAS and MAY. The results are
depicted in figure 8. Numerically, the average FCT (AFCT)
for 250 short-lived flows in this four cases are:

AFCTRED = 8.14s, AFCTDRR = 10.34s,

AFCTLAS = 1.26s, AFCTMAY = 1.72s.

Note the slight increase of FCT in MAY compared to
stateful scheme - LAS. The oblivious scheme (RED) and
instantaneously fair packet scheduler (DRR) achieve signifi-
cantly larger FCT. In RED no packet is prioritized while in
DRR the instantaneous sending rate is limited and most of
short-lived flows experience loss during the slow-start phase.

V. DISCUSSION OF MAY

Estimating the fair share and the number of bottlenecked
flows. From the analysis in section III we know that max-min
fair share x∗ can be estimated with

x∗ =
1

ν∗ .

From the proof of Theorem 3.3, we also know that a flow
f is bottlenecked at the link l if and only if δ∗f is asymp-
totically positive. In practice, we can estimate the number of
bottlenecked flows at link l at time t as

NB(l) = #{f ∈ H : δf (t) > ε}

8

for some ε > 0.
Isolating the high-rate nonelastic flow. Nonelastic flows that

have sending rate higher than responsive flows bottlenecked at
given link would get asymptotically full denial of service by
MAY. One may argue that this is not desirable feature of MAY,
but since the nonelastic flows (with high sending rate) have
few orders of magnitude higher drop rates compared to elastic
flows they can be easily identified and can receive additional
processing by the router if required.

Variable packet size. Throughout this paper we assumed
uniform packet sizes among the flows to ease the exposition.
The problem of variable packet size can be easily solved
by employing byte-based approach instead packet-based ap-
proach.

Control of ν. In the present implementation the control of
ν is rate based, rather than queue-based. This means that
congestion indicator is arrival rate at the queue, rather than
queue length. Queue based control of ν is possible as well
without affecting the main features of MAY.

Definition of short-lived flow. In our terminology a flow is
short-lived if it has length not greater than S0 packets. The
quantity S0 determines memory consumption as well as the
amount of traffic prioritized. S0 should be chosen to allow
small FCT of majority of flows, but not to harm performance
of long-lived flows. Our measurements over real Internet traces
indicate that S0 = 1000 implies roughly 10-20% of traffic
generated by short-lived flows (see [23] for more details).

Parameter calibration. Initial tests show that MAY is highly
robust to the choice of parameters. The update interval ∆
should be taken to cover several “typical” RTT, thus to belong
to interval [500, 5000]ms. The weighted average qw should
be chosen to allow averaging over several update intervals:
qw ∈ [0.01, 0.1]. Timeout T0 depends on the definition of
persistence of a flow. Standard value used in the Internet
measurements if T0 = 64sec and here we use the same value.
Self tuning of parameters is possible but is out of scope of the
present paper.

VI. SUMMARY

In this paper we proposed a randomized framework for
unifying two major principles for the design of resource alloca-
tion algorithms at Internet links: small Flow Completion Time
of short-lived flows and max-min fair bandwidth sharing of
long-lived flows. While both problems have been extensively
studied, over last two decades, no stateless solution exist for
either of them. A powerful paradigm “Drop proportionally
to the amount of past drops”, allows us to develop a virtu-
ally stateless scheme, called MAY which unifies two design
principles using around 1 bit per flow of on-chip SRAM in
Internet-like flow size distributions. The light computational
complexity and recent advances in hash-table implementations
allows implementation at line speeds greater than 40Gbps.

Our analytical work, shows that for elastic AIMD flows,
the amount of bandwidth obtained by an elastic long-lived
flow asymptotically does not depend on its aggressiveness
(additive increase factor) neither responsiveness (multiplicative
decrease factor). The fairness level of MAY, evaluated using

Jain’s fairness index, is almost identical to one of DRR. On the
other hand, increase of FCT for short-lived flows compared to
stateful LAS is minimal and is consequence of probabilistic
nature of our scheme, and price payed for avoidance of state
information.

REFERENCES

[1] S. Athuraliya, D. Lapsley, S. Low. “Enhanced Random Early Marking
algorithm for Internet flow control”. Proc. of IEEE INFOCOM, Tel Aviv,
Israel, 2000.

[2] K. Avrachenkov, U. Ayesta, P. Brown, E. Nyberg. “Differentiation
between short and long TCP flows: Predictability of the response time”.
Proc. of IEEE INFOCOM, Hong Kong, 2004.

[3] A. Das, D. Dutta, A. Goel, A. Helmy, J. Heidemann. “Low State
Fairness: Lower Bounds and Practical Enforcement”. Proc. of the IEEE
INFOCOM, Miami, FL, USA, March 2005.

[4] A. Demers, S. Keshav, S. Shenker. “Analysis and simulation of a fair
queueing algorithm”. Proc. of ACM SIGCOMM, Austin, TX, 1989.

[5] N. Dukkipati, M Kobayashi, R. Zhang-Shen, N. McKeown. “Processor
Sharing Flows in the Internet”. Proc. of IWQoS, Passau, 2005.

[6] V. Dumas, F. Guillemin, P. Robert. “A Markovian analysis of additive-
increase multiplicative-decrease algorithms”. Adv. in Appl. Probab. 34
(2002), no. 1, 85-111.

[7] K. Fall, S. Floyd. “Router mechanisms to support end-to-end congestion
control”. [online] ftp://ftp.ee.lbl.gov/papers/collapse.ps.

[8] S. Floyd, R. Gummadi, S. Shenker. “Adaptive RED: An algorithm for
increasing the robustness of RED’s active queue management”. August
2001, online: http://www.icir.org/floyd/papers/adaptiveRed.pdf.

[9] L. Guo and I. Matta. The War between Mice and Elephants. Proc. of
IEEE ICNP, USA, 2001.

[10] D. Katabi, M. Handley, C. Rohr. “Internet Congestion Control for
Future High Bandwidth-Delay Product Environments”. Proc. of ACM
SIGCOMM, Pittsburgh, PA, USA, 2002.

[11] L. Kleinrock. “Queuing Systems Vol. II: Comp. App.”. Wiley, 1976.
[12] D. Lin, R. Morris. “Dynamics of random early detection”. Proc. of ACM

SIGCOMM, Cannes, France, 1997.
[13] R. Mahajan, S. Floyd, D. Wetherall. “Controlling high-bandwidth flows

at the congested router”. Proc. of IEEE ICNP, CA, USA, 2001.
[14] NLANR IP traces, online, Leipzig -

ftp://pma.nlanr.net/traces/long/leip/1/20021124-020000-1.gz; Abilene
pma.nlanr.net/traces/long/ipls/1/IPLS-CLEV-20020814-103000-0.gz.

[15] J. Padhye, V. Firoiu, D. F. Towsley, J. F. Kurose. “Modeling TCP Reno
performance: a simple model and its empirical validation”. IEEE/ACM
Transactions on Networking, Volume 8 , Issue 2 ,April 2000.

[16] R. Pan, L. Breslau, B. Prabhakar, S. Shenker. “Approximate Fairness
through Differential Dropping”. ACM SIGCOMM Computer Commu-
nication Review Volume 33 , Issue 2, April 2003

[17] R. Pan, B. Prabhakar, K. Psounis. “CHOKe: A stateless AQM scheme
for approximating fair bandwidth allocation”. Proc. of IEEE INFOCOM,
Tel Aviv, Israel, 2000.

[18] I.A. Rai, E.W. Biersack, G. Urvoy-Keller. “Size-based scheduling to
improve the performance of short TCP flows”. IEEE Network, 2005.

[19] M. Shreedhar, G. Varghese. “Efficient fair queueing using deficit round-
robin”. IEEE/ACM Transactions on Networking, vol. 4, no. 3, June 1996.

[20] H. Song, S. Dharmapurikar, J. Turner, J. Lockwood. “Fast hash table
lookup using extended bloom filter: an aid to network processing”. Proc.
of SIGCOMM, Philadelphia, USA, 2005.

[21] R. Srikant. “The Mathematics of Internet Congestion Control”.
Birkhauser, 2004.

[22] R. Stanojevic. “Small active counters”. Proc. of IEEE Infocom 2007,
Anchorage, USA.

[23] R. Stanojevic, R. Shorten. “MAY”. Hamilton Institute, Technical Report,
2007. Available online: http://www.hamilton.ie/person/rade/may-TR.pdf.

[24] I. Stoica, S. Shenker, H. Zhang. “Core-Stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks”. IEEE/ACM Transactions on Networking, vol.
11, no. 1, 33-46, February 2003.

[25] B. Wydrowski, M. Zukerman. “MaxNet: A congestion control architec-
ture for maxmin fairness”. IEEE Communications Letters, vol. 6, no.
11, Nov. 2002, pp.512-514.

[26] Y. Yang, S. Lam. “General AIMD Congestion Control”. Proc. ICNP
2000, Osaka, Japan, 2000.

