
1

Generalized Distributed Rate Limiting
Rade Stanojević, Robert Shorten

Hamilton Institute, NUIM, Ireland

Abstract— The Distributed Rate Limiting (DRL) paradigm is a
recently proposed mechanism for decentralized control of cloud-
based services. DRL is a simple and efficient approach to resolve
the issues of pricing and resource control/engineering of cloud
based services. The existing DRL schemes focus on very specific
performance metrics (such as loss rate and fair-share) and their
design heavily depends on the assumption that the traffic is
generated by elastic TCP sources. In this paper we tackle the
DRL problem for general workloads and performance metrics
and propose an analytic framework for the design of stable DRL
algorithms. The closed-form nature of our results allows simple
design rules which, together with extremely low communication
overhead, makes the presented algorithms practical and easy
to deploy with guaranteed convergence properties under a wide
range of possible scenarios.

Index Terms— Rate limiting, CDN, Cloud control, Consensus
agreement, Stability and convergence.

I. INTRODUCTION

In the early days of the Internet, services were centric,
meaning that a user connects to the specific location that
provides the service. Recently, we see a trend of moving
from a centric model of providing services to a so called
cloud-based model in which a user obtains a service from a
massive network of “cloud servers”. Nowadays, many internet
services are structured in a “cloud” around a large number of
servers that are distributed worldwide to decrease the costs
and to improve content availability, robustness to faults, end-
to-end delays, and data transmission rates [6]. Examples in-
clude most of Yahoo! and Google services, Amazon’s Simple
Storage Service (S3) and Elastic Compute Cloud (EC2) as
well as Akamai’s Content-Delivery Network (CDN). Some
other applications, such as Google Docs or Microsoft Groove
Office, have integrated software-as-a-service paradigm and
allow desktop users to utilize cloud-based services in hosted
environments.

The ability to control cloud-based service usage is criti-
cal for several important functions of a cloud-based service
provider (CBSP):

(1) The pricing of service by most of the existing CBSPs is
usage-based [1], [29]. Namely, services are charged at a
rate that is an increasing (usually concave) function of the
total resources used. However, in the history of commu-
nications, pricing of various services (eg. ordinary mail,
the telegraph, the telephone, and the Internet) followed
similar pattern: it started with usage-based pricing and
converged to some form of flat-fee pricing. Moreover,
enterprizes tend to prefer a fixed cost of an IT service

This work is supported by the Science Foundation Ireland grant
07/IN.1/I901.

rather than unlimited/unpredictable usage-based cost, see
[8] and [23].

(2) Provisioning of high quality services depends on the
nature of the service demand pattern. The ability to
regulate the usage of individual service allows CBSPs to
design networks with predictable performance bounds.

(3) Fault tolerance of large-scale distributed services is an
important performance objective that is enhanced by
resource control by means of fast fault discovery and
quick response to these faults.

The paper [29] introduces the notion of Distributed Rate
Limiting (DRL) as a mechanism for resource control in
cloud-based services. Briefly, DRL stands for any mechanism
that controls the aggregate service used by a customer of
a cloud-based service. The idea is to enhance a set of
cloud-servers with the ability to exchange information among
them towards the global goal: control of the aggregate
usage that a cloud-based service uses. The main obstacle
in the design of a DRL algorithm is the fairness postulate [29]:

Fairness postulate: The performance levels at different
servers should be (approximately) equal.

Thus, in DRL, a job utilizing one server competes for
resource (bandwidth, CPU, RAM, storage, etc.) with jobs
that utilize the same server and with all other jobs utilizing
other servers (the formal definition of the problem is given in
the section I-A). The worldwide scale1 of such clouds raises
important issues as to how to efficiently control resource usage
in such large distributed environments.

The algorithms proposed in [29] and [32] deal with the
DRL problem for very specific performance metrics: namely
loss-rates and fair-share. They also assume that the traffic
is generated by elastic, best-effort, sources that adapt their
sending rate based on the available resources2. However, in
many cases, the relevant performance metric is application
dependent and it is also tied to the nature of the traffic
sources (that can be elastic or non-elastic). For example,
in VoIP servers the relevant performance metric could be
the call-discard-rate, or latency, or some function of these
two; in gaming applications it makes sense to evaluate the
performance through experienced latency; etc. Basically, each
application has its own performance goals, and requires some

1For example, Google’s services run on several hundreds of thousands
servers distributed worldwide [29], [5]. Akamai’s content distribution network
utilized tens of thousand servers [6].

2Throughout this paper we refer to workloads generated by elastic sources
as closed-loop workloads. In contrast, open-loop workloads are generated by
sources that do not adapt their sending rate based on the available resources
[30], [28].



2

specific metric to measure the performance. See [30] for a
nice overview of typical workloads and performance metrics in
various real-world examples from networking, storage and op-
erating systems. While existing DRL proposals show promise
in several particular cases, it remains unclear how to design
DRL algorithms that would be suitable for arbitrary workloads
and performance metrics. In this paper our goal is to design
scalable DRL algorithms that can be employed for arbitrary
workloads and performance metrics.

From the theoretical point of view one can see DRL as dual
to the well known concept of load balancing in the following
sense. Suppose that there are N servers servicing the total
demand D with the aggregate capacity C. In load balancing
the capacities (C1, C2, . . . , CN ) of N servers are fixed and
the problem is how to allocate the demand set D to N servers
(D1,D2, . . . ,DN ) (∪N

i=1Di = D) such that the performance
at each server is uniform. In DRL we have a fixed set of
demands (D1,D2, . . . ,DN ) and N servers, and the goal is to
allocate the capacities at each server such that performance at
each server is uniform (subject to the rate-invariance condition∑N

i=1 Ci = C = const). Roughly speaking, load balancing
can be seen as a demand partitioning, while DRL can be seen
as a capacity partitioning. As we will see the distributed nature
of DRL introduces a dynamic system approach for analyzing
the queueing system arising in these generalized environments
and solving the problem of interest that we now define.

A. Problem formulation

Let a cloud-based service provider controls N hosting
centers with each hosting center i ∈ {1, 2, . . . , N} able to limit
(throttle) locally the service rate Ci of a particular customer,
serving the job population Di. The first constraint of DRL is to
keep the aggregate service rate of all N servers for the given
subscriber3 at a prescribed level C.

N∑

i=1

Ci = C. (1)

Then, the local limiters (one at each server) should col-
laborate to realize the fairness postulate (formulated above).
In order to formalize the fairness postulate we need to have
a definition of the performance metric. The “performance
metric” is a rather general notion. Examples include the
mean response time, discard rate, utilization level, and “spare
capacity”. However, the framework described here is general
and in what follows we will formalize the problem of interest.

Let qi be the performance indicator (eg. “spare capacity” or
mean response time) at server i serving (fixed) set of jobs Di

with (variable) capacity Ci. Then qi is a function of Di and
Ci:

qi = f(Di, Ci) =: fi(Ci). (2)

Now the DRL problem translates into finding
C1, C2, . . . , CN such that aggregate-rate invariance (1)
is satisfied for which

3The subscriber is either an enterprize, bank, corporation, or any other set
of users paying for service under one account.

q1 = q2 = . . . = qN . (3)

In terms of communication infrastructure we allow each
limiter i to cooperate with its neighbors in a connected
undirected graph G (with nodes given by N limiters) to adapt
its capacity limit Ci. The goal of our work is to develop a
fully distributed algorithm (in which each server exchange
only local information with its neighbors in G) that solves
the system of equations (1) and (3). Our approach will be
iterative, using local measurements, to drive the system to the
solution independently of the initial state.

Before we proceed, we state the key technical assumption
that will allow us to perform a detailed analysis of the
dynamical system describing the DRL dynamics in the later
sections.

Assumption 1: The functions fi : R → R, describing the
relationship between capacity, Ci, and performance indicator
qi are decreasing, convex, differentiable functions, and have
continuous first derivative4.

We stress that for many performance indicators used in the
literature, Assumption 1 is valid. Indeed for spare-bandwidth
and utilization, it is straightforward to check the validity of
the Assumption. A little bit more challenging is the case of
mean-response-time for which it has been noticed empirically
that for many scheduling strategies Assumption 1 is valid [28].
From an analytical perspective there are some partial results
reported in [16], [17], but for general scheduling disciplines
the convexity is still an open problem.

B. Our contributions

As we have said, the main concern of this paper is a
principled design of algorithms for DRL under general
performance indicators, and workload environments. Briefly,
the main contributions of our work are following:

• The algorithm for solving the DRL problem under
arbitrary performance metrics satisfying Assumption 1.
The proposed algorithm has a very small communication
overhead and can accommodate a wide range of
performance metrics.

• The stability and convergence properties are analyzed
for the presented algorithm and simple (closed form)
design rules are derived.

• Empirical evaluation of the proposed scheme is
presented, that supports our analytical findings.

The dynamical system that describes the dynamics of the
algorithms are nonlinear and implicit. This makes the task of
their analysis quite challenging. Namely, the standard theory
of consensus algorithms (see [9] and references therein) cannot
be employed in our case. The convergence result established

4The set of differentiable functions h : R → R, with continuous first
derivative is usually denoted as C1(R).



3

in Theorem 1 is highly nontrivial and represents the main
theoretical contribution of this paper.

We also performed a number of representative simulations
to test the behavior of our algorithms in various settings.
We found that various performance metrics closely match our
analytical predictions capturing one of the goals of the present
paper: namely principled and performance-predictable design
of DRL algorithms in open-loop workloads.

C. Related work
An early DRL-like proposal appeared in [10] which dis-

cussed a general framework for monitoring and control of
distributed systems, with a particular application on Planetlab
DRL control. The paper [29] introduces DRL in context
of cloud-based service control. Here we briefly review two
algorithms proposed in [29]: Global Random Drop (GRD) and
Flow Proportional Share (FPS). GRD works as follows: each
local limiter tracks its demand and broadcasts that information
using the algorithm from [12]. Then the total demand T is
computed as a sum of demands at all limiters and an arriving
packet is dropped with probability (T −C)/T . As it is noted
in [29], GRD exhibits poor performance for large number of
limiters. To cite [29]: ”... Beyond 50 limiters, GRD fails to
limit aggregate rate, but this is not assuaged with an increasing
communication budget. Instead it indicates GRD’s dependance
on swiftly converging global arrival rate estimates.”. FPS
works similarly, using the notion of node’s “weight” that is
broadcasted using the same gossiping algorithm that computes
the aggregate weight at each node. Then each node utilizes this
aggregate-weight information to adapt its behavior.

In [32] DRL algorithms are designed that emulate single
best effort and processor sharing queues utilized by a set of
elastic TCP users. In both scenarios (best-effort and processor
sharing) the algorithms heavily exploit the TCP dynamics,
and the design rules are heavily influenced by the square-root
formula [26].

The problem of choosing relays in overlay networks, such
as Skype, with the objective of making the performance on
each of the relay nodes independent (of the choice of relay-
node) has been studied recently in [22]. The presented solution
utilizes the method of two random choices [20] and is essen-
tially a load-balancing method neglecting the cost of choosing
a relay for a given job. In the context of distributed cloud
management and control, the authors of [35] proposed a tree-
based algorithm for fast and reliable distributed identification
of so-called threshold crossing events that are related to the
DRL concept of keeping the global consumption bellow the
threshold. Similar proposals to DRL can be found in the
security literature as protection against DDoS [33], where a
network of downstream routers throttles traffic to and from
the server that is to be protected against DDoS.

The DRL problem, formulated in Section I-A, can be seen
as instance of the consensus agreement problem. Consensus
algorithms have attracted significant attention over last several
years being applied in various topics, such as flocking [24],
time synchronization, multi-agent coordination [9], sensor,
peer-to-peer and ad hoc networks [4]. In most existing applica-
tions consensus algorithms can be modelled as positive linear

1 UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 Ci ← Ci + η

∑
(i,j)∈E(qi − qj)

5 endfor
6 enddo

7 InitializeCapacities()
8 for i = 1 : N
9 Ci ← C

N
10 endfor

Fig. 1. Pseudo-code of GDRL

systems, which then allow the elegant theory of nonnegative
matrices and Markov chains to be employed to capture the
convergence properties of the algorithms. However, little is
known about implicit nonlinear consensus problems (see [13],
[21]) and one of the main contributions of this paper is the
proof of global stability for the implicitly given nonlinear
systems describing the dynamics of the algorithm presented
in the next section.

II. DRL UNDER GENERAL PERFORMANCE INDICATORS

We now present the GDRL algorithm that solves the DRL
problem introduced in Section I-A: allocate the network re-
sources in a manner that equalizes performance among local-
limiters. As we said earlier, the rationale for doing this is
to ensure that all end-users experience a similar quality of
service.

Our basic setup is as follows. We use N local limiters to
control aggregate service rate at level C. The local limiter i
has a capacity Ci that can be adjusted, and this limiter can
exchange information with the limiter j if (i, j) is an edge
in the communication graph G = (N,E) (in that case we
write (i, j) ∈ E). For a given capacity Ci, and a family Di

of jobs, demanding the service from server i, the performance
indicator qi at limiter i can be directly measured, and is a
function of Di and Ci:

qi = f(Ci,Di).

The goal here is to obtain a fully decentralized algorithm,
for adjusting the values of Ci’s such that

q1 = q2 = · · · = qN .

At each server we use a local limiter that throttles the
service allocated to the subscriber at rate Ci. The performance
indicator is measurable directly, and it depends on the demand
pattern. In general the higher demand is at the limiter (mean-
ing that aggregate aggressiveness is bigger) the “worse” the
performance indicator is. Recall also that qi is a decreasing
function of Ci: qi = fi(Ci).

The pseudo–code for the control of (C1, . . . , CN ) is given
in Figure 1. Initially, all the Ci are set by the 1/N -rule.
Then Ci is updated in discrete time steps by the simple rule:
Ci ← Ci + η

∑
(i,j)∈E(qi − qj). The rationale for this update

step is the following. The qi - the performance indicator of
the quality of service is a decreasing function in terms of
Ci. If the qi at limiter i is higher than performance indicator



4

qj at some neighbor j of i (in G), then this indicates that
some extra capacity should be allocated to limiter i which
should be compensated by reducing the capacity of limiter
j. Giving more capacity to limiters with high performance
indicators affects improving the performance at those limiters.
The parameter η > 0 determines responsiveness and stability
properties of the algorithm and its choice is discussed in the
next subsection.

While the basic algorithm makes sense intuitively, many
questions need to be answered before it can be deployed.
Paramount among these concerns under which conditions
does the algorithm GDRL converge to the desired (unique)
equilibrium, and if so, how fast. These questions provide the
focus for the investigation presented in the next section.

A. Model and analysis of GDRL

In this section we analyze the GDRL in a very gen-
eral model. Thus we do not make any assumptions on the
scheduling scheme utilized at any of the schedulers, neither
on the job size distributions, job arrival pattern, etc. The
only technical assumption is one stated as Assumption 1
that ensures smoothness, monotonicity and convexity of the
functions relating capacities and the performance indicators.

Now, suppose that limiter i serves the population of jobs
Di. We model the DRL system in discrete time t. At time
t, denote by Ci(t) the capacity and by qi(t) the performance
indicator and limiter i. From the discussion in Section I-A we
know that there is a function fi such that

qi(t) = fi(Ci(t)). (4)

Let us denote with gi = f−1
i the inverse function of fi (defined

on the appropriate domain). Then

Ci(t) = gi(qi(t)). (5)

Equation (4) represents the key relationship between Ci(t)
and qi(t). Given this, the dynamical system describing the
evolution of Ci(t), is given by:

C1(0) = C2(0) = . . . = CN (0) = C/N, (6)

Ci(t + 1) = Ci(t) + η
∑

(i,j)∈E

(qi(t)− qj(t)). (7)

The following lemma is a straightforward consequence of
the fact that G is an undirected graph.

Lemma 1: For all t, the capacity constraint is satisfied:

C1(t) + C2(t) + . . . + CN (t) = C. (8)

Proof: For t = 0 the statement is true from the definition.
Suppose that it is valid for t = k, then for t = k + 1:

N∑

i=1

Ci(t + 1) =
N∑

i=1


Ci(t) + η

∑

(i,j)∈E

(qi(t)− qj(t))


 =

N∑

i=1

Ci(t) + η
∑

(i,j)∈E

((qi(t)− qj(t)) + (qj(t)− qi(t))) =

=
N∑

i=1

Ci(t) = C.

The following theorem gives a sufficient condition under
which system (6)-(7) converge.

Theorem 1: Let di be the degree of limiter i in the com-
munication graph. Then if η satisfies:

0 < η <
1
2

min
1≤i≤N

(−g′i(qi(0))) min
1≤i≤N

1
di

, (9)

the following limits exist

lim
t→∞

Ci(t) = C∗i

and
lim

t→∞
qi(t) =: q∗.

Proof: We find it more convenient to write the dynamics
of (7) in terms of qi(t):

gi(qi(t + 1)) = gi(qi(t)) + η
∑

(i,j)∈E

(qi(t)− qj(t)), (10)

We denote

m(t) = min
1≤i≤N

qi(t),

and
M(t) = max

1≤i≤N
qi(t).

Step 1. First we prove that under condition (9) the sequence
m(t) is nondecreasing and the sequence M(t) is nonincreas-
ing.

Let qi(t) = m(t) + λ, for some λ ≥ 0. Then from the
equation (10) we have:

gi(qi(t + 1)) = gi(qi(t)) + η
∑

(i,j)∈E

(m(t) + λ− qj(t)) ≤

gi(qi(t)) + η
∑

(i,j)∈E

λ = gi(qi(t)) + ηλdi =

= gi(m(t) + λ) + ηλdi. (11)

On the other hand, since by Assumption 1 fi is in C1,
decreasing and convex, gi is also differentiable decreasing and
convex. Therefore from the mean value theorem, there exists
q∗i (t) ∈ (m(t),m(t) + λ) such that

gi(m(t)+λ) = gi(m(t))+g′i(q
∗
i (t))λ ≤ gi(m(t))+g′i(m(t))λ

Combining the last inequality with (11) we get

gi(qi(t + 1)) ≤ gi(m(t)) + g′i(m(t))λ + diηλ. (12)

For t = 0, the condition (9) implies that g′i(m(0))λ+diηλ ≤
0 implying that gi(qi(1)) ≤ gi(m(0)). Since gi is decreasing,
we have qi(1) ≥ m(0) for all i and m(1) ≥ m(0). Now we
prove by using mathematical induction that m(t+1) ≥ m(t).
For t = 0 we just proved that m(1) ≥ m(0). Suppose that for



5

all k < t: m(k + 1) ≥ m(k). Then for k = t, m(t) ≥ m(0).
Now, the condition (9) and the bound (12) imply:

gi(qi(t + 1)) ≤ gi(m(t)) + g′i(m(t))λ + diηλ ≤
gi(m(t)) + g′i(m(0))λ + diηλ ≤ gi(m(t)).

The last inequality, together with the fact that gi is a decreasing
function implies

m(t + 1) = min
1≤i≤N

qi(t + 1) ≥ m(t).

One can conclude using similar arguments that for all t ≥ 0

M(t + 1) = max
1≤i≤N

qi(t + 1) ≤ M(t).

Thus the range of qi’s: [m(t),M(t)] is a nested sequence
of closed intervals. In the next step of the proof we use this
information to write the dynamics in the more convenient
form.

Step 2. In this step we rewrite the dynamics of qi(t) in a
more practical form. Consider the representation of the dynam-
ics of qi(t) given by (10). From the Lagrange’s mean value
theorem there exist ri(t) ∈ (qi(t + 1), qi(t)) ⊂ (m(0),M(0))
such that

gi(qi(t + 1))− gi(qi(t)) = (qi(t + 1))− qi(t))g′i(ri(t)).

Thus the recurrence equation (10) can be rewritten as

qi(t + 1) = qi(t) +
η

g′i(ri(t))

∑

(i,j)∈E

(qi(t)− qj(t)).

Therefore, the evolution of the state-vector q(t) =
(q1(t), . . . , qN (t)) can be written as:

q(t + 1) = B(t)q(t),

where the matrix B(t) is given by B(t) =



1 + d1η
g′1(r1(t))

− η
g′1(r1(t))

e1,2 · · · − η
g′1(r1(t))

e1,N

− η
g′2(r2(t))

e2,1 1 + d2η
g′2(r2(t))

· · · − η
g′2(r2(t))

e2,N

...
...

. . .
...

− η
g′N (rN (t))eN,1 · · · · · · 1 + dN η

g′N (rN (t))




with ei,j being the elements of the adjacency matrix of G, ie.
if (i, j) ∈ E, then ei,j = 1 otherwise ei,j = 0.

Step 3. We now use the monotonicity of sequences M(t)
and m(t) proved in Step 1, to prove that nonzero elements
of B(t) are positive and uniformly bounded away from zero.
Indeed, recall that ri(t) ∈ (qi(t), qi(t + 1)), and therefore
ri(t) ≥ min(m(t),m(t + 1)) ≥ m(0), and therefore for the
diagonal entries we have that

1 +
diη

g′i(ri(t))
≥ 1 +

diη

g′i(m(0))
≥ 1− 1

2
=

1
2
.

For nonzero off-diagonal entries note that ri(t) ≤
max(M(t),M(t + 1)) ≤ M(0) and thus

− η

g′i(ri(t))
≥ η

−g′i(M(t))
≥ η

−g′i(M(0))
=: δi > 0.

Take δ = min{1
2 , δ1, . . . , δN} > 0. Then for all t, all

nonzero elements of B(t) are not smaller than δ.
Step 4. Finally, we use the fact that G is connected to

show that M(t) −m(t) converges to zero. This implies that
limt→∞m(t) = limt→∞M(t) = limt→∞ qi(t) = q∗. Let k
be the diameter of graph G, i.e. the smallest integer such that
there exist a path in G between each two nodes of length not
greater than k. Then for all t:

D(t) = B(t + k − 1)B(t + k − 2) · · ·B(t)

is a stochastic matrix5 with strictly positive entries and each
entry of D(t) is greater or equal than δk. Denote by j0 the
index for which qj0(t) = m(t). Then

qi(t+ k) =
N∑

j=1

Dij(t)qj(t) =
∑

j 6=j0

Dij(t)qj(t)+Dij0(t)m(t)

≤
∑

j 6=j0

DijM(t) + Dij0(t)m(t) =

(1−Dij0(t))M(t) + Dij0(t)m(t) ≤ M(t)(1− δk) + m(t)δk.

And similarly

qi(t + k) =
N∑

j=1

Dij(t)qj(t) ≥ m(t)(1− δk) + M(t)δk.

Thus

M(t + k)−m(t + k) ≤ (1− 2δk)(M(t)−m(t)). (13)

Since M(t)−m(t) is a nonincreasing sequence and δ > 0
is independent of t, we conclude that M(t) −m(t) → 0, as
t →∞. Thus

lim
t→∞

M(t) = lim
t→∞

m(t) = lim
t→∞

qi(t) = q∗.

Now, the convergence of Ci(t) follows directly from (5)
and the continuity of the mappings gi.

Comment 1: From the bound (13), we can observe that the
system converges to the equilibrium geometrically, with a rate
bounded above by (1 − 2δk)

1
k . Indeed, let us introduce the

following quantity:

θ =
1

1− 2δk
max

0≤s≤k
(M(s)−m(s)).

Then from (13):

M(t)−m(t) ≤ (1− 2δk)b
t
k c(M(s)−m(s)) ≤

(1− 2δk)
t
k

1
1− 2δk

(M(s)−m(s)) ≤ θ
(
(1− 2δk)

1
k

)t

.

5A stochastic matrix is a square matrix with nonnegative entries and sum
of each row is 1. Since each of B(t) is stochastic, their product is stochastic
as well [2].



6

N number of servers
Ci service rate at node i
C the aggregate service rate
qi performance indicator at node i
di degree of node i in the graph G
λi traffic intensity at node i

MRTi mean response time at node i
JFI Jain’s fairness index

η the gain parameter
α the filtering parameter

TABLE I
SYMBOL MAP

Comment 2: In the networking community, a widely
used approach (see [18], [34]) for analysis of nonlinear
dynamical systems is linearization around the equilibrium,
and presentation of some kind of local stability result: if
system is close to equilibrium then it will stay there. We
stress that our result posses an extra feature, it says that the
system will actually reach the equilibrium from an initial
state lying outside of the linearization regime.

Comment 3: While in the presented model we assume
synchronous updates of Ci, this property of the model is not
critical. See Section IV and Appendix for more details.

Comment 4: The presented algorithm, GDRL, can be seen
as instance of distributed equation solving. Suppose that N
agents want to solve the following equation in a distributed
manner

G(x) =
N∑

i=1

gi(x) = C.

If each agent i is able to solve the equation gi(x) = y for every
y then GDRL-like algorithm with appropriate η converges to
the solution of the above equation.

III. EVALUATION

A. Basic setup

In our first simulation we use a network of N servers
communicating along the edges of d-regular6 graph. Limiter
i receives packets arriving according to a Poisson process
with intensity λi. The service rate is given by Ci(t) and each
limiter represents M/M/1 queue with arrival and service rate
specified above. Is such system, the mean-response time at
limiter i is given by

MRTi(t) =
1

Ci(t)− λi
.

Since we find it easier to directly estimate the arrival rate
than the expected response-time, we will use as performance
indicator the “spare-bandwidth”:

qi = fi(Ci) := λi − Ci. (14)

We use the low-pass filter to estimate λi with parameter α:

6A graph is d-regular if its every node has degree d.

λ
1
 

λ
2
 

λ
3

λ
4

λ
5

λ
6

λ
7

λ
8

λ
9

λ
10

Fig. 2. The ring structure of the communication graph used for the
simulations in Sections III-A and III-B.

λ̂i(t + 1) = (1− α)λ̂i(t) + αδ(t),

where δ(t) is the random variable that corresponds to the job
arrival process, ie. δ(t) = 1 if a packet arrived at the time slot
t and δ(t) = 0 otherwise.

Using “spare-bandwidth” as a performance indicator as
defined above, the function fi : x → x − λi clearly satisfies
Assumption 1 making Theorem 1 applicable for obtaining a
sufficient condition on η for stability. Since the gi function
has form:

Ci = gi(qi) := λi − qi.

The condition (9) on η that ensures stability of the algorithm
translates simply to:

η ≤ min
1

2di
=

1
2d

. (15)

In order to measure how “equal” the performance indicators
(q1(t), . . . , qN (t)) are, we use the quantity in the networking
literature known as Jain’s Fairness Index (JFI)[11]:

JFI(q(t)) =

(∑N
i=1 qi(t)

)2

N
∑N

i=1 q2
i (t)

. (16)

JFI is a quantity that lies between 0 and 1, and the closer
JFI is to 1 the “more” uniform elements of the vector are.

The simulation setup we run consisted of N = 10 limiters,
communicating over the edges of graph G that has a ring
structure (each node has two neighbors, d = di = 2). The
demand intensity at node i is

λi =
i

N + 1
, for i = 1, 2, . . . , N.

The aggregate service rate C is 10% larger than the aggre-
gate traffic intensity Λ =

∑N
i=1 λi. The filtering parameter is

set to α = 10−3 and the gain parameter is chosen at the level
that guarantees stability η = 1

4 .
Figures 3 and 4 depict the evolution of the vector of

performance indicators: q(t) = (q1(t), . . . , qN ) and its JFI .
As we can see the components of vector q(t) converge to the
(approximately) same value and the metric measuring how
uniform those values are - JFI(q(t)), converge to the region
very close to 1. The offset between the measured JFI and



7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t − time

q(
t)

Fig. 3. The evolution of the vector q(t) = (q1(t), . . . , qN ).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t − time

JF
I(t

)

Fig. 4. JFI(q(t)) dynamics.

1 is caused by the noise in the estimation of real λi and can
be made arbitrarily small by choosing small enough low-pass
filter parameter α.

B. Dynamic demands

In this simulation we evaluate the effects of the change in
the demand pattern. We use the same configuration of N =
10 nodes with ring communication structure and performance
indicator function given by (14). The GDRL parameters used
are η = 1

4 and α = 10−3 and the load is 90%.
The demands, λi, in previous subsection are constant. In

this subsection we vary the demands in time t:

λi(t) =
i

N + 1
, for t ∈ [0, τ0] ∪ [3τ0, 4τ0],

λi(t) = 1− i

N + 1
, for t ∈ [τ0, 2τ0],

λi(t) =
t− 2τ0

τ0
(1− i

N + 1
)+

3τ0 − t

τ0

i

N + 1
, for t ∈ [2τ0, 3τ0],

τ0 = 104. Figure 5 depicts the λi(t) as well as the estimates
obtained using the low pass filter.

The GDRL algorithm is run with the η parameter specified
above and the resulting q(t) and JFI(q(t)) is depicted in
Figure 6. As we have said, this simulation presents the
behavior of the GDRL in the events of changes in the demand
pattern. Both an abrupt change (discontinuous change in λ(t)
at t = τ0) and a slow smooth change (linear shift of λ’s during
the interval [2τ0, 3τ0]) have been evaluated. As it is predicted
by Theorem 1, GDRL stabilizes the λi(t) after the transient
periods caused by the mentioned changes.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ e
sti

ma
tes

t − time

Fig. 5. Estimates of λi(t) and real values of λi(t) (for each i, λi(t) is a
piecewise linear function consisted of 4 segments).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

t − time

J
F

I(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1

−0.5

0

0.5

1

t − time

q
(t

)

Fig. 6. The evolution of q(t) and JFI(q(t)).

C. Scalability in larger networks

The 10-node ring structure depicted in Figure 2 that was
used in the previous subsection is somewhat small. In this
subsection we evaluate how GDRL scales in larger networks.

We borrow the setup established in the Section III-A, using
random d-regular communication graphs, low pass filtering
parameter α = 10−3, load at 90% and the gain parameter
η set at the value that guarantees stability (15). We use N =
10, 100, 1000, spanning 2 orders of magnitude and d = 2, 4, 8.
The evolution of JFI(q(t)) is depicted for each of those
nine cases in Figure 7. Notice that convergence to the steady-
state is slowest for d = 2. However, a somewhat surprising
observation is that for gain parameter set at the stability
condition, η = 1

2d , the speed of convergence is very close for
a range of d, implying that low d exhibits convergence that is
(almost) as fast as the one for large d. Therefore, a cheap ring
structure, with a very low communication overhead appears to
converge as quickly as dense structures. We do not have an
analytical explanation for this phenomenon, and we will seek



8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

t − time ; N = 10

J
F

I(
t)

d=2
d=4
d=8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

t − time ; N = 100

J
F

I(
t)

d=2
d=4
d=8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

t − time ; N = 1000

J
F

I(
t)

d=2
d=4
d=8

Fig. 7. JFI(q(t)) dynamics in random d-regular graphs of 10, 100 and
1000 nodes. d ∈ {2, 4, 8}.

one as a part of future work.

IV. IMPLEMENTATION ISSUES

Asynchronous updates. The algorithm GDRL assumes
that local-limiter capacities are updated in a synchronized
manner using a connected undirected communication graph
G. However, this is not necessary to ensure convergence. To
see this, suppose that in each time instant t only some subset
of nodes exchange information, and that that information
exchange is characterized by an undirected graph Gt. If there
is some T > 0 such that for every τ , ∪τ+T

t=τ Gt is connected,
then the method developed in [9] can be used to establish
the convergence of the GDRL. See Appendix for formal
description of the asynchronous model.

Message passing. Communication between two local lim-
iters is performed via small packets containing information on
the performance indicator as well as some control overhead
to ensure that if a loss of a communication packet occurs no
local limiter gains or loses extra capacity, and that the capacity
constraint (1) is not violated.

Communication delays. Message passing between two
local limiters causes some communication delay on a time
scale from few milliseconds up to a couple of hundreds of
milliseconds. These communication delays could cause some
issues related to the stability of the distributed algorithms if the
update interval is on some small time scale. However, the time
between updates, given by ∆, is on the order of magnitude of
several seconds. This is necessary to obtain a good estimate
of performance indicators. This resulting separation of time-
scales ensures that effects of the communication delays on the
stability of our algorithms may be neglected. Notwithstanding
this fact, the issue of delays is a topic for future research.

Node Failures. In cases of a node (local-limiter) failure,
it is possible for a loss of aggregate bandwidth to occur
(since the capacity constraint (1) would be violated). A simple
method for resolving this issue is the following. Let each
local-limiter i choose a best-friend local-limiter7 bi among
neighbor nodes in the communication graph G, and let each
node inform node bi of its local rate limit Ci. In the case of
failure, local limiter bi inherits bandwidth of node i, by simply
setting Cbi = Cbi + Ci. Then the algorithms themselves will
eventually adapt capacities of the non-failed limiters to the
desired regime.

Performance indicator estimation. The choice of per-
formance indicators has a key effect on the results of the
GDRL algorithm. What is relevant performance indicator is
somewhat driven by the application needs and it is hard to
isolate the single performance metric usable in all conditions;
see, for example [25]. This was the main motivation for the
general presentation in the previous sections. However, often
the performance indicator is a function of a random variable
which needs to be estimated. While some performance metrics
can be estimated quickly and accurately there are also cases
in which the direct estimation of the performance metric can
require many samples to give an accurate estimate. Example
of this is the estimation of the mean waiting time in M/M/1
queue, see Chapter 11 of [19] and references therein.

V. SUMMARY

Issues related to service reliability, service availability, and
fault tolerance, have encouraged many service providers in the
Internet to shift from traditional centric services to cloud based
services. This trend appears to be a dominant mechanism
for ensuring robustness of internet services with many “big
players”, such as Google, Yahoo!, Akamai, Amazon, already
offering a suit of cloud-based services.

Pricing, usage control, and resource allocation of cloud
based services represent important technical challenges for
the networking community. The Distributed Rate Limiting
paradigm is a step forward in resolving those issues. The DRL
algorithms presented in [29] and [32] deal with the closed-
loop workloads in which the job demands are elastic (driven
by the best-effort TCP users). Therefore, those algorithms
utilize TCP-related quantities (loss-rates, TCP-“weight”, etc.)
and are not suitable for non-elastic (open-loop) workloads.
This motivated us to develop GDRL, the algorithm for solving
the DRL problem in general workloads utilizing a very general
notion of performance metric. Namely, our analysis shows
that GDRL solves the DRL problem for any performance
indicator that is a convex smooth function of the allocated
server capacity. Theorem 1 provides a closed form expression
that guarantees the stability that largely simplifies the design.
Our evaluation section illustrated the behavior of GDRL in
the simple M/M/1 scenario, showing that simulation results
match the analytical predictions. We conclude the discussion
of the paper raising two open questions related to the design
of DRL algorithms.

7Note that if j is best-friend of node i, that it does not necessarily mean
that i is the best-friend of node j.



9

Open question 1. Unified framework for load balancing
and DRL algorithms. In Section I we briefly discussed the
connection between load balancing and DRL. Both paradigms
strive to equalize the performance on different servers; load
balancing achieves that by allocating the jobs to different
servers while DRL allocates the service capacity to different
servers. Can we unify those two paradigms into one framework
that takes into account the cost of allocating certain job to the
certain server (or some other approach)?

Open question 2. Kelly-like framework for DRL algorithms.
Is there a nice interpretation of DRL algorithms through the
convex optimization Kelly-like framework [31]?

APPENDIX

Suppose that instead of synchronous updates, GDRL up-
dates the vector C(t) = (C1(t), . . . , CN (t)) in an asyn-
chronous manner such that within each time interval I of
length δ the union of all edges over which a communication
has been established during I is a connected graph. Formally
the asynchronous model we consider is characterized by the
following:

Assumption 2: Let τ1 < τ2 < . . . < τt < . . . be
instances of time at which communication between two nodes
appear. Denote by et = {v′t, v′′t } the edge over which the
communication is established during the time instance tk. Let
C(t) be the vector of local capacities at time instance τt. Then
in the asynchronous model we allow updates of the following
form:

Ci(t) = Ci(t− 1), if i 6∈ {v′t, v′′t }
and

Ci(t) = Ci(t−1)+η(qi(t−1)−qj(t−1)), if {i, j} = {v′t, v′′t }.

Then we have the following result analogous to the Theorem
1.

Theorem 2: Suppose that vector C(t) of local capacities is
updated in the asynchronuous model defined by Assumption
2. Then if η satisfies:

0 < η <
1
2

min
1≤i≤N

(−g′i(qi(0))), (17)

the following limits exist

lim
t→∞

Ci(t) = C∗i

and
lim

t→∞
qi(t) =: q∗.

The proof can be derived following the lines of the proof of
Theorem 1 and is omitted here.

REFERENCES

[1] Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2.
[2] A. Berman, R. Plemmons. ”Nonnegative matrices in the mathematical

sciences”. SIAM, 1979.
[3] S. Bhatnagar, B. Nath. “Distributed admission control to support guaran-

teed services in core-stateless networks”. IEEE INFOCOM, 2003.
[4] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah. “Gossip algorithms: Design,

analysis and applications”. In Proc. of IEEE INFOCOM, 2005

[5] D. F. Carr. “How Google works”. Baseline Magazine, July 2006.
[6] Akamai. “The state of the Internet: 1st Quarter 2008”. Vol 1(1).
[7] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakrishnan, J. van

der Merive “A flexible model for resource management in virtual private
networks”. In Proc. of ACM SIGCOMM 1999.

[8] D. Hinchcliffe. “2007: The year enterprises open thier SOAs to the
Internet”. Enterprise Web 2.0, Jan. 2007.

[9] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules”. IEEE Transactions on
Automatic Control, vol. 48(6), 2003

[10] A. Jain, J. M. Hellerstein, S. Ratnasamy, D. Wetherall. “A wakeup call
for internet monitoring systems: The case for distributed triggers”. In
Proc. of HotNets-III, 2004.

[11] R. Jain. “The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing”. John Wiley and Sons, INC., 1991.

[12] D. Kempe, A. Dobra, J. Gehrke. “Gossip-based computation of aggre-
gate information”. In Proc. of IEEE FOCS, 2003.

[13] C. King, R. Shorten, F. Wirth, M. Akar. “Growth Conditions for the
Global stability of Highspeed Communication Networks”. To appear in
IEEE Transactions on Automatic Control, 2008.

[14] M. Kodialam, T. Lakshman, S. Sengupta. “Maximum Throughput Rout-
ing of Traffic in the Hose Model”. In Proc. of IEEE INFOCOM 2006.

[15] A. Kumar, R. Rastogi, A. Siberschatz, B. Yener. “Algorithms for
provisioning virtual private networks in the hose model”. IEEE/ACM
Trans. on Networking, vol 10(4), 2002.

[16] K. Kumaran, M. Mandjes. “The buffer-bandwidth trade-off curve is
convex”. Queueing Systems, vol. 38(4), 2001.

[17] K. Kumaran, M. Mandjes, A. Stolyar. “Convexity properties of loss and
overflow functions”. Operations Research Letters, vol. 31(2), 2003.

[18] S. Kunniyur, R. Srikant. “Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management”. IEEE/ACM
Trans. on Networking, vol. 12(2).

[19] S. Meyn. “Control techniques for the complex networks”. Cambridge
University Press, Cambridge, 2008.

[20] M. Mitzenmacher. “The Power of Two Choices in Randomized Load
Balancing”. IEEE Transactions on Parallel and Distributed Systems, vol.
12(10), 2001.

[21] L. Moreau. “Stability of multiagent systems with time-dependent com-
munication links”. IEEE Transactions on Automatic Control, 2005.

[22] H. X. Nguyen, D. Figueiredo, M. Grossglauser, P. Thiran. “Balanced
Relay Allocation on Heterogeneous Unstructured Overlays”. In Proc. of
IEEE Infocom 2008, Phoenix, AZ, USA.

[23] A. Odlyzko. “Internet pricing and the history of communications”.
Computer Networks, vol. 36, 2001.

[24] R. Olfati-Saber. “Flocking for multi-agent dynamic systems: algorithms
and theory”. IEEE Trans. on Auto. Control, 2006.

[25] T. Osogami. “Accuracy of measured throughputs and mean response
times”. In Proc. of MAMA 2007, San Diego, CA, USA.

[26] J. Padhye, V. Firoiu, D. F. Towsley, J. F. Kurose. “Modeling TCP Reno
performance: a simple model and its empirical validation”. IEEE/ACM
Trans. on Networking, vol 8(2), 2000.

[27] R. S. Prasad, C. Dovrolis. “Measuring the Congestion Responsiveness
of Internet Traffic. In Proc. of PAM 2007.

[28] R. S. Prasad, C. Dovrolis. “Beyond the Model of Persistent TCP Flows:
Open-Loop vs Closed-Loop Arrivals of Non-persistent Flows”. In Proc.
of Annual Simulation Symposium, 2008.

[29] B. Raghavan, K. Vishwanath, S. Rambhadran, K. Yocum, A. Snoeren.
“Cloud Control with Distributed Rate Limiting”. In Proc. of ACM
SIGCOMM 2007.

[30] B. Schroeder, A. Wierman, M. Harchol-Balter. “Open vs. closed sys-
tems: A cautionary tale”. In Proc. of NSDI 2006.

[31] R. Srikant. ”Internet congestion control”. Control theory, 14, Birkhäuser
Boston Inc., Boston, MA, 2004.

[32] R. Stanojevic, R. Shorten.“”Fully decentralized emulation of best-effort
and processor sharing queues”. In Proc. of ACM SIGMETRICS 2008.

[33] C.W. Tan, D.M. Chiu, J.C.S. Lui, D.K.Y. Yau. “A Distributed Throttling
Approach for Handling High Bandwidth Aggregates”. IEEE Transactions
on Parallel and Distributed Systems, vol 18(7), 2007.

[34] D. Wei, C. Jin, S. Low, S. Hegde. “FAST TCP: motivation, architecture,
algorithms, performance”. IEEE/ACM Trans. on Networking, 2007.

[35] F. Wuhib, M. Dam, R. Stadler. “Decentralized Detection of Global
Threshold Crossings Using Aggregation Trees”. Computer Networks, vol.
52(9), 2008.


